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Abstract. We propose some new weighted averaging methods for gradient recov-
ery, and present analytical and numerical investigation on the performance of these
weighted averaging methods. It is shown analytically that the harmonic averaging
yields a superconvergent gradient for any mesh in one-dimension and the rectan-
gular mesh in two-dimension. Numerical results indicate that these new weighted
averaging methods are better recovered gradient approaches than the simple aver-
aging and geometry averaging methods under triangular mesh.
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1 Introduction

Finite element recovery techniques are post-processing methods that reconstruct nu-
merical approximations from finite element solutions to obtain improved solutions.
A classical recovery technique is a simple averaging technique which is as old as the
finite element method itself. Whereafter, different kinds of post-processing techniques
are developed based on weighted averaging [4–7, 11], local or global projections [3,
8, 13, 17], post-processing interpolation [14, 22], smoothing techniques [9, 10, 18, 20],
and the local least-squares methods including the superconvergent patch recovery
(SPR) [25–27], the polynomial preserving recovery (PPR) [16, 23] and the supercon-
vergent cluster recovery (SCR) [12].

For the Lagrange element, the gradient of the finite element approximation pro-
vides a discontinuous approximation. Two classical techniques of simple averaging
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and geometry averaging are deveopled by engineers to improve the precision of fi-
nite element solution. Those well-known recovery techniques construct an gradi-
ent approximation for each node by averaging the contributions of the surrounding
nodes. These values may be interpolated to obtain a continuous approximation over
the whole domain.

In this paper, we propose some new weighted averaging techniques which are
named harmonic averaging, angle averaging, and distant averaging for gradient re-
covery. Together with simple averaging and geometry averaging, we investigate the
relationship of all the five weighted averaging methods. We will show analytically
that, for any mesh in one-dimension and rectangular mesh in two-dimension, har-
monic averaging is a superconvergent gradient recovery method. Under the trian-
gular mesh, we also provide numerical evidence to show that harmonic averaging,
angle averaging and distant averaging are performance better than simple averaging
and geometry averaging.

The rest of the paper is organized as follows: in Section 2 we describe the construc-
tion of these weighted averaging techniques in detail. We analyze harmonic averag-
ing, simple averaging and geometry averaging for one-dimension problems in Section
3, and in Section 4, we investigate harmonic averaging, simple averaging and geome-
try averaging for two-dimension problems under rectangular mesh. In Section 5, we
consider the weighted averaging methods under triangular mesh. Numerical tests il-
lustrating the performance of our new weighted averaging methods are presented in
Section 6. Finally, in Section 7, some conclusions and future work are presented.

2 Weighted averaging gradient recovery
operators

In this section, we give the definitions of all the five weighted averaging gradient
recovery operators including two known called simple averaging and geometry aver-
aging and three new called harmonic averaging, angle averaging and distant averag-
ing. In detail, the simple averaging, geometry averaging and harmonic averaging are
defined for both one-dimension problems and two-dimension problems, and angle
averaging and distant averaging are only defined for triangular element.

Let Th be partition of Ω ⊂ Rd with d = 1, 2 and Sh be a C0 finite element space
over Th, and Sd

h = ∏d
i=1 Sh. Given a finite element function v ∈ Sh, v is piecewise

continuous. We firstly define Rhv at each node, where operator Rh : Sh → Sd
h. After

defining values of Rhv at all nodes, we obtain Rhv ∈ Sd
h on the whole domain by

interpolation using the original nodal shape functions of Sh.
Firstly, we give the definition of simple averaging, geometry averaging and har-

monic averaging in 1D. We consider the problem on the unit interval I = (0, 1). Any
other interval can be mapped to unit interval by a linear transformation. A subdivi-
sion of domain I

0 = x0 < x1 < x2 < · · · < xN = 1,
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divides I into N elements Ii = (xi−1, xi) with element size

hi = xi − xi−1, i = 1, 2, · · · , N, h = max
1≤i≤N

(xi − xi−1).

Let Nh denotes the set of the mesh nodes, and Sh be the linear finite element space on
the above partition. For any v ∈ Sh, we further denote

xi− 1
2
=

1
2
(xi−1 + xi), vi = v(xi), v′i− 1

2
= v′(xi− 1

2
).

We remark that, recovery points belonging to the domain boundary need special
attention, so here for the convenience of analysis and comparison, we limit our con-
sideration on the interior points.

For an inner vertex xi ∈ Nh, let Ki = Ii ∪ Ii+1 denote its corresponding patch. Sim-
ple averaging, geometry averaging, and harmonic averaging are defined as follows:

Simple averaging:

(Shv)(xi) :=
1
2
(
v′i− 1

2
+ v′i+ 1

2

)
=

1
2

(vi − vi−1

hi
+

vi+1 − vi

hi+1

)
. (2.1)

Geometry averaging:

(Ghv)(xi) :=
hi

hi + hi+1
v′i− 1

2
+

hi+1

hi + hi+1
v′i+ 1

2
=

vi+1 − vi−1

hi + hi+1
. (2.2)

Harmonic averaging:

(Hhv)(xi) :=
1/hi

1/hi + 1/hi+1
v′i− 1

2
+

1/hi+1

1/hi + 1/hi+1
v′i+ 1

2

=
hi+1

hi + hi+1
v′i− 1

2
+

hi

hi + hi+1
v′i+ 1

2

=
hi+1

hi + hi+1
· vi − vi−1

hi
+

hi

hi + hi+1
· vi+1 − vi

hi+1
. (2.3)

The weights of harmonic averaging were used by Chen and Huang [7]. Here, we
derive it through the concept of harmonic, and also extend it to the high dimension
problems, we will compare these weighted averaging methods for finite element gra-
dient recovery and present analytical investigation in the performance of them.

Secondly, we introduce the above mentioned three weighted averaging techniques
for the rectangular mesh in two-dimension. Let Th be a rectangular partition of Ω ⊂
R2 and Sh be a bilinear finite element space over Th defined by

Sh =
{

v ∈ H1(Ω) : v ∈ Q1(τ), ∀τ ∈ Th
}

,

where Qk(D) denotes the set of polynomials defined in D ∈ R2 with degree no more
than k in each variable. For a inner node z, let Kz denote its element patch which
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(a) Rectangular element (b) Triangular element

Figure 1: Parameters associated with the node z.

contains all elements that share z as a vertex. In Fig. 1, we denote by τ1, τ2, τ3, τ4 ∈
Kz ∩ Th the four rectangles around the considered point z, and z1, z2, · · · , z8 ∈ Kz,
oriented counterclockwise, are the mesh nodes. Let ci be the center of rectangle τi,
and Si is the area of τi, h = max{h1, h2, k1, k2}. As ∇uh is variable on each rectangular
elements, two cases on selecting the sampling points for weighted averaging methods
are consider. One is the considered point z itself, and the other is the centers ci. For
any v ∈ Sh, the three weighted averaging methods are defined as follows:

Simple averaging:

(Shv)(z) :=
4

∑
i=1

1
4
∇v(z)|τi or (Shv)(z) :=

4

∑
i=1

1
4
∇v(ci). (2.4)

Geometry averaging:

(Ghv)(z) :=
4

∑
i=1

Si

∑4
j=1 Sj

∇v(z)|τi or (Ghv)(z) :=
4

∑
i=1

Si

∑4
j=1 Sj

∇v(ci). (2.5)

Harmonic averaging:

(Hhv)(z) :=
4

∑
i=1

1/Si

∑4
j=1 1/Sj

∇v(z)|τi or (Hhv)(z) :=
4

∑
i=1

1/Si

∑4
j=1 1/Sj

∇v(ci). (2.6)

Finally, we give the definitions of all the five weighted averaging operators for the
triangular element. Let Th be a triangular partition of Ω ⊂ R2 and Sh be a linear finite
element space over Th defined by

Sh = {v ∈ H1(Ω) : v ∈ P1(τ), ∀τ ∈ Th},

where Pk(D) denotes the set of polynomials defined in D ∈ R2 with degree no more
than k. For a vertex z, let Kz denote its corresponding patch. In the patch Kz, let
τ1, τ2, · · · , τm ∈ Th denote the triangles, ci, Si, i = 1, 2, · · · , m, denote the centroid and
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area of τi, respectively, di = ∥z − ci∥, i = 1, 2, · · · , m, denote the distant between the
point z and ci, and αi, i = 1, 2, · · · , m, denote the angle of τi with z as its vertex. For
any v ∈ Sh, the five weighted averaging recovery operators are defined as follows:

Simple averaging:

Shv(z) :=
m

∑
i=1

1
m
∇v
∣∣
τi

. (2.7)

Geometry averaging:

Ghv(z) :=
m

∑
i=1

Si

∑m
j=1 Sj

∇v
∣∣
τi

. (2.8)

Harmonic averaging:

Hhv(z) :=
m

∑
i=1

1/Si

∑m
j=1 1/Sj

∇v
∣∣
τi

. (2.9)

Angle averaging:

Ahv(z) :=
m

∑
i=1

αi

∑m
j=1 αj

∇v
∣∣
τi

. (2.10)

Distant averaging:

Dhv(z) :=
m

∑
i=1

1/di

∑m
j=1 1/dj

∇v
∣∣
τi

. (2.11)

The weights of distant averaging are the same as given in [15], they also show that
the exact reconstruction of the gradient associated with a quadratic solution on non-
uniform meshes in one dimension.

From the definition of simple averaging, geometry averaging, harmonic averaging,
angle averaging and distant averaging, we have the following observation:

• Under the uniform mesh, simple averaging, geometry averaging and harmonic averaging are
the same, especially for the criss-cross pattern and union-jack pattern, all the five weighted
averaging are the same.

• For the rectangular element, we also can define angle averaging and distant averaging, but
in this case, angle averaging is the same as simple averaging.

3 Weighted averaging gradient recovery in 1D

In this section, we consider simple averaging, geometry averaging and harmonic av-
eraging which have been defined in Section 2 for gradient recovery with the following
two-point boundary value problem − d

dx

(
a(x)

du
dx

)
+ b(x)u = f , x ∈ (0, 1),

u(0) = 0, u(1) = 0.
(3.1)
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We assume that a, b and f are sufficiently smooth and that

0 < a0 ≤ a(x) ≤ a1 < ∞, 0 ≤ b(x) ≤ b1 < ∞, x ∈ [0, 1]. (3.2)

A subdivision of domain I

0 = x0 < x1 < x2 < · · · < xN = 1,

divides I into N elements Ii = (xi−1, xi). Let Nh denotes the set of the mesh nodes.
Let ϕi be the basis of the linear finite element space Sh and uh be the C0 finite element
approximation of u on a partition of I. For an inner vertex xi ∈ Nh, Ki = Ii ∪ Ii+1
denotes its corresponding patch. For convenience, we denote

ui = uh(xi), u′
i− 1

2
= u′

h
(
xi− 1

2

)
.

From the definitions of simple averaging, geometry and harmonic averaging in Sec-
tion 2, we see that all three methods results in some finite difference schemes involving
values of uh at xi−1, xi, xi+1, the difference among the three weighted averaging tech-
niques are the corresponding weights. In this way, we obtain values of the recovered
derivatives at x1, x2, · · · , xN−1. If u′(x0) and u′(xN) are not provided by the problem,
we simple define

(Rhuh)(x0) =
(u1 − u0)

h1
, (Rhuh)(xN) =

(uN − uN−1)

hN
.

Finally, by linear interpolation, we recover a piecewise linear continuous derivative
field, which is a better approximation of u′ than u′

h. In the following, we will analysis
the properties of these weighted averaging operators.

3.1 Properties of weighted averaging operators

Now, we give a theoretical analysis of the three weighted averaging recovery opera-
tors mentioned above. Let uI be the interpolation of u on the finite element space Sh.
Using Taylor expansion,

u(xi−1) = u(xi)− hiu′(xi) +
h2

i
2

u′′(xi)−
h3

i
3!

u′′′(xi) +O(h4), (3.3a)

u(xi+1) = u(xi) + hi+1u′(xi) +
h2

i+1

2
u′′(xi) +

h3
i+1

3!
u′′′(xi) +O(h4). (3.3b)

By substituting the above equations into (2.1)-(2.3), and simplifying, we obtain

(ShuI)(xi) = u′
i +

hi+1 − hi

4
u′′

i +
h2

i + h2
i+1

12
u′′′

i +O(h3), (3.4a)

(GhuI)(xi) = u′
i +

hi+1 − hi

2
u′′

i +
h2

i − hihi+1 + h2
i+1

6
u′′′

i +O(h3), (3.4b)

(HhuI)(xi) = u′
i + 0u′′

i +
hihi+1

6
u′′′

i +O(h3). (3.4c)
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If hi = h = hi+1, all three methods results in the same central difference scheme. How-
ever, when hi ̸= hi+1, only harmonic averaging yields a second order finite difference
scheme at xi, and simple averaging is better than geometry averaging on the aspect of
the coefficient of u′′(xi).

Now, we state that harmonic averaging is the unique of weighted averaging meth-
ods which yields a second-order approximation of u′(xi) under any mesh. We con-
sider the following problem: find the weight coefficients ωi, ωi+1 > 0, ωi + ωi+1 = 1,
such that

(Rhu)(xi) =ωiu′(xi− 1
2
) + ωi+1u′(xi+ 1

2
)

=ωi ·
u(xi)− u(xi−1)

hi
+ ωi+1 ·

u(xi+1)− u(xi)

hi+1
= u′(xi) +O(h2).

By Taylor expansion (3.3a) and (3.3b), we obtain

(Rhu)(xi) = (ωi + ωi+1)u′(xi) +
hi+1ωi+1 − hiωi

2
u′′(xi)

+
h2

i ωi + h2
i+1ωi+1

6
u′′′(xi) +O(h3).

It requires that the weight coefficient to be satisfied
ωi + ωi+1 = 1,
hi+1ωi+1 − hiωi = 0,
ωi, ωi+1 > 0,

=⇒


ωi =

hi+1

hi + hi+1
=

1/hi

1/hi + 1/hi+1
,

ωi+1 =
hi

hi + hi+1
=

1/hi+1

1/hi + 1/hi+1
.

This is just the weighted coefficient of harmonic averaging.
We summarize the result in the following proposition.

Proposition 3.1. For the 1D problems, the harmonic averaging recovery operator is the op-
timal one, and also a superconvergence recovery operator under any mesh. All of the three
weighted averaging methods yield the same result under uniform mesh.

To get a better understanding of the recovery operator, we discuss an example in
detail.

Example 3.1. Weighted averaging for linear element. Let the exact solution is a quadratic
polynomial on the element patch Ki. For simplicity of discussion, we assume that
u(x) = c0 + c1x + c2x2, and u′(x) = c1 + 2c2x. Following the procedure of simple
averaging, geometry averaging, and harmonic averaging, we obtain

(ShuI)(xi) = c1 + c2
xi−1 + 2xi + xi+1

2
,

(GhuI)(xi) = c1 + c2(xi−1 + xi+1),
(HhuI)(xi) = c1 + 2c2xi,



138 Y. Q. Huang, K. Jiang and N. Y. Yi / Adv. Appl. Math. Mech., 4 (2012), pp. 131-155

and

(ShuI)(xi)− u′(xi) = c2
xi−1 − 2xi + xi+1

2
,

(GhuI)(xi)− u′(xi) = c2(xi−1 + xi+1 − 2xi),
(HhuI)(xi)− u′(xi) = 0.

Let

es(xi) = |u′(xi)− (ShuI)(xi)|,
eg(xi) = |u′(xi)− (GhuI)(xi)|,
eh(xi) = |u′(xi)− (HhuI)(xi)|.

Therefore, we have

0 = eh ≤ es ≤ eg = |c2(xi−1 − 2xi + xi+1)|,

and the equality holds if and only if the mesh is uniform.
As we can see, for the quadratic polynomial, the recovered derivative from har-

monic averaging is the exact derivative u′(xi) at vertices. Then, for any solution, the
harmonic averaging is a second-order approximation of u′, while the simple averag-
ing and geometry averaging are a first-order approximation except under the uniform
mesh.

3.2 Theoretical results in 1D

By studying the resulting finite difference schemes of different recovery techniques,
we have the following observations:

• For the above three weighted averaging methods, the harmonic averaging is the optimal one,
and geometry averaging is the worst.

• Harmonic averaging results in superconvergence recovery operators under any mesh.

Based on the above observation, we analyze harmonic averaging here. There weak
formulation of (3.1) is to find u ∈ H1

0(I) such that

(au′, v′) + (bu, v) = ( f , v), ∀v ∈ H1
0(I). (3.5)

By denoting the partition Th = {xi}N
i=0 and defining the finite element space

Sh =
{

v ∈ H1(I), v|Ii ∈ P1(Ii)
}

, S0
h =

{
v ∈ H1

0(I), v|Ii ∈ P1(Ii)
}

.

The finite element solution of (3.5) is to find uh ∈ S0
h, such that

(au′
h, v′h) + (buh, vh) = ( f , vh), ∀vh ∈ S0

h. (3.6)
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The recovered derivative is a continuous piecewise linear polynomial (as uh),
Hhuh ∈ Sh, which can be uniquely determined by its values (Hhuh)(xi) at the ver-
tices xi, i = 0, 1, · · · , N.

Subtracting (3.6) from (3.5) yields

(a(u′ − u′
h), v′) + (b(u − uh), v) = 0, ∀v ∈ S0

h. (3.7)

Let ũh ∈ S0
h be the solution of

(u′ − ũ′
h, v′) = 0, ∀v ∈ S0

h. (3.8)

Then we have the following ”super-approximaion” result between uh and ũh (see [19]).

Lemma 3.1. ( [19]) Let uh, ũh satisfy (3.7), (3.8), respectively. Then there exists a constant
C, independent of h and u, such that

∥u′
h − ũ′

h∥0,∞,I ≤ Ch2∥u∥2,∞,I . (3.9)

We introduce a simple case:

−u′′ = f in I = (0, 1), u(0) = u(1) = 0,

or
(u′, v′) = ( f , v), ∀v ∈ H1

0(I). (3.10)

Note that the finite element solution of (3.10) satisfies (3.8).
In the following, we will prove superconvergence property of the recovered

derivative. The basis functions of S0
h are the standard Lagrange basis functions

S0
h = span

{
Ni(x), i = 1, 2, · · · , N − 1

}
.

Here,

Ni(x) =


1 + (x − xi)/hi, x ∈ Ii,
1 + (xi − x)/hi+1, x ∈ Ii+1,
0, otherwise.

Theorem 3.2. Let u be the solution of (3.10), and uh be its correspond finite element approx-
imation on S0

h. Assume that u is a quadratic polynomial. Then Hhuh = u′ for harmonic
averaging.

Proof. Consider the case on an patch Ji = (xi−2, xi+1). First, we are able to express
explicitly the finite element solution of (3.10) on Ii as

uh(x) = u(xi−1)Ni−1(x) + u(xi)Ni(x). (3.11)

Then we have, on Ii,

u′
h(x) =

u(xi)− u(xi−1)

hi
. (3.12)
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As u ∈ P2(Ji), we have u′ ∈ P1(Ji), and

u(x) = c0 + c1x + c2x2, u′(x) = c1 + 2c2x = u′(xi−1)Ni−1(x) + u′(xi)Ni(x), x ∈ Ii.
(3.13)

Following the procedure of harmonic averaging, we obtain that

(Hhuh)(xi−1) =
hi

hi + hi−1
· u(xi−1)− u(xi−2)

hi−1
+

hi−1

hi + hi−1
· u(xi)− u(xi−1)

hi

= c1 + 2c2xi−1 = u′(xi−1),

(Hhuh)(xi) =
hi+1

hi + hi+1
· u(xi)− u(xi−1)

hi
+

hi

hi + hi+1
· u(xi+1)− u(xi)

hi+1

= c1 + 2c2xi = u′(xi).

Then, on Ii,

(Hhuh)(x) = (Hhuh)(xi−1)Ni−1(x) + (Hhuh)(xi)Ni(x) = u′(x).

Applying the same argument on Ii−1, Ii+1, we have

(Hhuh)(x) = u′(x), x ∈ Ji.

Using the same argument on all patch Ji, we then complete the proof. �
Applying the Bramble-Hilbert lemma and Lemma 3.1, a direct consequence of The-

orem 3.2 is the following suerconvergence property.

Theorem 3.3. Let u be the solution of (3.5) and uh be its correspond finite element approxi-
mation on S0

h. Then there exists a constant C, independent of h and u, such that for harmonic
averaging, at an interior node xi

|u′(xi)− (Hhuh)(xi)| ≤ Ch2(|u|3,∞,Ji + ∥u∥2,∞,I). (3.14)

Proof. There exists a function f̃ which satisfies

(u′, v′) = ( f̃ , v), ∀v ∈ H1
0(I).

Assume ũh ∈ S0
h is the solution of

(u′ − ũ′
h, v′h) = 0, ∀vh ∈ S0

h.

Following Theorem 3.2 and the standard argument by applying the Bramble-Hilbert
lemma, we have

|u′(xi)− (Hhũh)(xi)| = |u′(xi)− (HhuI)(xi)| = |u′(xi)− (Hhu)(xi)|
≤ Ch2|u|3,∞,Ji . (3.15)
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Notice that

|u′(xi)− (Hhuh)(xi)| ≤ |u′(xi)− (Hhũh)(xi)|+ |(Hhũh)(xi)− (Hhuh)(xi)|.

From Lemma 3.1 and (3.15), we obtain that

|u′(xi)− (Hhuh)(xi)| ≤ Ch2(|u|3,∞,Ji + ∥u∥2,∞,I).

Then we complete the proof. �

Now, the superconvergence property is available for the harmonic averaging,
while it is not for simple averaging and geometry averaging. However we should
point out that the generalization of the result to the higher-dimensional tensor prod-
uct case is not straightforward.

4 Weighted averaging gradient recovery for rectangular
element

Let Ω ∈ R2 be a bounded rectangular domain, we consider the following boundary
value problem: {

−∇ · (A∇u) + cu = f , in Ω,
u = 0, on ∂Ω.

(4.1)

We assume that all the coefficient functions are sufficiently smooth in our analysis and
A is a 2 × 2 symmetric positive definite matrix and c ≥ 0.

In weak form, this problem reads: find u ∈ H1
0(Ω) such that

a(u, v) = ( f , v), ∀v ∈ H1
0(Ω), (4.2)

where
a(u, v) =

∫
Ω
[A∇u∇v + cuv]dx,

and (·, ·) denotes the inner product of L2(Ω). We assume that the bilinear operator
a(·, ·) is continuous and H1

0(Ω)-elliptic, i.e., there exists a constant a0 > 0 such that

A(v, v) ≥ a0∥v∥1,Ω, ∀v ∈ H1
0(Ω).

Under these assumptions, the variational problem in (4.2) has a unique weak solution
u ∈ H1

0(Ω).
Let Th be a rectangular partition of Ω and Sh be a bilinear finite element space over

Th defined by

Sh =
{

v ∈ H1(Ω) : v ∈ Q1(τ), ∀τ ∈ Th
}

, S0
h =

{
v ∈ H1

0(Ω) : v ∈ Q1(τ), ∀τ ∈ Th
}

,
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where Qk(D) denotes the set of polynomials defined in D ∈ R2 with degree no more
than k in each variable. The finite element solution of (4.2) is to find uh ∈ S0

h such that

a(uh, v) = ( f , v), ∀v ∈ S0
h. (4.3)

In this section, we consider the simple averaging, geometry averaging and harmonic
averaging methods which are defined by (2.4)-(2.6) in Section 2. We firstly result the
three weighted averaging methods in the finite difference schemes, and discuss some
examples in details. Then we analysis the property of our new harmonic averaging
recovery operator in the end.

4.1 Weighted averaging schemes and examples

As in one dimension, we consider three weighted averaging methods of gradient re-
covery for rectangular element. The parameters associated with the considered node
z are displayed in Fig. 1(a). There are some relationships among the weights:

S1 = h2k1, S2 = h1k1, S3 = h1k2, S4 = h2k2, S =
4

∑
i=1

Si = (h1 + h2)(k1 + k2),

4

∑
i=1

1
Si

=
S

h1h2k1k2
,

1/S1

∑4
j=1 1/Sj

=
S3
S

,
1/S2

∑4
j=1 1/Sj

=
S4
S

,
1/S3

∑4
j=1 1/Sj

=
S1
S

,
1/S4

∑4
j=1 1/Sj

=
S2
S

.

In the following, we result the simple averaging, geometry averaging, and harmonic
averaging methods in the finite difference schemes and give some examples to illus-
trate the idea. With no confusion, we abbreviate uI to u for convenience.

Let Rx
hv and Ry

hv (Rh = Sh, Gh, Hh) denote the recovered derivative of v in x and
y direction, respectively. Using Taylor series, (2.4), (2.5), (2.6), and simplifying, we
obtain

(ShuI)(z) =
4

∑
i=1

1
4
∇uI(z)|τi =

1
2


u(z1)− u(z)

h2
+

u(z)− u(z5)

h1
u(z3)− u(z)

k1
+

u(z)− u(z7)

k2



=

 ux(z) +
h2 − h1

4
uxx(z) +

h2
1 + h2

2
12

uxxx(z) +O(h3)

uy(z) +
k1 − k2

4
uyy(z) +

k2
1 + k2

2
12

uyyy(z) +O(h3)

 , (4.4a)

(GhuI)(z) =
4

∑
i=1

Si

∑4
j=1 Sj

∇uI(z)|τi =


u(z1)− u(z5)

h1 + h2
u(z3)− u(z7)

k1 + k2



=

 ux(z) +
h2 − h1

2
uxx(z) +

h2
1 − h1h2 + h2

2
6

uxxx(z) +O(h3)

uy(z) +
k1 − k2

2
uyy(z) +

k2
1 − k1k2 + k2

2
6

uyyy(z) +O(h3)

 , (4.4b)



Y. Q. Huang, K. Jiang and N. Y. Yi / Adv. Appl. Math. Mech., 4 (2012), pp. 131-155 143

(HhuI)(z) =
4

∑
i=1

1/Si

∑4
j=1 1/Sj

∇uI(z)|τi =


h1

h1 + h2

u(z1)− u(z)
h2

+
h2

h1 + h2

u(z)−u(z5)
h1

k2

k1 + k2

u(z3)− u(z)
k1

+
k1

k1 + k2

u(z)− u(z7)

k2



=

 ux(z) +
h1h2

6
uxxx(z) +O(h3)

uy(z) +
k1k2

6
uyyy(z) +O(h3)

 , (4.4c)

for choosing z as the sampling point. If the elements central points are chosen as the
sampling points, then

(ShuI)(z) =
4

∑
i=1

1
4
∇uI(ci) =

 ux(z) +
h2 − h1

4
uxx(z) +

k1 − k2

4
uxy(z)

uy(z) +
k1 − k2

4
uyy(z) +

h2 − h1

4
uxy(z)



+


h2

1 + h2
2

12
uxxx(z) +

(h2 − h1)(k1 − k2)

16
uxxy(z) +

k2
1 + k2

2
8

uxyy(z) +O(h3)

k2
1 + k2

2
12

uyyy(z) +
h2

1 + h2
2

8
uxxy(z) +

(h2 − h1)(k1 − k2)

16
uxyy(z) +O(h3)

 , (4.5a)

(GhuI)(z) =
4

∑
i=1

Si

∑4
j=1 Sj

∇uI(ci) =

 ux(z) +
h2 − h1

2
uxx(z) +

k1 − k2

2
uxy(z)

uy(z) +
k1 − k2

2
uyy(z) +

h2 − h1

2
uxy(z)



+


h2

1 − h1h2 + h2
2

6
uxxx(z) +

(h2 − h1)(k1 − k2)

4
uxxy(z) +

k2
1 − k1k2 + k2

2
4

uxyy(z) +O(h3)

k2
1 − k1k2 + k2

2
6

uyyy(z) +
h2

1 − h1h2 + h2
2

4
uxxy(z) +

(h2 − h1)(k1 − k2)

4
uxyy(z) +O(h3)

 , (4.5b)

(HhuI)(z) =
4

∑
i=1

1/Si

∑4
j=1 1/Sj

∇uI(ci) =

 ux(z) +
h1h2

6
uxxx(z) +

k1k2

4
uxyy(z) +O(h3)

uy(z) +
k1k2

6
uyyy(z) +

h1h2

4
uxxy(z) +O(h3)

 . (4.5c)

To get a better understanding of the recovery operator, we give some detailed exam-
ples.

Example 4.1. Weighted averaging on uniform rectangular mesh. An element patch
with horizontal and vertical edge length h is displayed in Fig. 2. Note that the weights
in the three averaging method are the same value 1/4, the resulting finite difference
operator are shown in Fig. 2. Both of them are second-order finite difference schemes.
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Figure 2: Example 4.1, weighted averaging on uniform mesh.
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One can see that, under the uniform mesh, all the three averaging methods result in
the same finite difference schemes.

Example 4.2. Weighted averaging on nonuniform rectangular mesh. An element
patch with the parameters is displayed in Fig. 4. From (2.4)-(2.6), the resulting fi-
nite difference operator are reported in Fig. 3-4. By Taylor expansion, it is straightfor-
ward to verify that simple averaging and geometry averaging are first order difference
schemes for both derivatives, while harmonic averaging is a second order difference
schemes.
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Figure 3: Example 4.2, weights, sampling point z. (a): Simple averaging, (b): Geometry averaging, (c):
Harmonic averaging.
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Figure 4: Example 4.2, weights, sampling point ci. (a): Simple averaging, (b): Geometry averaging, (c):
Harmonic averaging.

Some remark are listed below:

• Under the uniform rectangular mesh, all the three weighted averaging recovery techniques
produce the same recovery operator at the patch center, as seen in Fig. 2. By Taylor expansion,
it is straightforward to verify that this is a second order difference scheme for both derivatives.
Indeed, numerical tests confirm that recovered gradient convergences at a rate O(h2) which
is one order higher than the rate of the original piecewise linear function gradient. Therefore,
in this case, we have a superconvergence recovery for all three averaging methods.

• Under the nonuniform rectangular mesh, simple averaging, geometry averaging, and harmonic
averaging produce the different recovery schemes, as seen in Figs. 3-4. Taylor expansion
reveals that harmonic averaging results in a second order finite difference operator at the
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assemble point while the other two produce first order finite difference schemes. Numerical
results confirm that the harmonic averging scheme provides a superconvergence recovery at
a rate O(h2), while the simple averaging and geometry averging methods are linear recovery
operators.

• For the three weighted averaging methods, we use two strategies to choose sampling points,
one is the assemble point itself, the other is the element central points in patch. It is clear
that, for the interpolation of u, the error |∇u(z)− (RhuI)(z)| of using the assemble itself
as the sampling point is better than using the element central points. While for the finite
element solution, sometimes using the element central points can obtain a better results for
the central point is the superconvergent point for the bilinear element. Both of them produce
the same order difference scheme, but using the assemble point is much simpler than using
the element central points. So, from now on, we only use the assemble point as the sample
points.

4.2 Properties of the gradient recovery operator

In the following, we show that the weights of harmonic averaging is sufficient condi-
tion to yield a superconvergence recovery operator under any rectangular mesh, but
it is not necessary condition. For the element patch Kz, as shown in Fig. 1(a), find the
weights ωi > 0, ∑4

i=1 ωi = 1 such that

(RhuI)(z) =
4

∑
i=1

ωi∇uI(z)|τi = ∇u(z) +O(h2).

From the definition of the weighted averaging recovery operator

(RhuI)(z) =
4

∑
i=1

ωi∇uI(z)|τi =

 (ω1 + ω4)
u(z1)− u(z)

h2
+ (ω2 + ω3)

u(z)− u(z5)

h1

(ω1 + ω2)
u(z3)− u(z)

k1
+ (ω3 + ω4)

u(z)− u(z7)

k2

 .

By Taylor expansion, we have

(RhuI)(z) =


4
∑

i=1
ωiux(z) +

1
2
(h2(ω1 + ω4)− h1(ω2 + ω3))uxx(z) +O(h2)

4
∑

i=1
ωiuy(z) +

1
2
(k1(ω1 + ω2)− k2(ω3 + ω4))uyy(z) +O(h2)

 .

To make this is a second order approximation to ∇u(z), the weights should satisfy the
following relationship

4
∑

i=1
ωi = 1, ωi > 0,

h2(ω1 + ω4)− h1(ω2 + ω3) = 0,
k1(ω1 + ω2)− k2(ω3 + ω4) = 0,

=⇒


ω1 + ω2 =

k2

k1 + k2
, ω2 + ω3 =

h2

h1 + h2
,

ω3 + ω4 =
k1

k1 + k2
, ω1 + ω4 =

h1

h1 + h2
.

The above linear equations are solvable, but not unique. It is obviously that the
weights in harmonic averaging satisfy the above requirements, while simple aver-
aging and geometry averaging are not.
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Theorem 4.1. Let Kz be the node patch, see Fig. 1(a). Assume u is a bi-quadratic polynomial
on Kz, then (HhuI)(z) = ∇u(z) for harmonic averaging which select the assemble point as
the sampling point.

Proof. Firstly, we see that

Q2(Kz) = span{ϕi,j(x, y) = xiyj, 0 ≤ i, j ≤ 2}.

When u ∈ Q2(Kz), we have

u =
2

∑
i,j=0

cijϕi,j(x, y).

Now, we turn to verify that

(Hhϕi,j)(z) = ∇ϕi,j(z), 0 ≤ i, j ≤ 2.

Take ϕ2,2(x, y) = x2y2 as an example, following the proceeding of harmonic averaging,
let z = (x0, y0), zi = (xi, yi), 1 ≤ i ≤ 8, we have

(Hhϕ2,2)(z) =


x0 − x5

x1 − x5

x2
1y2

1 − x2
0y2

0
x1 − x0

+
x1 − x0

x1 − x5

x2
0y2

0 − x2
5y2

5
x0 − x5

y0 − y7

y3 − y7

x2
3y2

3 − x2
0y2

0
y3 − x0

+
y3 − y0

y3 − y7

x2
0y2

0 − x2
7y2

7
y0 − y7

 =

(
2x0y2

0

2x2
0y0

)
= ∇ϕ2,2(z).

Similarly, we can obtain (Hhϕi,j)(z) = ∇ϕi,j(z) for all 0 ≤ i, j ≤ 2. Then

(HhuI)(z) =
2

∑
i,j=0

ci,j(Hhϕi,j)(z) =
2

∑
i,j=0

ci,j∇ϕi,j(z) = ∇u(z).

Thus, the theorem is proved. �
We can see that the harmonic averaging operator have the polynomial preserving

property in the sense of (Hhu)(z) = ∇u(z) for u ∈ Q2(Kz). The polynomial preserv-
ing recovery method [16, 23] fits a higher order polynomial for the function value of
the solution by local least-squares fitting, and the recovered gradient is obtained by
taking the gradient of the recovered polynomial. When u ∈ P2(Kz), the least-squares
fitting of a polynomial of degree 2 will reproduce u, therefore Ghu(z) = ∇u(z) (Gh-the
PPR operator).

4.3 Theoretical results for rectangular element

Let uI be a bi-linear interpolation of u on the rectangular mesh Th, we have the follow-
ing superconvergent results.

Lemma 4.1. (see [7]) Let Ω be a bounded rectangular domain, and Th be a quasi-uniform
rectangular partition. And u ∈ W3,∞(Ω) ∩ H1

0(Ω) is the solution of (4.2). Then we have the
following superconvergent result between u and uI

max
Ω

|∇(uh − uI)| ≤ ch2| ln h|∥u∥3,∞,Ω. (4.6)
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Applying the Bramble-Hilbert lemma and Lemma 4.1, we have the following suer-
convergence property.

Theorem 4.2. Let u be the solution of (4.2), and uh be its corresponding finite element ap-
proximation on S0

h. Assume the conditions on Lemma 4.1 hold. Then there exists a constant
C, independent of h and u, such that for harmonic averaging, at an interior node z

|∇u(z)− (Hhuh)(z)| ≤ Ch2| ln h|(∥u∥3,∞,Ω). (4.7)

Proof. Notice that

|∇u(z)− (Hhuh)(z)| ≤ |∇u(z)− (HhuI)(z)|+ |(HhuI)(z)− (Hhuh)(z)|.

Similar as in proof of Theorem 3.3, (4.7) follows from Lemma 4.1, Theorem 4.1 and the
standard argument by applying the Bramble-Hilbert lemma. �

5 Weighted averaging gradient recovery for triangular
element

In this section, we present a counter example to state that there does not exist a
weighted averaging method for gradient recovery under any triangular mesh such
that

|(RhuI)(z)−∇u(z)| = O(h2).

We provide some numerical examples in the performance of these new weighted av-
eraging methods together with simple averaging and geometry averaging in Section
6.

Example 5.1. As the procedure in rectangular element, we want to find a similar
weighted averaging of gradient recovery for linear triangular element that the recov-
ered gradient converges at a rate O(h2) for any triangular mesh. In the following, a
counterexample is given to illustrate that the weights are not exist.

An chevron element patch with horizontal and vertical edge length h is displayed
in Fig. 5. We find the weights ωi, i = 1, · · · , 6, ∑6

i=1 ωi = 1 such that the recovered
gradient of weighted averaging (RhuI)(z) = ∑6

i=1 ωi∇uI |τi satisfy

∇u(z)− (RhuI)(z) = ∇u(z)−
6

∑
i=1

ωi∇uI |τi = O(h2).

Noting that

(RhuI)(z) =

 (ω1 + ω6)
u(z1)− u(z)

h
+ (ω2 + ω3)

u(z)− u(z3)

h
+ ω4

u(z5)− u(z4)

h
+ ω5

u(z6)− u(z5)

h

(ω1 + ω2)
u(z2)− u(z)

h
+ ω3

u(z3)− u(z4)

h
+ (ω4 + ω5)

u(z)− u(z5)

h
+ ω6

u(z1)− u(z6)

h

 .
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Figure 5: Parameters associated with the node z.

By Taylor expansion, we have that

(RhuI)(z) =


6
∑

i=1
ωiux(z) +

h
2
(ω1 + ω5 + ω6 − ω2 − ω3 − ω4)uxx(z)− h(ω4 + ω5)uxy(z) +O(h2)

6
∑

i=1
ωiuy(z) + h(ω6 − ω3)uxy(z) +

h
2
(ω1 + ω2 − ω3 − ω4 − ω5 − ω6)uyy(z) +O(h2)

 .

It is required that the weights satisfy the following system

6
∑

i=1
ωi = 1,

ωi > 0,
ω4 + ω5 = 0,
ω6 − ω3 = 0,
ω1 + ω5 + ω6 − ω2 − ω3 − ω4 = 0,
ω1 + ω2 − ω3 − ω4 − ω5 − ω6 = 0,

=⇒



ωi > 0,
ω4 + ω5 = 0,
ω6 − ω3 = 0,
ω1 + ω2 + 2ω3 = 1,
ω1 − ω2 − 2ω4 = 0,
ω1 + ω2 − 2ω3 = 0.

(5.1)

It is obviously that the above system is unsolvable. Then there does not exist a weights
of weighted averaging such that recovered gradient converges at a rate O(h2) for tri-
angular mesh with chevron pattern, even for a general triangular mesh.

If the weights can take as zero, then ω1 = ω2 = ω3 = ω6 = 1/4, ω4 = ω5 = 0 is a
solutions of the above equations in (5.1). What’s more, for the chevron pattern, if we
using the different weights in weighted averaging method for gradient recovery each
direction, a possible choose for weights is

(Rx
huI)(z) =

1
4
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∣∣∣
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4
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+
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∣∣∣
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+
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4

∂uI

∂x

∣∣∣
τ6

,

(Ry
huI)(z) =
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∣∣∣
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1
4

∂uI

∂y

∣∣∣
τ2

+
1
4

∂uI

∂y

∣∣∣
τ4

+
1
4

∂uI

∂y

∣∣∣
τ5

.

For the triangular element, though we can not obtain the same good results as
in rectangular element, but under some certain conditions on the mesh, these five
weighted averaging methods also yield the superconvergent approximation for gradi-
ent. We will provide numerical evidence to show such phenomena in the next section.



Y. Q. Huang, K. Jiang and N. Y. Yi / Adv. Appl. Math. Mech., 4 (2012), pp. 131-155 149

6 Numerical examples

The test example is the Possion equation with the Dirichlet boundary condition{
−∆u = f , in Ω,
u = g, on ∂Ω,

where Ω = (−1, 1) or Ω = (0, 1) × (0, 1). One can observe the weighted aver-
aging recovery methods’ (Geometry Averaging-Gh, Simple Averaging-Sh, Harmonic
Averaging-Hh, Angle averaging-Ah, Distant averaging-Dh) performance on difference
type of meshes. Let Nh denotes the set of inner mesh nodes and N is the number of
inner mesh nodes, we use the error notation

eRh = ∥∇u − Rhuh∥l2 =
( 1

N ∑
z∈Nh

∇u(z)− (Rhuh)(z)
) 1

2
,

here Rh denote the corresponding weighted averaging recovery operator. To compare
clearer, we only calculate the error on the inner points.

6.1 Test case 1

Our first example is on the interval (−1, 1) with a exact solution u = sin(πx). This
example is carried on the nonuniform mesh, the results are displayed in Fig. 6, which
compares the performance of the simple averaging recovery, geometry averaging re-
covery and our new harmonic averaging recovery. The numerical results show that,
on the nonuniform meshes, the harmonic averaging recovery method has a second
order convergent rate, i.e., a superconvergence property, while the simple averaging
and geometry averaging recovery methods only have a first order convergent rate.

In the following Test case 2, we investigate the performance of simple averaging,
geometry averaging and harmonic averaging recovery methods under rectangular
meshes. Computation is performed on uniform mesh and nonuniform mesh for fi-
nite element solution uh and we test the two strategies on the sampling points.
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Figure 6: Test case 1, results on nonuniform meshes.
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6.2 Test case 2

Our second example is on the domain (0, 1) × (0, 1) with a exact solution u =
sin(πx) sin(πy), the meshes are displayed in Fig. 7. The recovered error ∥∇u −
Rhuh∥l2 for finite element solution uh are listed in Table 1. Fig. 8 shows the correspond-
ing results. We see clearly that the harmonic averaging yields superconvergence for
rectangular element on both uniform mesh and nonuniform mesh, while the geometry
averaging and simple averaging do not have on nonuniform mesh.

(a) Uniform mesh (b) Nonuniform mesh
Figure 7: Rectangular meshes.
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Figure 8: Test case 2, rectangular mesh, results for finite element solution uh; (a) Uniform mesh, sample
point: node; (b) Uniform mesh, sample point: element central points; (c) Nonuniform mesh, sample point:
node; (d) Nonuniform mesh, sample point: element central points.

In the following, we present numerical investigation in the performance of the five
weighted averaging methods for triangular element, the exact solution is selected as
u = ex2+y2

. One can find the five weighted averaging recovery methods’ (Geometry
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Table 1: Test case 2, results for the finite element solution uh.

Solution: u = sin(πx) sin(πy), sampling point: z.
Uniform mesh, Fig. 7, (a) Nonuniform Mesh, Fig. 7, (b)

Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2

25 0.109998 0.109998 0.109998 1.12102 0.530958 0.0658275
81 0.0284023 0.0284023 0.0284023 0.495821 0.245019 0.00941385
289 0.00713027 0.00713027 0.00713027 0.232393 0.115867 0.00192238
1089 0.00178389 0.00178389 0.00178389 0.112538 0.056229 0.000454483
4225 0.00044604 0.00044604 0.00044604 0.0553885 0.0276893 0.000112101
16641 0.000111542 0.000111542 0.000111542 0.0274772 0.013738 2.7934e-5

Solution: u = sin(πx) sin(πy), sampling point: ci.
Uniform mesh, Fig. 7, (a) Nonuniform Mesh, Fig. 7, (b)

Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2

25 0.400606 0.400606 0.400606 1.16159 0.643609 0.198901
81 0.111003 0.111003 0.111003 0.610169 0.313983 0.0551299
289 0.0283565 0.0283565 0.0283565 0.307588 0.154921 0.0141543
1089 0.00712523 0.00712523 0.00712523 0.154104 0.0771918 0.00356118
4225 0.00178351 0.00178351 0.00178351 0.0770968 0.0385658 0.00089156
16641 0.000446029 0.000446029 0.000446029 0.0385536 0.019276 0.000222973

Average-Gh, Simple Average-Sh, Angle Average-Ah, Distant Average-Dh Harmonic
Average-Hh) performance on different types of meshes.

6.3 Test case 3

We consider the five weighted averaging recovery techniques on the uniform mesh
of four patterns, as seen in Fig. 9. Corresponding results are given in Table 2. The

Table 2: Test case 3, results for the finite element solution uh.

Solution: u = ex2+y2
, uniform meshes.

Regular pattern, Fig. 9, (a) and (e)
Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ahuh∥l2 ∥∇u − Dhuh∥l2

121 0.123524 0.123524 0.123524 0.109522 0.114423
441 0.0339251 0.0339251 0.0339251 0.030092 0.03143343
1681 0.0089016 0.0089016 0.0089016 0.00789611 0.00824797
6561 0.00228057 0.00228057 0.00228057 0.00202294 0.00211309
25921 0.000577206 0.000577206 0.000577206 0.000511992 0.0000534813

Chevron pattern, Fig. 9, (b) and (f)
Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ahuh∥l2 ∥∇u − Dhuh∥l2

121 0.205945 0.205945 0.205945 0.12118 0.138413
441 0.110379 0.110379 0.110379 0.0596393 0.0712069
1681 0.0573133 0.0573133 0.0573133 0.0302746 0.0366223
6561 0.0292302 0.0292302 0.0292302 0.0153722 0.0186517
25921 0.0147646 0.0147646 0.0147646 0.00776224 0.00942322

Criss-cross pattern, Fig. 9, (c) and (g)
Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ahuh∥l2 ∥∇u − Dhuh∥l2

61 0.175492 0.175492 0.175492 0.175492 0.175492
221 0.0494963 0.0494963 0.0494963 0.0494963 0.0494963
841 0.0132401 0.0132401 0.0132401 0.0132401 0.0132401
3281 0.00343006 0.00343006 0.00343006 0.00343006 0.00343006
12961 0.000873305 0.000873305 0.000873305 0.000873305 0.000873305

Union jack pattern, Fig. 9, (d) and (h)
Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ahuh∥l2 ∥∇u − Dhuh∥l2

121 0.0901807 0.0901807 0.0901807 0.0901807 0.0901807
441 0.0255399 0.0255399 0.0255399 0.0255399 0.0255399
1681 0.00714812 0.00714812 0.00714812 0.00714812 0.00714812
6561 0.00203228 0.00203228 0.00203228 0.00203228 0.00203228
25921 0.00060133 0.00060133 0.00060133 0.00060133 0.00060133
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Figure 9: Test case 3 on for uniform mesh patterns; (a), (e) Regular pattern and the results; (b), (f) Chevron
pattern and the results; (c), (g) Criss-Cross pattern and the results; (d), (h) Union Jack pattern and the
results.

results are interesting. For triangular elements nearly all simple patterns (Regular,
Criss-Cross, Union Jack) yield superconvergence for the five weighted averaging re-
covery methods. The only exception is the Chevron pattern.

6.4 Test case 4

We now consider the five weighted averaging recovery techniques on the nonuniform
meshes of various very irregular patterns, see Fig. 10. The results are reported in
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Figure 10: Test case 4 on three nonuniform meshes; (a), (d) Mesh No. 1 and the results; (b), (e) Mesh No.
2 and the results; (c), (f) Mesh No. 3 and the results.

Table 3. Superconvergence is not observed for all the five weighted averaging meth-
ods. And among these weighted averaging recovery methods, geometry averaging is
worst, and harmonic averaging, angle averaging and distant averaging is better than
simple averaging and geometry averaging.

Table 3: Test case 4, results for the finite element solution uh.

Solution: u = ex2+y2
, nonuniform meshes.

Mesh No. 1, Fig. 10, (a) and (d)
Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ahuh∥l2 ∥∇u − Dhuh∥l2

81 0.200198 0.14053 0.112383 0.121999 0.104741
289 0.0744506 0.0503046 0.0366306 0.0410282 0.0337959
1089 0.0268373 0.0176104 0.0118249 0.0137613 0.0108148
4225 0.00956679 0.00616213 0.00389798 0.00468494 0.00353932

Mesh No. 2, Fig. 10, (b) and (e)
Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ahuh∥l2 ∥∇u − Dhuh∥l2

61 0.94829 0.600722 0.290334 0.396875 0.356469
221 0.474103 0.301498 0.152531 0.188887 0.174447
841 0.239152 0.153529 0.0813417 0.0931116 0.088407
3281 0.120619 0.0780249 0.0425712 0.0466086 0.045041

12961 0.060662 0.0394224 0.0218591 0.0233907 0.0228219
Mesh No. 3, Fig. 10, (c) and (f)

Dof ∥∇u − Ghuh∥l2 ∥∇u − Shuh∥l2 ∥∇u − Hhuh∥l2 ∥∇u − Ahuh∥l2 ∥∇u − Dhuh∥l2

25 1.09179 0.723288 0.371101 0.644762 0.436291
81 0.620461 0.396394 0.182665 0.345614 0.218068
289 0.33711 0.212347 0.0921558 0.183157 0.11106
1089 0.177884 0.111761 0.0474857 0.0959118 0.0574116
4225 0.0917676 0.0576794 0.0243624 0.0493832 0.0294794

16641 0.0466617 0.0293485 0.0123773 0.025099 0.0149782
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7 Conclusions and future works

We introduce three new weighted averaging methods called harmonic averaging, an-
gle averaging and distant averaging for gradient recovery, respectively. We present
analysis and numerical investigation in the performance of these weighted averaging
methods under different meshes. It is shown that, harmonic averaging yields a su-
perconvergent gradient recovery for 1D problems and rectangle elements. And under
triangular mesh, angle averaging and distant averaging also work well.

The practical usage of recovery technique is not only to improve the quality of the
approximation, but also to construct a posteriori error estimators in adaptive compu-
tation [1, 2, 21, 24]. Our further investigation will be devoted to analysis of the new
weighted averaging recovery methods in application to a posteriori error estimates.
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