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Abstract. The analysis of thermoelastic deformations of a simply supported function-
ally graded material (FGM) sandwich plates subjected to a time harmonic sinusoidal
temperature field on the top surface and varying through-the-thickness is illustrated
in this paper. The FGM sandwich plates are assumed to be made of three layers and
resting on Pasternak’s elastic foundations. The volume fractions of the constituents of
the upper and lower layers and, hence, the effective material properties of them are
assumed to vary in the thickness direction only whereas the core layer is still homoge-
neous. When in-plane sinusoidal variations of the displacements and the temperature
that identically satisfy the boundary conditions at the edges, the governing equations
of motion are solved analytically by using various shear deformation theories as well
as the classical one. The influences of the time parameter, power law index, tempera-
ture exponent, top-to-bottom surface temperature ratio, side-to-thickness ratio and the
foundation parameters on the dynamic bending are investigated.
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1 Introduction

Sandwich structures have high structural efficiency because of their excellent properties
such as high ratio of strength-to-weight, good energy and sound absorption capability,
and often low production cost. They are mainly used in aerospace, marine and aircraft

∗Corresponding author.
Email: zenkour@kau.edu.sa or zenkour@sci.kfs.edu.eg (A. M. Zenkour)

http://www.global-sci.org/aamm 116 c⃝2015 Global Science Press



M. Sobhy and A. M. Zenkour / Adv. Appl. Math. Mech., 7 (2015), pp. 116-134 117

industry as thin-walled structures but at present the application of these structures has
been extended to automobile, petrochemical and other industries. Structural sandwich
is basically fabricated from three layers. The two face sheets adhesively bonded to the
core. The traditional sandwich structures have some drawbacks. The sudden change in
material properties across the interfaces among different materials can result in large in-
terlaminar stresses. To overcome these disadvantages, FGMs composed of two or more
phases with different material properties and continuously varying composition distri-
bution have been used as a core layer or face layers. Such materials were introduced to
take advantage of the desired material properties of each constituent material without
interface problems. Owing to these reasons, a number of research works about the sand-
wich structures with FGM face layers have been established, in particular to study their
elastic [1] and thermo-elastic behavior [2–4]. To investigate the effect of FGM core on per-
formance of sandwich plates, Anderson [5] and Kashtalyan and Menshykova [6] have
developed the 3-D elasticity solution for sandwich composites with a FG core subjected
to transverse loading.

FGMs are widely used in many engineering applications, for example aerospace,
automotive and biomedical applications. Thus, many works on FGM structures have
been studied in literature. For example, Reddy [7] has analyzed the static behavior of
FG rectangular plates based on his third-order shear deformation plate theory. Reddy
and Chen [8] have presented a three-dimensional model for a FG plate subjected to me-
chanical and thermal loads, both applied at the top of the plate. Vel and Batra [9] have
proposed a three-dimensional solution for transient thermal stresses in FG rectangular
plates. Also, several investigations on the behavior of the FGM plates, disks and cylin-
ders have been explained in Zenkour [10–14], Zenkour et al. [15] and Zenkour and Sob-
hy [16, 17].

Structures resting on elastic foundations is often encountered in the analysis of the
foundations of buildings, highway and railroad structures, and of geotechnical struc-
tures [18]. The simplest and most frequently employed elastic foundation model is that
of Winkler [19], which is generally referred to as a one-parametric model. The transverse
deformation characteristics of the elastic foundation are defined by means of continuous
and closely spaced linear springs providing resistance in direct proportion to the deflec-
tion of the plate. The deficiency of Winkler’s formulation is the behavioral inconsistency
due to the discontinuity of displacements on the boundary of the uniformly loaded sur-
face area [20]. To add the influence of shear effect of the foundation besides the vertical
springs, Pasternak [21] had introduced a shear layer such that it is an incompressible
vertical element and deforms only by transverse shear force. Many formulations of the
equations of dynamic and static equilibrium of structures on Winkler’s elastic founda-
tion [22–24] or Pasternak’s ones [25–29] are to be encountered in the literature.

Thermal effects could be important when a mechanical system has undergo high or
low temperature gradients. Thus, the effect of thermal loading on the displacement and
stress fields for FGM plates and shells has been studied by a number of authors. Praveen
and Reddy [30] have employed the finite element method to illustrate the response of
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FG ceramic-metal plates under thermal load. On the basis of the first-order shear de-
formation plate theory, the static responses of metal and ceramic FGM plates subject to
thermal and mechanical loads have been investigated by Lee et al. [31]. Transient ther-
moelastic responses of FGMs containing collinear cracks have been studied by Noda and
Wang [32]. Vel and Batra [33] have presented an exact solution for thermoelastic deforma-
tions of FG thick rectangular plates. Zenkour and Sobhy [34, 35] have derived stability
equations of FGM sandwich plates and FGM one resting on elastic foundations under
thermal loads based on sinusoidal shear deformation plate theory (SDPT). Shen [36] has
studied the nonlinear bending response of FGMs subjected to transverse loads and in a
thermal environment.

The dynamic bending behavior of a FG sandwich plates resting on two-parameter
elastic foundations and subjected to a through-the-thickness temperature field is investi-
gated. The material properties of the FG layers are assumed to vary continuously through
the thickness according to a simple power law distribution of the volume fraction of the
constituents. The equations of motion are derived using the SDPT and they contain the
thermal effect and the interaction between the plate and the elastic foundations. The
results obtained by the SDPT are compared with those obtained by the classical plate
theory (CPT), the first-order shear deformation plate theory (FDPT) and the higher-order
one (HDPT). Some numerical examples are provided to demonstrate the effects of vari-
ous parameters on the dynamic bending of the FGM sandwich plates.

2 Mathematical model

Consider a rectangular sandwich plate of length a, width b and thickness h made of func-
tionally graded material. The FGM sandwich plate is supported at four edges defined in
the (x, y, z) coordinate system with x- and y-axes located in the middle plane (z=0) and
its origin placed at the corner of the plate as shown in Fig. 1. It is subjected to a time har-
monic sinusoidal temperature field on the top surface and varying through-the-thickness.
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Figure 1: Geometry of the FGM sandwich plate resting on two parameter elastic foundations.
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The face layers of the sandwich plate are made of a functionally graded material with ma-
terial properties varying smoothly in the z (thickness) direction only. Material properties
at a point are usually assumed to be given by the rule of mixture [1, 2, 34]

P(n)(z)=Pm+(Pc−Pm)V(n), (2.1)

where P represents the elastic coefficients E1, E2 and E3, the stress-temperature modulus
ξ and the density ρ. The subscripts m and c refer to metal and ceramic materials. The
elastic coefficients and the stress-temperature modulus will be defined later. V(n) is the
volume fraction of layer n which is equal to unity in the core (i.e., V(2)=1, at h1 ≤ z≤h2)
while it follows a simple power law through the thickness of the bottom and top layers
that takes the form

V(1)=
( z−h0

h1−h0

)k
, h0≤ z≤h1, (2.2a)

V(3)=
( z−h3

h2−h3

)k
, h2≤ z≤h3, (2.2b)

where k is a parameter which denotes the power law index and takes values greater than
or equal to zero. The core is independent of the value of k which is fully ceramic. Note
that the value of k equaling to zero represents a homogeneous isotropic ceramic plate and
the value of it equaling to infinity represents a metal-ceramic-metal (m-c-m) sandwich
plate. The above power law assumption reflects a simple rule of mixtures used to obtain
the effective properties of the metal-ceramic sandwich plate (see Fig. 1). Also, note that
the volume fraction of the ceramic is high near the interfaces, and that of the metal is high
near the bottom and top surfaces.

2.1 Various types of FGM sandwich plates

Fig. 2 shows the through-the-thickness variation of the volume fraction function of the
material for k= 1,2,3,5,7. Note that the core of the symmetric and nonsymmetric plates
are fully ceramic while the bottom and the top surfaces of the plate are metal-rich.

2.1.1 The (1-1-1) FGM sandwich plate

As shown in Fig. 2(a), the plate is made of three equal-thickness layers. So, one gets

h1=−h
6

, h2=
h
6

. (2.3)

2.1.2 The (2-1-2) FGM sandwich plate

In this state the core of the plate is half the face thickness (see Fig. 2(b)). Thus,

h1=− h
10

, h2=
h

10
. (2.4)
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Figure 2: Through-thickness distributions of volume fraction function for various values of the power law index
k and various types of FGM sandwich plates: (a) The (1-1-1) FGM sandwich plate, (b) The (2-1-2) FGM
sandwich plate, (c) The (2-2-1) FGM sandwich plate, (d) The (2-1-4) FGM sandwich plate.

2.1.3 The (2-2-1) FGM sandwich plate

Here the sandwich plate is nonsymmetric about the mid-plane in which the core thick-
ness equals the lower face thickness while it is twice the upper face thickness (see Fig. 2(c)).
Thus, we have

h1=− h
10

, h2=
3h
10

. (2.5)
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2.1.4 The (2-1-4) FGM sandwich plate

In this case the sandwich plate is also nonsymmetric about the mid-plane such that the
core thickness is half the lower face thickness, but it equals one-fourth the upper face
thickness (see Fig. 2(d)). Then

h1=−3h
14

, h2=− h
14

. (2.6)

The FGM sandwich plates are considered to be resting on two-parameter elastic foun-
dations. The foundation is assumed to be attached to the plate and separation does not
arise. The load-displacement relationship of the foundation is presumed to be

R=Kww−Kp∇2w, (2.7a)

where w is the plate deflection, R is the force per unit area, Kw and Kp are the Winkler’s
and Pasternak’s foundation stiffnesses and ∇2 is the Laplace operator in x and y.

The displacement field, taking into account the shear deformation effect, is presented
for FGM sandwich plates as

ux(x,y,z,t)=u−z∂xw+g(z)φx, uy(x,y,z,t)=v−z∂yw+g(z)φy, uz(x,y,z,t)=w, (2.8)

where u, v, w, φx and φy are independent of z and the function g(z) = 0 for the CPT,
g(z)= z for the FDPT, g(z)= z(1−4z2/3h2) for the HDPT and g(z)= hπ−1sin(πz/h) for
the SDPT. The functions u, v and w give displacements of a point on the mid-surface of
the plate and φx and φy are, respectively, rotations of the transverse normal to the mid-
surface about the y- and x-axis.

The strain tensor for infinitesimal deformations is related to the displacements uj by

ε j =∂juj, γjℓ=∂juℓ+∂ℓuj, j,ℓ= x,y,z, j ̸= ℓ. (2.9)

Substitution from Eq. (2.8) into Eq. (2.9) yields the following equations

εx =∂xu−z∂2
xw+g∂x φx, εy =∂yv−z∂2

yw+g∂y φy, εz =0, (2.10a)

γxy =∂xv+∂yu−2z∂x∂yw+g(∂x φy+∂y φx), γyz = g′φy, γxz = g′φx, (2.10b)

where g′=dg/dz.
The stress-strain relations for a linear isotropic elastic plate are given by

σ
(n)
x =E(n)

1 εx+E(n)
2 εy+ξ(n)T(x,y,z,t), σ

(n)
y =E(n)

1 εy+E(n)
2 εx+ξ(n)T(x,y,z,t), (2.11a)

τ
(n)
xy =E(n)

3 γxy, τ
(n)
yz =E(n)

3 γyz, τ
(n)
xz =E(n)

3 γxz, (2.11b)

where

E(n)
1 =

E(n)

1−ν2
(n)

, E(n)
2 =

ν(n)E(n)

1−ν2
(n)

, E(n)
3 =

E(n)

2(1+ν(n))
, ξ(n)=

E(n)α(n)

ν(n)−1
, (2.12)

in which E(n), ν(n) and α(n) are Young’s modulus, Poisson’s ratio and the coefficient of
thermal expansion for the n-th layer, respectively. Note that they are functions of z and
they are given according to Eq. (2.1).
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3 Equations of motion

The dynamic version of the principle of virtual displacements in the present study yields

∫ h/2

−h/2

∫
Ω

[
ρ(n)üjδuj+σ

(n)
xx (εxx−α(n)T)+σ

(n)
yy (εyy−α(n)T)+σ

(n)
xy γxy+σ

(n)
yz γyz

+σ
(n)
xz γxz

]
dΩdz+

∫
Ω

RδwdΩ=0, j= x,y,z. (3.1)

The governing equations of motion can be derived by using the above principle of virtual
displacements as

∂x Nx+∂yNxy = I0ü− I1∂xẅ+ I2 φ̈x, (3.2a)
∂x Nxy+∂yNy = I0v̈− I1∂yẅ+ I2 φ̈y, (3.2b)

∂2
x Mx+2∂x∂y Mxy+∂2

y My−R= I0ẅ+ I1
(
∂xü+∂yv̈

)
− I3

(
∂2

xẅ+∂2
yẅ

)
+ I4

(
∂x φ̈x+∂y φ̈y

)
, (3.2c)

∂x Ms
x+∂y Ms

xy−Qxz = I2ü− I4∂xẅ+ I5 φ̈x, (3.2d)

∂x Ms
xy+∂y Ms

y−Qyz = I2v̈− I4∂yẅ+ I5 φ̈y, (3.2e)

where Nxx, Nyy and Nxy and Mxx, Myy and Mxy are the basic components of stress resul-
tants and stress couples, Ms

xx,Ms
yy and Ms

xy are additional stress couples associated with
the transverse shear effects, Qxz and Qyz are transverse stress-strain resultants and Ii are
the inertias. They are defined as

{Nx,Ny,Nxy}=
3

∑
n=1

∫ hn

hn−1

{σ
(n)
x ,σ(n)

y ,τ(n)
xy }dz, (3.3a)

{Mx,My,Mxy}=
3

∑
n=1

∫ hn

hn−1

z{σ
(n)
x ,σ(n)

y ,τ(n)
xy }dz, (3.3b)

{Ms
x,Ms

y,Ms
xy}=

3

∑
n=1

∫ hn

hn−1

g{σ
(n)
x ,σ(n)

y ,τ(n)
xy }dz, (3.3c)

{Qyz,Qxz}= K̂
3

∑
n=1

∫ hn

hn−1

g′{τ
(n)
yz ,τ(n)

xz }dz, (3.3d)

{I0, I1, I2, I3, I4, I5}=
3

∑
n=1

∫ hn

hn−1

ρ(n){1,z,g,z2,zg,g2}dz, (3.3e)

where K̂ is the shear correction factor of FDPT.
Using Eq. (2.11) in Eq. (3.3), the stress resultants, for the present FGM plate, can be
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related to the displacements as

Nx
Ny
Nxy
Mx
My
Mxy
Ms

x
Ms

y
Ms

xy


=



A1 A2 0 B1 B2 0 C1 C2 0
A1 0 B2 B1 0 C2 C1 0

A6 0 0 B6 0 0 C6
D1 D2 0 F1 F2 0

D1 0 F2 F1 0
D6 0 0 F6

G1 G2 0
G1 0

symm. G6





∂xu
∂yv

∂xv+∂yu
−∂2

xw
−∂2

yw
−2∂x∂yw

∂x φx
∂y φy

∂x φy+∂y φx


+



NT
x

NT
y

0
MT

x
MT

y
0

M̄T
x

M̄T
y

0


, (3.4a)

{
Qyz
Qxz

}
=

[
H 0
0 H

]{
φy
φx

}
, (3.4b)

where 
A1, B1, C1, D1, F1, G1
A2, B2, C2, D2, F2, G2
A6, B6, C6, D6, F6, G6

=
3

∑
n=1

∫ hn

hn−1

(1,z,g,z2,zg,g2)


E(n)

1

E(n)
2

E(n)
3

dz, (3.5a)

H= K̂
3

∑
n=1

∫ hn

hn−1

E(n)
3 (g′)2dz, (3.5b)

and the thermal force and moment resultants are given by{
NT

j ,MT
j ,M̄T

j

}
=

3

∑
n=1

∫ hn

hn−1

ξ(n)(z)T
{

1,z,g
}

dz, j= x,y. (3.6)

4 Exact solutions for FGM plate

In order to obtain analytical solutions for the dynamic bending problem at hand, Navier’s
solution is employed here. The determination of transverse deflections and stresses are
of fundamental importance in the design of many structural components. The following
set of simply supported boundary conditions along the edges of the plate is considered:

v=w= φy =Nx =Mx =Ms
x =T=0 at x=0,a, (4.1a)

u=w= φx =Ny =My =Ms
y =T=0 at y=0,b. (4.1b)

Following Navier’s solution procedure, we assume the following solution form for
(u,v,w,φx,φy) that satisfies the simply supported boundary conditions,{

u,φx
}
=
{

U,Φx
}

cos(λx)sin(µy)eiωt, (4.2a)

w=Wsin(λx)sin(µy)eiωt, (4.2b){
v,φy

}
=
{

V,Φy
}

sin(λx)cos(µy)eiωt, (4.2c)
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where λ=π/a, µ=π/b, i=
√
−1, ω denotes the angular frequency, U, V, W, Φx and Φy

are arbitrary parameters to be determined subjected to the condition that the solution in
Eqs. (4.2) satisfies the differential equations (3.2).

The variation of temperature is assumed to occur in the thickness direction according
to a power law form. Also, the temperature is supposed to be changed in the plane of the
plate as a double Fourier’s series in x and y

T(x,y,z,t)= T̃(z)T̄(x,y,t), (4.3)

where

T̃(z)=Tbeγ
(

z
h+

1
2

)β

, γ= ln
( Tt

Tb

)
, 0≤β≤∞, (4.4a)

T̄(x,y,t)=T∗sin(λx)sin(µy)eiωt, (4.4b)

in which Tt and Tb are the top and the bottom temperature, β is the temperature exponent
and T∗ is an arbitrary parameter. Note that β=0 represents a top surface temperature of
the plate while β=∞ represents a bottom surface temperature. The assumed temperature
function T identically satisfies the boundary conditions (4.1) at the edges of the plate.

Dynamic equilibrium equations can be extended in terms of the parameters U, V, W,
Φx, Φy and T∗ by substituting Eq. (3.4a) into Eq. (3.2) with the help of Eqs. (4.2) and (4.3)
as [

L
]{

∆
}
=
{

F
}

, (4.5)

where {
∆
}
=
{

U V W Φx Φy
}t . (4.6)

The superscript ”t” represents the transpose of the given vector. The components of the
symmetric matrix [L] and the components of the thermal load vector {F} are given in
Appendix.

5 Numerical results and discussions

Numerical results are presented in this section for perfect, simply supported sandwich
plates with FGM faces and homogeneous core resting on two-parameter Pasternak’s e-
lastic foundations and subjected to a transient thermal load. The constituent materials
of the FGM symmetric and nonsymmetric sandwich plates are taken to be either an alu-
minum alloy (Al) and silicon carbide (SiC) or an aluminum alloy (Al) and zirconia ZrO2.
Values of parameters for these materials [31] are shown in Table 1.
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Table 1: Material properties of aluminum alloy Al, silicon carbide SiC and zirconia ZrO2 [31].

Properties Constitutes
Al SiC ZrO2

Young’s modulus (GPa) 70 427 151
Poisson’s ratio 0.3 0.17 0.3
Coefficient of thermal expansion (10−6/C) 23.40 4.30 10
Density (kg/m3) 2707 3100 3000

The used non-dimensional parameters are

w∗=
10D
a4 Re

[
w
( a

2
,
b
2

,t
)]

, σ1=
10−3h2

a2 Re
[
σx

( a
2

,
b
2

,z,t
)]

,

σ6=
10−3h2

a2 Re
[
σxy(0,0,z,t)

]
, σ5=

10(−3)h
a

Re
[
τxz

(
0,

b
2

,z,t
)]

,

J1=
Kwa4

D
, J2=

Kpa2

D
, D=

h3Ec

12(1−ν2
c )

, Tr =
Tt

Tb .

The stresses and central deflection of many kinds of Al+SiC/SiC/Al+SiC and
Al+ZrO2/ZrO2/Al+ZrO2 sandwich plates are illustrated here by exhibiting several ex-
amples using the following fixed data (unless otherwise stated) a/h = 10, J1 = J2 = 100,
a=b=0.5m, k=3, Tb =20◦C, ω=2s−1, T∗=2, Tr =3, t=2s.

Tables 2-4 display the central deflection (−w∗), in-plane normal stress (−σ1, z= h/2)
and transverse shear stress (−σ5, z=0) for various types of the Al+SiC/SiC/Al+SiC FGM
sandwich plates without elastic foundation or resting on Winkler’s foundation or Paster-
nak’s foundations for different values of the power law index k using the SDPT, HDPT,

Table 2: The deflection (−w∗) of FGM sandwich plates without or resting on elastic foundations for different
values of the power law index k (β=2, Tr =2,4, t=3sec).

Sandwich
Theory

J1= J2=0 J1=300, J2=0 J1=300, J2=200
Type k=0 k=3 k=7 k=0 k=3 k=7 k=0 k=3 k=7

1-1-1

CPT 1.57776 1.71420 1.73544 1.63760 1.78159 1.80427 3.26941 3.69115 3.77420
FDPT 1.52956 1.71684 1.74778 1.58751 1.78433 1.81709 3.16646 3.69683 3.80092
HDPT 1.52983 1.71425 1.74246 1.58780 1.78164 1.81157 3.16701 3.69127 3.78943
SDPT 1.52993 1.71402 1.74204 1.58791 1.78140 1.81113 3.16723 3.69076 3.78850

2-1-2

CPT 1.57775 1.73893 1.76436 1.63759 1.80811 1.83539 3.26940 3.79479 3.90307
FDPT 1.52955 1.74948 1.78738 1.58750 1.81908 1.85933 3.16642 3.81772 3.95369
HDPT 1.52983 1.74486 1.77908 1.58780 1.81428 1.85070 3.16701 3.80767 3.93546
SDPT 1.52994 1.74449 1.77840 1.58791 1.81388 1.84998 3.16727 3.80688 3.93394

2-2-1

CPT 1.57775 -1.25776 -2.17906 1.63759 -1.30690 -2.26482 3.26940 -2.69043 -4.69759
FDPT 1.52955 -1.25763 -2.19163 1.58750 -1.30678 -2.27788 3.16642 -2.69018 -4.72458
HDPT 1.52983 -1.25599 -2.18869 1.58780 -1.30508 -2.27481 3.16701 -2.68668 -4.71829
SDPT 1.52994 -1.25579 -2.18847 1.58791 -1.30487 -2.27459 3.16725 -2.68623 -4.71784

2-1-4

CPT 1.57775 7.13004 13.49832 1.63759 7.41486 14.04318 3.26940 15.63244 29.95441
FDPT 1.52956 7.20630 13.85310 1.58752 7.49413 14.41212 3.16646 15.79857 30.73187
HDPT 1.52983 7.19091 13.82542 1.58780 7.47816 14.38334 3.16702 15.76520 30.67204
SDPT 1.52992 7.19016 13.82745 1.58790 7.47736 14.38546 3.16723 15.76355 30.67661
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Table 3: The longitudinal stress (−σ1) in FGM sandwich plates without or resting on elastic foundations for
different values of the power law index k (β=2, Tr =2, t=3sec).

Sandwich
Theory

J1= J2=0 J1=300, J2=0 J1=300, J2=200
Type k=0 k=3 k=7 k=0 k=3 k=7 k=0 k=3 k=7

1-1-1

CPT 0.71414 1.29276 1.11353 0.71455 1.29280 1.11075 0.72585 1.29537 1.11770
FDPT 0.70286 1.28883 1.11424 0.70325 1.28892 1.08494 0.71387 1.29153 1.13195
HDPT 0.70474 1.29040 1.09226 0.70512 1.29040 1.08714 0.71580 1.29292 1.09747
SDPT 0.70487 1.29041 1.10556 0.70526 1.29051 1.08554 0.71594 1.29289 1.11907

2-1-2

CPT 0.71414 1.06287 0.46387 0.71455 1.06292 0.46352 0.72585 1.06560 0.47607
FDPT 0.70286 1.05818 0.45668 0.70324 1.05822 0.45609 0.71385 1.06097 0.46043
HDPT 0.70474 1.06009 0.45685 0.70512 1.06019 0.45796 0.71580 1.06313 0.45767
SDPT 0.70487 1.06031 0.45968 0.70527 1.06043 0.45558 0.71595 1.06341 0.46842

2-2-1

CPT 0.71413 1.35896 1.11732 0.71455 1.35894 0.98729 0.72585 1.35803 1.33412
FDPT 0.70285 1.36077 1.08404 0.70323 1.36060 1.01347 0.71384 1.35835 -0.59890
HDPT 0.70474 1.36064 1.37210 0.70513 1.36078 1.64326 0.71580 1.35998 3.10806
SDPT 0.70487 1.36031 1.27553 0.70527 1.36050 1.32573 0.71595 1.35768 1.93380

2-1-4

CPT 0.71424 0.89678 -0.40904 0.71464 0.89732 -0.40740 0.72596 0.91224 -0.33962
FDPT 0.70286 0.86878 -0.49525 0.70334 0.86929 -0.49197 0.71398 0.88439 -0.40926
HDPT 0.70474 0.87480 -0.50549 0.70513 0.87475 -0.49284 0.71575 0.89020 -0.46428
SDPT 0.70487 0.87506 -0.48075 0.70524 0.87607 -0.48519 0.71599 0.89092 -0.44228

Table 4: The transverse shear stress (−σ5) in FGM sandwich plates without or resting on elastic foundations
for different values of the power law index k (β=2, Tr =2, t=3sec).

Sandwich
Theory

J1= J2=0 J1=300, J2=0 J1=300, J2=200
Type k=0 k=3 k=7 k=0 k=3 k=7 k=0 k=3 k=7

1-1-1
FDPT 0.24715 0.45283 0.52018 0.24741 0.45281 0.52011 0.25472 0.45236 0.51791
HDPT 0.30717 0.40064 0.44091 0.30750 0.40062 0.44086 0.31666 0.40060 0.43928
SDPT 0.31681 0.40311 0.44051 0.31718 0.40311 0.44048 0.32663 0.40317 0.43894

2-1-2
FDPT 0.24714 0.53462 0.65260 0.24741 0.53457 0.65245 0.25475 0.53267 0.64814
HDPT 0.30718 0.46494 0.55006 0.30752 0.46490 0.54995 0.31669 0.46357 0.54648
SDPT 0.31682 0.46549 0.54662 0.31717 0.46546 0.54648 0.32662 0.46422 0.54315

2-2-1
FDPT 0.24714 -0.31086 -0.59834 0.24741 -0.31086 -0.59829 0.25474 -0.31089 -0.59608
HDPT 0.30718 -0.37174 -0.68266 0.30752 -0.37175 -0.68257 0.31669 -0.37203 -0.68095
SDPT 0.31682 -0.38576 -0.70589 0.31717 -0.38576 -0.70582 0.32662 -0.38609 -0.70420

2-1-4
FDPT 0.24715 1.70037 2.70869 0.24741 1.70002 2.70758 0.25474 1.68999 2.67488
HDPT 0.30718 1.77267 2.94380 0.30751 1.77236 2.94269 0.31667 1.76343 2.91042
SDPT 0.31683 1.81858 3.03596 0.31717 1.81827 3.03483 0.32662 1.80930 3.00197

FDPT, and CPT. It is seen that, the transverse central deflection and the in-plane normal
stress have a noticeable increment with the presence of the elastic foundations. Where-
as the transverse shear stress have a slight decrement with the presence of the elastic
foundations. Also, it can be note that the results increase with the increase of the met-
al constituents in the plates, whether that is by increasing the thickness of the top and
bottom layers or the power law index k. The results of CPT are greater than those of the
shear deformation plate theories. The error in the CPT value for the deflection and stress-
es can be attributed to the large shear deformation that occurs in thick plates. The results
predicted by the SDPT are in excellent agreement with those predicted by the HDPT. The
disagreement between FDPT and HDPT is much less than the disagreement between any
of them and CPT.
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Figure 3: Variation of (a) the deflection (−w∗), (b) the transverse shear stress (−σ5) and (c) the in-plane shear
stress (−σ6) in the (1-1-1) FGM plate versus the frequency parameter ω for different values of the temperature
exponent β (Tr =4).

Fig. 3 shows plots of the central deflection (−w∗), the transverse shear stress (−σ5)
and the in-plane shear stress (−σ6), respectively, of the (1-1-1) Al+SiC/SiC/Al+SiC FGM
sandwich plate vs the frequency parameter ω for different values of the temperature
exponent β. It is clear that the increase of the temperature exponent β leads to a significant
decrement in the variation of the deflection and stresses. The maximum values of the
central deflection and the in-plane shear stress decrease gradually as the the frequency
parameter ω increases while the change of the maximum of the transverse shear stress is
reversed.

The following results are estimated for different types of FGM sandwich plates (a/h=
8) which are made of aluminum alloy and zirconia. These plates are also resting on
elastic foundations and subjected to a time harmonic temperature load. Effect of the
power law index k on the deflection w∗ and the stresses σ1 and σ5 for FGM sandwich
plates resting on elastic foundations is explained in Figs. 4-6. It is to be noted that the
deflection of the metallic plate is the largest magnitude and that of the ceramic plate is
the smallest magnitude. The deflections of the FGM sandwich plates decrease as a/h
increases and may be unchanged for a/h>15 (see Fig. 4). The FGM sandwich plates with
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Figure 4: The deflection w∗ versus a/h for different values of the power law index k and various types of FGM
sandwich plates: (a) The (1-1-1) FGM sandwich plate, (b) The (2-1-2) FGM sandwich plate, (c) The (2-2-1)
FGM sandwich plate, (d) The (2-1-4) FGM sandwich plate (β=1).

intermediate properties undergo corresponding intermediate values of center deflection.
This is expected because the metallic plate is the one with the lowest stiffness and the
ceramic plate is the one with the highest stiffiness. Figs. 5 and 6 show the variation of
σ1 and σ5 through-the-thickness of the varied plates for k= 0,1,3,5,∞. It is clear that the
maximum value of the stress σ1 in the ceramic plate (k=0) occurs at the top surface of the
plate, while it occurs at the upper interface in the other types. However, the maximum
values of the stress σ5 in the symmetric sandwich plates, as shown in Figs. 6(a) and (b),
occur at the midplane of the plate. The maximums of σ5 in the symmetric and non-
symmetric sandwich plates increase as k increases. Note that, for k=1, the stresses σ1 and
σ5 in the FGM layers vary as linear functions of the thickness coordinate z.

Figs. 7-9 exhibit the variation of the deflection w∗ vs the side-to-thickness ratio a/h
and the stresses σ1 and σ5 through-the-thickness of the (2-1-4) and (2-2-1) FGM sandwich
plates for different values of the temperature parameter T∗ and the ratio of the top surface
temperature to the bottom one Tr=Tt/Tb. With the increase of the temperature parameter
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Figure 5: Through-thickness distributions of in-plane normal stress σ1 for various values of the power law index
k and various types of FGM sandwich plates: (a) The (1-1-1) FGM sandwich plate, (b) The (2-1-2) FGM
sandwich plate, (c) The (2-2-1) FGM sandwich plate, (d) The (2-1-4) FGM sandwich plate (β=1).

T∗ and the ratio Tr, the deflection w∗ and the stresses σ1 and σ5 increase.
In order to evaluate the effect of the elastic foundation parameters on the transverse

deflection and the stresses of the FGM sandwich plate, we carried out the numerical cal-
culations by varying k2 for different values of k1 as investigated in Fig. 10. The deflection
and the stresses increase directly separately faraway with an increase in the value of k2.
Also, they increase as Winkler’s parameter increases.

6 Conclusions

The dynamic bending of simply supported FGM sandwich plates resting on two-
parameter Pasternak’s elastic foundations are illustrated by using the SDPT, HDPT and
FDPT as well as CPT. Material properties of the sandwich plate faces are assumed to be
graded in the thickness direction according to a simple power law distribution in terms
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Figure 6: Through-thickness distributions of the transverse shear stress σ5 for various values of the power law
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Figure 9: Through-thickness distributions of the transverse shear stress σ5 in the FGM sandwich plates for
different values of the temperature parameter T∗ and the top-to-bottom surface temperature ratio Tr.

of the volume fractions of the constituents. The core layer is still homogeneous and made
of an isotropic material. Several kinds of symmetric and non-symmetric sandwich plates
are studied. Motion equations of FGM sandwich plates including the thermal effects are
solved analytically. The numerical results show that the stresses and central deflection
are proportional to the temperature parameter T∗, the top-to-bottom surface tempera-
ture ratio Tr, Winkler’s and shear foundation parameters. The results decrease with the
increase of the temperature exponent β and they are very sensitive to the variation of the
power law index.

Appendix

The components Lij of the symmetric matrix [L] and the components Fi of the thermal lo-
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ad vector {F} are given as

L11=−A1λ2−A6µ2+ I0ω2, L12=−(A2+A6)λµ,

L13=B1λ3+(B2+2B6)λµ2− I1λω2, L14=−C1λ2−C6µ2+ I2ω2,

L15=−(C2+C6)λµ, L22=−A1µ2−A6λ2+ I0ω2,

L23=B1µ3+(B2+2B6)λ
2µ− I1µω2, L24=L15,

L25=−C1µ2−C6λ2+ I2ω2,

L33=−D1(λ
4+µ4)−2(D2+2D6)λ

2µ2−Kw+ I0ω2−(Kp− I3ω2)(λ2+µ2),

L34=F1λ3+(F2+2F6)λµ2− I4λω2, L35=F1µ3+(F2+2F6)λ
2µ− I4µω2,

L44=−G1λ2−G6µ2−H+ I5ω2, L45=−(G2−G6)λµ,

L55=−G1µ2−G6λ2−H+ I5ω2,
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and

F1=−T∗ATλ, F2=−T∗ATµ, F3=T∗BT(λ2+µ2),

F4=−T∗CTλ, F5=−T∗CTµ,
{

AT,BT,CT}= 3

∑
n=1

∫ hn

hn−1

ξ(n)(z)Tbeγ
(

z
h+

1
2

)β {
1,z,g

}
dz.
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