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Abstract. It is known that large time-stepping method are useful for simulating phase
field models. In this work, an adaptive time-stepping strategy is proposed based on
numerical energy stability and equi-distribution principle. The main idea is to use the
energy variation as an indicator to update the time step, so that the resulting algorithm
is free of user-defined parameters, which is different from several existing approaches.
Some numerical experiments are presented to illustrate the effectiveness of the algo-
rithms.
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1 Introduction

This paper is concerned with the numerical method for the Cahn-Hilliard equation

∂u

∂t
+∆(u−u3+κ∆u)=0, (x,t)∈Ω×(0,T], (1.1a)

u(x,0)=u0(x), (1.1b)

where Ω=(0,L1)×(0,L2) is a simple domain for the sake of simplicity, κ is a positive con-
stant parameter and u0(x) is the initial data. Also for simplicity, the periodic boundary
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condition is imposed. The Cahn-Hilliard equation is first introduced in [1] to describe a
continuum model for two mixture components separation and coarsening phenomena.
In the model, u represents the concentration of one in the two components and the small
parameter κ relates to the interfacial width.

There have been a large number of research work dealing with the Cahn-Hilliard
problem. On the theoretical side, Elliot and Zheng [9] investigate the existence and
uniqueness of the solution. On the numerical side, the finite element method [6–8], the
finite difference method [14,17,19,25,27], the spectral method [11,16,21,23,30], the finite
volume method [10] and the discontinuous Galerkin method [26] have been proposed
and applied to solve the Cahn-Hilliard equation numerically. In particular, we mention
here the conservation difference scheme with unconditional stability, see, e.g., [14, 29].

As for the time discretization aspect, it is noted that the numerical simulation of Cahn-
Hillard model needs a long time to reach the steady state. Therefore, the schemes with
high stability that allows large time-stepping are very useful to reduce the total compu-
tation time. In [17], a semi-implicit difference scheme with an extra term is proposed
which allows large time-stepping for long-term simulation. In [15, 29], a time adaptivity
strategy based on the energy evolution are presented. For more information, please refer
to [20].

In this paper, we present a new type of adaptive time-stepping scheme which only
requires to input the minimum time step, the maximum time step and the tolerance of the
energy decay rate. An energy identity, which connects the energy variation and the space
gradient of the solution, is used to predict the time-step. Using the energy identity for the
adaptive time-stepping method can avoid the difficulty of choosing artificial parameters
needed by some other existing methods. With the predicted time steps, we aim at equi-
distributing the energy curve in each time step. By setting the minimal time step and by
adjusting the quantity of the energy decay rate, the accuracy of the numerical solution is
pre-determined. Moreover, we consider two kinds of difference schemes to demonstrate
that they can be integrated into the adaptive time-stepping framework.

The outline of this paper goes as follows. In Section 2, we briefly review the finite
difference scheme proposed in [29] as well as some of its important properties. Based on
these results, Section 3 is devoted to deriving an adaptive time-stepping algorithm. In
Section 4, the time-stepping method is applied to the linear scheme based on the convex
splitting and a nonlinear scheme based on the Crank-Nicolson scheme. Some numerical
experiments are carried out to show the effectiveness of the algorithm in Section 5. Some
concluding remarks will be given in the final section.

2 Model and discretization

The Cahn-Hilliard equation is the gradient flow of the energy functional

E(u)=
κ

2
‖∇u‖2+

1

4
‖u2−1‖2, (2.1)
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where and hereafter ‖·‖ denotes the L2-norm. It is shown in [29] that the solution of the
Cahn-Hilliard equation (1.1) satisfies the energy identity

d

dt
E(u)+‖∇µ‖2 =0, (2.2)

where µ=u−u3+κ∆u.
A second order finite difference scheme proposed by Zhang and Qiao [29] is then

introduced to solve the two-dimensional Cahn-Hilliard equation. Construct a partition
for the domain Ω uniformly with ∆x=L1/Nx and ∆y=L2/Ny. The mesh grid is (xi,yj) :=
(i∆x, j∆y),0≤ i≤Nx ,0≤ j≤Ny. Denote the time step as ∆t and we use the central discrete
difference operators ∇h and ∆h

∇h f j+ 1
2 ,k+ 1

2
=

(
f j+1,k− f j,k

∆x
f j,k+1− f j,k

∆y

)
, (2.3)

∆h f j,k =
f j+1,k−2 f j,k+ f j−1,k

(∆x)2
+

f j,k+1−2 f j,k+ f j,k−1

(∆y)2
. (2.4)

The finite difference scheme for problem (1.1) reads:

Un+1
j,k −Un

j,k

∆t
=−∆hµ

n+ 1
2

j,k , 1≤ j≤Nx ,1≤ k≤Ny, (2.5a)

where

µ
n+ 1

2

j,k =
Un+1

j,k +Un
j,k

2
−

Un+1
j,k +Un

j,k

2

(Un+1
j,k )2+(Un

j,k)
2

2
+κ∆h

Un+1
j,k +Un

j,k

2
. (2.5b)

In this paper, we define the discrete L2-norm as

‖ f‖2
h =

Nx

∑
j=1

Ny

∑
k=1

∆x∆y f 2
j,k .

Then the discrete energy can be defined as

Eh(U)=
κ

2
‖∇hU‖2

h+
1

4
‖U2−1‖h. (2.6)

For the scheme (2.5), we have a discrete energy identity which leads to the uncondi-
tional energy stability.

Lemma 2.1 ([29]). Given any time step ∆t>0, the unconditional energy stability holds:

Eh(U
n+1)≤Eh(U

n), (2.7)

where Un is defined by (2.5) and Eh is defined by (2.6). Moreover, the following discrete energy
identity holds

Eh(U
n+1)−Eh(U

n)

∆t
+‖∇hµn+ 1

2 ‖2
h =0. (2.8)
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Define the error by en=Un−un with the pointwise definition en
j,k=Un

j,k−un
j,k. It can be

demonstrated that the truncation error of the scheme (2.5) satisfies

‖en‖h =O
(
(∆t)2+(∆x)2+(∆y)2

)
. (2.9)

3 Adaptive time-stepping based on the energy variation

The purpose of the adaptive time-stepping method is to vary the time-step sizes. For
example, when the phase change is drastic, the small time step is adopted; when it slows
down, the large time step is used. With some underlying physical quantity change during
the phase evolution, such mechanism can be provided.

Between the spatial adaptive method and the adaptive time-stepping method, there
is something in common. The spatial adaptive method always aims at equi-distribution
quantities, such as error, arch-length or mass, among the elements. The adaptive time-
stepping method aims at equi-distributing similar physical quantity (denoted as M) in
the time direction, like the energy change or the L2 norm of the phase change from initial
state to the steady state. If we divide M into N parts, and denote δM=M/N, we intend
to make the quantity change for M in each step to be close to δM.

However, several things are different:

• In spatial adaptive methods, the global error at any iteration step is computed so
that the relative error distribution among the elements will be used to decide the
refined or coarsening elements. However, in the adaptive time-stepping method,
the total change of the physical quantity M is unknown until the last time step.

• We need to compute δM by numerical method as precise as possible in the adap-
tive time-stepping method rather than using a relative error as used in the spatial
adaptive method.

• In spatial adaptive method, the global mesh can be redistributed according to the
error distribution, while in adaptive time-stepping methods, redistributing the time
steps is neither necessary nor possible due to unaffordable computing time needed.

One advantage of the adaptive time-stepping method is that we only need to do the
adaptivity in one direction. In each time level tn, some method is used to predict the next
time-step size δt. In each step, we need to ensure that

∫ tn+δt

tn

Mdt≤δM.

In practice, an approximate version may be chosen as (M̂ is an approximation of M)

∫ tn+δt

tn

M̂dt≤δM. (3.1)
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If (3.1) is satisfied, the numerical solution is accepted and the time step δt will be added
to tn. So we can move to the time level tn+1. Otherwise, we shorten the time step δt
(bounded by ∆tmin from below) and start the procedure from tn again.

Based on the discussion above, we give a framework for the adaptive time-stepping
method.

1. Find the physical quantities M̂ and δM related to the phase change.
2. Predict the time-step size with the help of M̂ and δM.
3. Based on (3.1) to accept or reject the time step. If (3.1) is not satisfied, then re-start
the procedure with a smaller step.

Since the Cahn-Hilliard equation comes from the energy flow of (2.1), it is natural to
explore the use of energy. To this end, we define the physical quantity M by using the
energy change −∂tE. More precisely, we define

M̂=−
Eh(U

n+1)−Eh(U
n)

∆t
,

which satisfies ∫ tn+∆t

tn

M̂dt=Eh(U
n)−Eh(U

n+1).

Thus, δM can be defined as δEn
h :=Eh(U

n)−Eh(U
n+1) to control the energy change.

It follows from the discrete energy identity (2.8) that

∆t=−
Eh(U

n+1)−Eh(U
n)

‖∇hµn+ 1
2 ‖2

h

. (3.2)

Since the aim is to equi-distribute the energy variation, we set the numerator |Eh(U
n+1)−

Eh(U
n)| to be a constant δE in (3.2). This yields

∆t=
δE

‖∇hµn+ 1
2 ‖2

h

. (3.3)

There is still an unknown term Un+1 in the denominator of (3.3). Replacing it by Un leads
to a computable time predictor δt

δt=
δE

‖∇hµn‖2
h

. (3.4)

We now demonstrate that such a predictor is reasonable. Suppose there is an model
with the energy evolution depicted in Fig. 1. A set of time steps {∆ti} divide the energy
curve into N equal parts

δE=(total energy variation)/N= |Eh(U
n+1)−Eh(U

n)|.
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Figure 1: The energy evolution.

From (3.3), in order to equi-distribute the energy variation, the time steps ∆ti should
vary according to the intensity of energy change. In case that the energy changes fast,
the identity (3.3) can produce a small time step ∆t1. As the change slows down, the time
step increases to ∆t2. If the energy changes fast again then the time step becomes smaller
accordingly. All of these changes depend on the denominator in (3.3), which is small at
first, latter becomes bigger, and then becomes small again. Comparing the equality (3.3)
to (3.4), the only difference is that the latter uses Un to approximate Un+1 in the former.
So δt in (3.3) is regarded as a good approximation to ∆t.

Such an adaptive time-stepping method is in fact an one-step fixed-point iteration for
a nonlinear equation. Combing the Crank-Nicolson scheme (2.5) and the formula (3.2),
and supposing δEn+1

h 6=0, we have

Un+1−Un

Eh(Un+1)−Eh(Un)
=

∆hµn+ 1
2

‖∇hµn+ 1
2 ‖2

h

. (3.5)

Our time adaptive method aims at equi-distributing the energy curve, i.e., a constant δE is
used to control the energy decay in each time step. This requires that Eh(U

n)−Eh(U
n+1)=

δE, and (3.5) turns out to be

Un+1−Un

δE
=−

∆hµn+ 1
2

‖∇hµn+ 1
2 ‖2

h

. (3.6)

Define the time step as

∆t=
δE

‖∇hµn+ 1
2 ‖2

h

. (3.7)
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To apply a fixed-point iteration to solve the nonlinear problem (3.6), we replace the un-
known term Un+1 with Un to give the effective time step as

∆̃t=
δE

‖∇hµn‖2
h

. (3.8)

It shows that the adaptive time-stepping method is of the form

Un+1−Un

∆̃t
=−∆hµn+1,

which is exactly an one-step fixed-point iteration for solving the nonlinear equation (3.6).
Before proposing the algorithm, we would like to discuss three issues. The first one

relates to the prescribed constant δE. The practical computational experience suggests
that it does affect the time step significantly and thus it is critical. In general case, the
energy changes extremely fast at initial stage. Thus, it is reasonable to use minimal time
step at initial stages, i.e., the initial [0,tk] interval. We then use the average of the energy
decrease values in the [tk/2,tk] as δE to control the adaptive time-stepping method for
the rest of the computational time. This way of determining δE can reflect the intensity
of the initial phase change and avoid unreasonable effect to δE due to the large initial
variation of the phase change.

The second issue is concerned with how to modify the time step when the computa-
tional results violate the criteria (3.1). Then we check the time-step size used: if it is the
minimal size, we still accept it; otherwise, we do a local feedback procedure, i.e., shorten
the time-step size and re-compute the model on this time level.

The third issue relates to the consideration of controlling accuracy by adjusting δE
automatically. From (3.8), δE affects the time-step size ∆t, and thus affects the accu-
racy. One case is that when the minimal time-step size is used and the energy variation
Eh(U

n)−Eh(U
n+1) is smaller than δE, we can do an average such as

δE :=
m×δE+

(
Eh(U

n)−Eh(U
n+1)

)

m+1
, (3.9)

to produce a smaller δE which leads to a smaller time step. Likewise, when the energy
change Eh(U

n)−Eh(U
n+1) is larger than δE, an average procedure can enlarges δE which

yields a larger time step.
Based on the discussion above, an adaptive time-stepping algorithm on the energy

equi-distribution can be proposed as below:

Algorithm 3.1. (adaptive time-stepping algorithm based on energy decay)

1. Set ∆tmin and ∆tmax, compute the problem (2.5) with the minimal time step ∆tmin

for initial tk second(s), and set δE as the average of the energy decrease values in
the time interval [tk/2,tk]. Then, set m, n=1, and tn = tk.
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2. At the time level tn, calculate the time step with the formula (3.8) and compute the

problem (2.5) with the time step ∆t=min(∆tmax,max(∆̃t,∆tmin)).

3. Check the criteria, Eh(U
n)−Eh(U

n+1)≤ δE and ∆t=∆tmin are true or not. If either
one is true, accept the time step ∆t and got to step 4; or else, return to step 2 with
time step ∆t=min(∆tmax,max(∆t

2 ,∆tmin)).

4. (Automatically adjust δE) If ∆t=∆tmin in step 3, adjust δE with an arithmetic aver-
age (3.9) and set m :=m+1.

5. Move to the next time level tn+1= tn+∆t, set n :=n+1 and go to step 2.

4 Linear scheme with adaptive time steps

The adaptive time-stepping method does not limit its use to the Crank-Nicolson scheme.
Combining it with other method, such as the linear scheme proposed by Eyre in [3], can
also be an effective method for the Cahn-Hilliard model (1.1).

The scheme comes from the convex splitting to the energy of Cahn-Hilliard equation.
Divide the energy into two parts:

E(u)=Ec(u)−Ee(u),

Ec(u)=
κ

2
‖∇u‖2+

α

2
‖u‖2+|Ω| is the contractive part,

Ee(u)=
1

4
‖u‖4−

α+1

2
‖u‖2 is expansive part.

Two conditions should be taken care in the convex splitting method: (1) the Jacobian
matrix of ∇E satisfies (J(∇E)(u)u,u)≥ λ(u,u); (2) the Jacobian matrix of ∇Ec satisfies
(J(∇Ec)(u)u,u)≥λ1(u,u) with λ1≥|λ|≥0.

By direct calculation of the Jacobian matrix, we have

(
J(∇E)(u)u,u

)
=
∫

Ω

(
κ|∇u|2+u2(3u2−u−1)

)
dx,

(
J(∇Ec)(u)u,u

)
=
∫

Ω

(
κ|∇u|2+αu2

)
dx,

(
J(∇Ee)(u)u,u

)
=
∫

Ω
u2
(
−3u2+1+α+u

)
dx.

The solution of Cahn-Hilliard equation is supposed to satisfy u∈ [−1,1] according to its
physical meaning. A larger α leads to stronger convexity but also a larger truncation error
in time. Considering these two factors, we use λ=−2, α=1 and λ1 =2. More details on
the choice of α can be found in [28].

Then applying the gradient flow method to the splitting energy, we have

Un+1−Un

∆t
=∇Ee(U

n)−∇Ec(U
n+1), (4.1)
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where the explicit scheme is used for the expansive part and the implicit scheme is used
for the contractive part. So the linear scheme is:

Un+1
i,j −Un

i,j

∆t
=
(
−κ∆2

hUn+1
i,j +α∆hUn+1

i,j

)
+
(

∆h(U
n
i,j)

3−(α+1)∆hUn
i,j

)
. (4.2)

There are also other ways to divide the energy E(u) to obtain some different schemes for
the Cahn-Hilliard equation, which can be found in [3]. The linear scheme (4.2) satisfies
the unique solvability listed below.

Lemma 4.1 ([3] unconditional energy stability). For any time-step size ∆t> 0, the uncondi-
tional energy stability holds for linear scheme (4.2)

Eh(U
n+1)≤Eh(U

n), (4.3)

under the condition Un∈ [−1,1] for any time level tn.

Compared with the Crank-Nicolson scheme (2.5) which has second order accuracy in
the time discretization, the linear scheme has only first order accuracy. More precisely,
the truncation error of the linear scheme is

err=
∆t

2

(
J(∇Ee)(u)+ J(∇Ee)(u)

)
∇E(u(ξ)),

where ξ∈ (n∆t,(n+1)∆t).
It is easy to see such a linear scheme is uniquely solvable. Moreover, the linear scheme

avoids the nonlinear iteration which is required in the nonlinear scheme (2.5).
The Crank-Nicolson scheme satisfying the discrete energy identity (2.6) which can

be used to derive a time step predictor. For the linear scheme, such discrete version of
the energy identity is unavailable. Thus we use the continuous one directly by replacing
dE/dt with its approximation δE/δt and replacing u with Un to derive the time-step
predictor

δt=
δE

‖∇hµn‖2
. (4.4)

Since the linear scheme is unconditionally stable with first order accuracy in time, we
expect (4.4) works like (3.4) that varies the time-step size based on the intensity of the
energy change.

The algorithm combining the linear scheme (4.2) and the adaptive time-stepping method
(4.4) for Cahn-Hilliard equation is the same as Algorithm 3.1, except replacing (2.5) by
(4.2).

The linear system in each time step can be solved efficiently if we follow Chapter 7
in [4]. Transforming (4.2) into linear system

Un+1
i,j −∆t

(
−κ∆2

hUn+1
i,j +α∆hUn+1

i,j

)
(4.5)

=∆t(∆h(U
n
i,j)

3−(α+1)∆hUn
i,j)+Un

i,j.
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Denoted the items of (4.5) in matrix form, i.e. U :=(Ui,j)n×n. The right hand side defined
as F :=(Fi,j)n×n, where

Fi,j :=∆t
(

∆h((Ui,j)
3)−(α+1)∆hUi,j

)
+Ui,j.

Denote A as a n×n matrix:

A :=
1

h2




2 −1 0 ··· 0 −1
−1 2 1 ··· 0 0
0 −1 2 ··· 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
−1 0 0 ··· −1 2




,

and M as a matrix with all elements equal to 1. Define the derivative operator ∆h on
matrix U as

∆hU :=(∆hUi,j)n×n.

It is easy to know

∆hU=AU+UA.

The linear system can be rewritten as

M+κ(AAU+2AUA+UAA)−α(AU+UA)=F. (4.6)

Since A is symmetric, it has the decomposition A=ZΛZT with Z being orthogonal matrix
and Λ=diag{λi}. Replacing A in (4.6), we have

M+κ(ZΛZTZΛZTU+2ZΛZTUZΛZT+UZΛZTZΛZT)

−α(ZΛZTU+UZΛZT)=F. (4.7)

Pre-multiplying ZT and post-multiplying Z on both sides, and denoting U′=ZTUZ, F′=
ZTFZ leads to the following equation

M+κ∆t(Λ2U′+2ΛU′Λ+U′Λ2)−α∆t(ΛU′+U′Λ)=F′.

Solve this problem, we have

u′
i,j =

F′
i,j

1+κ∆(λi+λj)2−α∆t(λi+λj)
. (4.8)

Finally, by inverse transformation, the solution is

U=ZU′ZT.

So the algorithm for solving the linear system (4.5) (similar to Algorithm 6.13 in [4]) can
be described as follows
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Algorithm 4.1. [Solve the linear system]

1. Do the decomposition A=ZΛZT.

2. Compute F′
i,j=ZTFZ and u′

i,j with (4.8).

3. Do the inverse transformation U=ZU′ZT to get the solution.

Since the discrete FFT can be applied to decompose A and do the inverse transfor-
mation in step 3, such method is a fast algorithm. We denote the algorithm using linear
scheme with adaptive time step and Algorithm 4.1 as Algorithm 4.3.

5 Numerical experiments

In this section, some numerical experiments are carried out to show the efficiency of the
methods proposed in the previous sections.

5.1 Examples with Crank-Nicolson scheme

For the examples in this subsection, the Newton iteration method is adopted to solve the
discrete nonlinear system (2.5). In each iteration step, the initial value is set to be the
numerical solution of the previous step. The algebraic multigrid method is used to solve
the linearized system at each Newton iterative step. The initial value in the algebraic
multigrid method is set as the change of previous two iteration steps and the tolerance is
set to be 10−8.

Example 5.1. ([29]) We solve Eq. (1.1) with the initial condition:

u0(x,y)=0.05sinxsiny, (x,y)∈ [0,2π]2 . (5.1)

The parameter κ=0.01, the periodic boundary condition is imposed.

This example was used in [29] and is used here to test the computation efficiency of
Algorithm 3.1. We use a 200×200 grid to discretize the problem in space. First, we solve
the problem with the uniform time step ∆t = 0.001. Then the adaptive time-stepping
method is also applied to solve this problem with tk =0.2, ∆tmin =0.001, ∆tmax =0.1, 0.5
or 1, respectively. In Fig. 2, we plot the solution contours at some selected time levels for
∆t= 0.001. Also, the solution contours by adaptive time-stepping method with ∆tmin =
0.001 and ∆tmax = 0.1 are plotted in Fig. 3. From these two figures, we can find that the
solutions obtained by the adaptive time-stepping method are almost the same as those
obtained by the uniform time-stepping method.
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Figure 2: Example 5.1: Phase contour lines on some time levels by the uniform time-stepping method with
∆t=0.001.

Table 1: Example 5.1: L2-norm error (uconst denotes the solution by the uniform time step ∆t=0.001, u0.1s, u0.5s
and u1s denote the adaptive time-stepping solution with ∆tmin=0.001 and ∆tmax=0.1, 0.5 and 1, respectively).

t=20s t=40s t=60s t=80s t=100s

‖uconst−u0.1s‖h 9.77E-04 8.75E-04 7.91E-04 7.69E-04 7.66E-04

‖uconst−u0.5s‖h 9.80E-04 8.84E-04 8.60E-04 7.83E-04 7.76E-04

‖uconst−u1s‖h 9.80E-04 8.84E-04 1.10E-03 9.80E-04 9.18E-04

The corresponding energy curves are plotted in Fig. 4. It is observed that these energy
curves obtained by the adaptive time-stepping method with different ∆tmax are almost
the same as those by the uniform time-stepping method with ∆t = ∆tmin. The energy
curves indicates that the solution has a quick motion in the early stage of the evolution,
and it develops slowly latter until it reaches a steady state.

Fig. 5 presents the distribution of the time-step size. Corresponding to the fast devel-
opment in the early stage, the time steps are small and then the time steps become larger
when the solution reaches a steady state.

On some time levels, the L2-norm of the difference between solutions by the adaptive
time-stepping method and the uniform time step are listed in Table 1. The small error
shows that the adaptive time-stepping method do enjoy high accuracy property.

The CPU time (in seconds) consumed by the uniform time-stepping method and
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Figure 3: Example 5.1: Phase contour lines on some time levels for the adaptive time-stepping method with
∆tmin=0.001 and ∆tmax=0.1.
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Figure 4: Example 5.1: energy evolution.

adaptive time-stepping methods with different ∆tmax is depicted in Fig. 6. The adaptive
time-stepping method saves the computation time for nearly 75%.

Example 5.2. In this example, the initial condition is taken as

u0(x,y)=0.5sin(x+cosx)cos(y+sin2x)
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Figure 5: Example 5.1: the distribution of time steps.
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Figure 6: Example 5.1: CPU time (seconds) comparison.

and Ω=[0,2π]×[0,2π], the periodic boundary condition and κ=0.01 are imposed.

This example is designed to show how the quantity of ∆tmin affects the time-step
evolution and the accuracy. The grid and tk are the same as those in Example 5.1.

In Fig. 7, we present the energy evolution produced by the adaptive time-stepping
with three different ∆tmin. The energy decrease quantities δE and the distribution of
the time-step size ∆t for the adaptive time-stepping with three different choices ∆tmin =
0.001,0.0004,0.0001 are presented in Fig. 8. The left subfigure in Fig. 8 shows that δE/∆tmin

are approximate to 20 for all the three choices. The right subfigure in Fig. 8 shows that
anyone of the three choices have a similar pattern of reaction to the energy decay and
they can eventually produce time steps large enough.

The corresponding CPU time (in seconds) for different choice of ∆tmin are shown in
Fig. 9, which is consistent with the distributions of time steps (the right one in Fig. 8).
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Figure 7: Example 5.2: energy evolution.

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

time

δE

 

 

adaptive ∆ t,∆ t
min

=0.0001,∆ t
max

=1

adaptive ∆ t,∆ t
min

=0.0004,∆ t
max

=1

adaptive ∆ t,∆ t
min

=0.001,∆ t
max

=1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

time

∆ 
t

 

 

adaptive ∆ t,∆ t
min

=0.0001,∆ t
max

=1

adaptive ∆ t,∆ t
min

=0.0004,∆ t
max

=1

adaptive ∆ t,∆ t
min

=0.001,∆ t
max

=1

(a) t∈ [0,2] (b) t∈ [0,100]

Figure 8: Example 5.2: energy decrease and the distributions of time steps.

Example 5.3. Here, the initial condition is a random assignment with values in [−0.1,0.1]
on the grid point (x,y)∈ [0,2π]×[0,2π]. The periodic boundary condition and κ= 0.001
is imposed.

We use the same spatial mesh and tk as in Example 5.1 and set ∆tmin = 0.0001 and
∆tmax=1. Fig. 10 presents the phase contour lines on some selected time levels.

In Fig. 11, the energy evolution curves and the distributions of time steps against
time are presented in the left subfigure, from which we see that the growing up of the
time step coincides with the slowing down of the energy decay. In the right of Fig. 11, the
local zoom of the left figure in the time interval [9.5,15] is presented, where we can see a
sharp turning down of the time-step size happens where the energy decays quickly.

The CPU time (in seconds) is presented in Fig. 12. The adaptive time-stepping method
saves the computation time and improves the computing efficiency.
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Figure 10: Example 5.3: Phase contour lines on some time level.

5.2 Example with convex splitting method

In this subsection, the example 4 in [12] is used to check the efficiency of the adaptive
time-stepping method with the linear scheme.
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Figure 11: Example 5.3: the distributions of time steps according to energy evolution.
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Example 5.4. The initial condition is set to be the trigonometric function

u0(x,y)=0.05sinxsiny+0.01, (x,y)∈ [0,2π]2. (5.2)

The parameter κ=0.01, the periodic boundary condition is imposed.

Due to the accuracy and convergence order consideration, we use a finer mesh with
the meshgrid 400×400 and choose ∆tmin=0.0001, ∆tmax=0.1 and tk=0.05 for the adaptive
time-stepping method. First, we plot the solution contour lines as before at some selected
time levels in Figs. 13 and 14 for the uniform time-stepping method and the adaptive
time-stepping method, respectively.

The contours in Figs. 13 and 14 looks similar to Fig. 11 in [12]. Just from the contour
figures, we can not see the difference between these two methods. And the energy figure
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Figure 13: Example 5.4: Phase contour lines on some time levels by the uniform time-stepping method with
∆t=0.0001.
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Figure 14: Example 5.4: Phase contour lines on some time levels for the adaptive time-stepping method with
∆tmin=0.0001, ∆tmax=0.1 and K=0.5.
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Figure 15: Example 5.4: energy evolution.
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Figure 16: Example 5.4: the distributions of time steps.

from 0s to 60s of the two methods look the same. Only if we zoom the figure, we find
there are slightly difference between them on the time interval [1s,8s], see Fig. 15.

Fig. 16 shows the time step evolution. After some fluctuation in first few seconds,
it gradually reaches to ∆tmax. Finally, the CPU time is showed in Fig. 17. The convex
splitting method does save CPU time greatly by enlarging the time steps to reduce the
computational times. It needs only 1/28 CPU time of the uniform time-stepping method.

We close this section by making the following observations. From the numerical ex-
amples presented in this section, by producing δE automatically, we reduce the artificial
effect to the adaptive time-stepping scheme. The sensitivity of the time-step size to the
intensity of the energy decay leads to the reduction in the number of the time steps. Also
with such sensitivity, this method can produce enough large time step when the energy
changes slowly, even starting from a very small time step ∆tmin. Moreover, it keeps the
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Figure 17: Example 5.4: CPU time (seconds).

accuracy quite well and saves computational time greatly. The adaptive time-stepping
method can also be used in convex splitting method, as it is presented in Example 5.4.
Together with the discrete FFT, the linear scheme saves CPU time much more greatly.

6 Concluding remarks

This work presents an adaptive time-stepping algorithms for simulating long time evo-
lution of the Cahn-Hilliard problem. The time-adaptive algorithm is associated with two
energy stable time-stepping schemes, i.e., the Crank-Nicolson scheme and the convex
splitting method [3]. Since the algorithms follow the guide of the equality (2.8), the time-
step size changes according to the phase (energy) variation. With the four numerical
examples, the robustness, accuracy and the efficiency are tested. As the main purpose
of the time adaptivity is to vary the time steps so larger time steps can be used when-
ever possible while preserving the overall accuracy, the numerical experiments indicate
that the proposed algorithms serves the basic role. In future works, we may extend the
present approach to more complicated phase field problems such as the molecular beam
epitaxy model (see, e.g., [20,28]) and more general free energy such as the one in log form
(see, e.g., [18, 22]).
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