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Abstract. A new scheme for the Zakharov-Kuznetsov (ZK) equation with the accuracy
order of O(∆t2+∆x+∆y2) is proposed. The multi-symplectic conservation property
of the new scheme is proved. The backward error analysis of the new multi-symplectic
scheme is also implemented. The solitary wave evolution behaviors of the Zakharov-
Kunetsov equation is investigated by the new multi-symplectic scheme. The accuracy
of the scheme is analyzed.
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1 Introduction

The two-dimensional generalization of the KDV equation, or the ZK equation

ut+
1

2
(u2)x+uxxx+uxyy=0 (1.1)

was first derived by Zakharov and Kuznetsov (1974) [26] in three dimensional form to
describe nonlinear ion acoustic waves in a magnetized plasma [13, 16]

ut+uux+uxxx+(∆u)x =0, ∆=∂2
x+∂2

y+∂2
z . (1.2)

∗Corresponding author.
Email: sunjq123@qq.com (J. Q. Sun)

http://www.global-sci.org/aamm 58 c©2015 Global Science Press



H. C. Li, J. Q. Sun and M. Z. Qin / Adv. Appl. Math. Mech., 7 (2015), pp. 58-73 59

A variety of physical phenomena, in the purely dispersive limit, are governed by this
type of equation; for example, the Rossby waves in rotating atmosphere [22], and the
isolated vortex of the drift waves in three dimensional plasma [21]. Although Eq. (1.1)
is not even integrable, quite a lot is now known about its nonlinear wave and soliton
solutions. Numerical and analytical results of Eq. (1.1) have been investigated in [14, 15].

Recently, Chen [9], from the Preissman scheme for multi-symplectic equations, de-
rived a multi-symplectic numerical scheme for the ZK equation that can be simplified to
an implicit 36-point scheme. In this paper, we proposed a new multi-symplectic Euler-
box scheme to solve the two-dimensional ZK equation.

The paper is organized as follows: in Section 2, the multi-symplectic structure for
the ZK equation is introduced and we propose a new multi-symplectic scheme for the
ZK equation and prove its discrete multi-symplectic conservation law. In Section 3, we
implement the backward error analysis for the new multi-symplectic scheme of the ZK
equation. In Section 4, the solitary wave behaviors of the ZK equation are investigated by
the new multi-symplectic scheme and the accuracy of the scheme is analyzed. We finish
the paper with conclusion remarks in Section 5.

2 A new multi-symplectic scheme for the ZK equation

Introducing the potential ϕx =u, Eq. (1.1) is equivalent to

ϕxxt+ϕx ϕxx+ϕxxxx+ϕxxyy=0. (2.1)

Now, we introduce some variables: u= ϕx, v= ϕxx, w= ϕxy, p=−ϕxt/2.

According to the covariant De Donder-Weyi Hamilton function theories and the multi-
symplectic concept introduced by Bridges [2–7,12], the ZK equation can be reformulated
as a system of five first-order partial differential equations which can be written in the
form:

M∂tz+K∂xz+L∂yz=∇zS(z), z=(p,u,ϕ,v,w)T ∈R5, (2.2)

where

M=













0 0 0 0 0

0 0 1
2 0 0

0 − 1
2 0 0 0

0 0 0 0 0
0 0 0 0 0













, K=













0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0













, L=













0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0













,

and S(z)=up−(v2+w2)/2−u3/6. For details, we refer to [7], ∇zS(z) is the gradient of
S(z) with respect to the standard inner product on R5. The system (2.2) is a Hamiltonian
formulation of the ZK equation on a multi-symplectic structure, where M,K,L∈Rn×n are
skew-symmetric matrices and S(z) : Rn →R is a smooth function of the z(x,y,t).
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For Eq. (2.2), one of the most important characteristic is that it satisfies the multi-
symplectic conservation law [1, 6, 7, 10, 11, 18, 20, 24]

∂

∂t
ω+

∂

∂x
κ+

∂

∂y
q=0, (2.3)

where

ω=
1

2
dz∧Mdz, κ=

1

2
dz∧Kdz, q=

1

2
dz∧Ldz, (2.4)

are differential two-forms. So, when a numerical scheme is developed, we expect that
the multi-symplectic conservation law (2.3) should be preserved. Bridges and Reich de-
fined a numerical scheme as a multi-symplectic scheme if the scheme preserves a discrete
multi-symplectic conservation law [7]. Specifically, if we discretize Hamiltonian PDEs
(2.2) as follows

M∂
i,j,n
t zn

i,j+K∂
i,j,n
x zn

i,j+L∂
i,j,n
y zn

i,j =∇zS(zn
i,j), (2.5)

where zn
i,j = z(xi,yj,tn), ∂

i,j,n
t , ∂

i,j,n
x and ∂

i,j,n
y are the discretizations of the derivatives ∂t, ∂x

and ∂y respectively, then the scheme is multi-symplectic provided that it can preserve the
following discrete conservation law

∂
i,j,n
t ωn

i,j+∂
i,j,n
x κn

i,j+∂
i,j,n
y qn

i,j =0, (2.6)

where

ωn
i,j=

1

2
(dzn

i,j∧Mdzn
i,j), κn

i,j =
1

2
(dzn

i,j∧Kdzn
i,j), qn

i,j =
1

2
(dzn

i,j∧Ldzn
i,j). (2.7)

Set tn, n=0,1,2,··· ,N1; xi, i=1,2,··· ,N2; yj, j=1,2,··· ,N3 be the regular grids of the integral
domain, zn

i,j is an approximation to z(xi,yj,tn), ∆t is the time-step, ∆x is the x direction

step, ∆y is the y direction step, and

δ±t
2

zn
i,j =±

z
n± 1

2
i,j −zn

i,j

1
2 ∆t

, z
n± 1

2
i,j =

zn
i,j+zn±1

i,j

2
, δ±x zn

i,j =±
zn

i±1,j−zn
i,j

∆x
, δ±x zn

i,j =±
zn

i,j±1−zn
i,j

∆y
.

We propose a new scheme for Eq. (2.2). It can be written as

M+δ+t
2

z
n+ 1

2
i,j +M−δ−t

2

z
n+ 1

2
i,j +K+δ+x z

n+ 1
2

i,j +K−δ−x z
n+ 1

2
i,j

+L+δ+y z
n+ 1

2
i,j +L−δ−y z

n+ 1
2

i,j =∇zS(z
n+ 1

2
i,j ), (2.8)

where M+, M−, K+, K− and L+, L− are matrix splitting for the matrices M, K and L,
respectively, s.t. [8, 17, 24],

M=M++M−, MT
+=−M−, (2.9a)

K=K++K−, KT
+=−K−, (2.9b)

L= L++L−, LT
+=−L−. (2.9c)

Scheme (2.8) satisfies the discrete multi-symplectic conservation law.
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Theorem 2.1. The new scheme (2.8) is a multi-symplectic scheme with the following discrete
multi-symplectic conservation law

δ+t
2

ω
n+ 1

2
i,j +δ+x κ

n+ 1
2

i,j +δ+y q
n+ 1

2
i,j =0, (2.10)

where

ω
n+ 1

2
i,j =

1

2
dzn

i,j∧M+dz
n+ 1

2
i,j , κ

n+ 1
2

i,j =
1

2
dz

n+ 1
2

i−1,j∧K+dz
n+ 1

2
i,j , q

n+ 1
2

i,j =
1

2
dz

n+ 1
2

i,j−1∧L+dz
n+ 1

2
i,j .

Proof. Consider the variational equation of (2.8)

M+δ+t
2

dz
n+ 1

2
i,j +M−δ−t

2

dz
n+ 1

2
i,j +K+δ+x dz

n+ 1
2

i,j +K−δ−x dz
n+ 1

2
i,j

+L+δ+y dz
n+ 1

2

i,j +L−δ−y dz
n+ 1

2

i,j =Szz(z
n+ 1

2

i,j )dz
n+ 1

2

i,j . (2.11)

Taking the wedge product with dzn+1/2
i,j and the variation equation (2.11), since dzn+1/2

i,j ∧
Szz(z

n+1/2
i,j )dzn+1/2

i,j =0, we have

dz
n+ 1

2
i,j ∧(M+δ+t

2

dz
n+ 1

2
i,j +M−δ−t

2

dz
n+ 1

2
i,j +K+δ+x dz

n+ 1
2

i,j +K−δ−x dz
n+ 1

2
i,j

+L+δ+y dz
n+ 1

2

i,j +L−δ−y dz
n+ 1

2

i,j )=0. (2.12)

Considering the items containing δ+t/2 or δ−t/2 in Eq. (2.12), we have

dz
n+ 1

2
i,j ∧M+δ+t

2

dz
n+ 1

2
i,j +dz

n+ 1
2

i,j ∧M−δ−t
2

dz
n+ 1

2
i,j

=dz
n+ 1

2
i,j ∧M+δ+t

2

dz
n+ 1

2
i,j +MT

−dz
n+ 1

2
i,j ∧δ−t

2

dz
n+ 1

2
i,j

=dz
n+ 1

2
i,j ∧M+δ+t

2

dz
n+ 1

2
i,j −M+dz

n+ 1
2

i,j ∧δ−t
2

dz
n+ 1

2
i,j

=dz
n+ 1

2
i,j ∧M+δ+t

2

dz
n+ 1

2
i,j +δ−t

2

dz
n+ 1

2
i,j ∧M+dz

n+ 1
2

i,j

=dz
n+ 1

2

i,j ∧M+

[ 1
1
2 ∆t

(dzn+1
i,j −dz

n+ 1
2

i,j )
]

+
[ 1

1
2 ∆t

(dz
n+ 1

2

i,j −dzn
i,j)

]

∧M+dz
n+ 1

2

i,j

=
1

1
2 ∆t

(dz
n+ 1

2
i,j ∧M+dzn+1

i,j −dzn
i,j∧M+dz

n+ 1
2

i,j )

=δ+t
2

(dzn
i,j∧M+dz

n+ 1
2

i,j ). (2.13)

Considering the items containing δ+x or δ−x in Eq. (2.12), we have

dz
n+ 1

2
i,j ∧K+δ+x dz

n+ 1
2

i,j +dz
n+ 1

2
i,j ∧K−δ−x dz

n+ 1
2

i,j

=dz
n+ 1

2
i,j ∧K+δ+x dz

n+ 1
2

i,j +KT
−dz

n+ 1
2

i,j ∧δ−x dz
n+ 1

2
i,j
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=dz
n+ 1

2
i,j ∧K+δ+x dz

n+ 1
2

i,j −K+dz
n+ 1

2
i,j ∧δ−x dz

n+ 1
2

i,j

=dz
n+ 1

2
i,j ∧K+δ+x dz

n+ 1
2

i,j +δ−x dz
n+ 1

2
i,j ∧K+dz

n+ 1
2

i,j

=dz
n+ 1

2
i,j ∧K+

[ 1

∆x
(dz

n+ 1
2

i+1,j−dz
n+ 1

2
i,j )

]

+
[ 1

∆x
(dz

n+ 1
2

i,j −dz
n+ 1

2
i−1,j)

]

∧K+dz
n+ 1

2
i,j

=
1

∆x
(dz

n+ 1
2

i,j ∧K+dz
n+ 1

2
i+1,j−dz

n+ 1
2

i−1,j∧K+dz
n+ 1

2
i,j )

=δ+x (dz
n+ 1

2
i−1,j∧K+dz

n+ 1
2

i,j ). (2.14)

Considering the items containing δ+y or δ−y in Eq. (2.12), we have

dz
n+ 1

2
i,j ∧L+δ+y dz

n+ 1
2

i,j +dz
n+ 1

2
i,j ∧L−δ−y dz

n+ 1
2

i,j

=dz
n+ 1

2
i,j ∧L+δ+y dz

n+ 1
2

i,j +LT
−dz

n+ 1
2

i,j ∧δ−y dz
n+ 1

2
i,j

=dz
n+ 1

2
i,j ∧L+δ+y dz

n+ 1
2

i,j −L+dz
n+ 1

2
i,j ∧δ−y dz

n+ 1
2

i,j

=dz
n+ 1

2
i,j ∧L+δ+y dz

n+ 1
2

i,j +δ−y dz
n+ 1

2
i,j ∧L+dz

n+ 1
2

i,j

=dz
n+ 1

2
i,j ∧L+

[ 1

∆y
(dz

n+ 1
2

i,j+1−dz
n+ 1

2
i,j )

]

+
[ 1

∆y
(dz

n+ 1
2

i,j −dz
n+ 1

2
i,j−1)

]

∧L+dz
n+ 1

2
i,j

=
1

∆y
(dz

n+ 1
2

i,j ∧L+dz
n+ 1

2
i,j+1−dz

n+ 1
2

i,j−1∧L+dz
n+ 1

2
i,j )

=δ+y (dz
n+ 1

2
i,j−1∧L+dz

n+ 1
2

i,j ). (2.15)

Taking Eqs. (2.13)-(2.15) into Eq. (2.12), we have

δ+t
2

(dzn
i,j∧M+dz

n+ 1
2

i,j )+δ+x (dz
n+ 1

2
i−1,j∧K+dz

n+ 1
2

i,j )+δ+y (dz
n+ 1

2
i,j−1∧L+dz

n+ 1
2

i,j )=0. (2.16)

The proof is completed.

We start from the new scheme (2.8). Note that the matrix splitting (2.9) is not u-
nique [25]. We can obtain different schemes with different splitting methods. Now we
take M+, K+ and L+ as upper triangle matrices. They are

M+=













0 0 0 0 0

0 0 1
2 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, K+=













0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, L+=













0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













.

Submitting the above matrices into the multi-symplectic scheme (2.8), we get the discrete
form of the multi-symplectic PDEs (2.2)

δ+x ϕ
n+ 1

2
i,j =u

n+ 1
2

i,j , (2.17a)
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1

2
δ+t

2

ϕ
n+ 1

2
i,j +δ+x v

n+ 1
2

i,j +δ+y w
n+ 1

2
i,j =(p− 1

2
u2)

n+ 1
2

i,j , (2.17b)

− 1

2
δ−t

2

u
n+ 1

2
i,j −δ−x p

n+ 1
2

i,j =0, (2.17c)

−δ−x u
n+ 1

2
i,j =−v

n+ 1
2

i,j , (2.17d)

−δ−y u
n+ 1

2
i,j =−w

n+ 1
2

i,j . (2.17e)

Applying δ−x to Eq. (2.17b), noting that the finite difference operators mutually commute,
we have

1

2
δ+t

2

δ−x ϕ
n+ 1

2
i,j +δ−x δ+x v

n+ 1
2

i,j +δ−x δ+y w
n+ 1

2
i,j =δ−x p

n+ 1
2

i,j − 1

2
δ−x (u

n+ 1
2

i,j )2. (2.18)

Note that

−1

2
δ−t

2

u
n+ 1

2
i,j =δ−x p

n+ 1
2

i,j , (2.19)

we have

1

2
δ+t

2

δ−x ϕ
n+ 1

2
i,j +δ−x δ+x v

n+ 1
2

i,j +δ−x δ+y w
n+ 1

2
i,j =−1

2
δ−t

2

u
n+ 1

2
i,j − 1

2
δ−x (u

n+ 1
2

i,j )2. (2.20)

Substituting (2.17d) and (2.17e) into (2.20), we have

1

2
δ+t

2

δ−x ϕ
n+ 1

2
i,j +δ−x δ+x δ−x u

n+ 1
2

i,j +δ−x δ+y δ−y u
n+ 1

2
i,j =−1

2
δ−t

2

u
n+ 1

2
i,j − 1

2
δ−x (u

n+ 1
2

i,j )2. (2.21)

If we submit the index i by i+1 in Eq. (2.21), then we obtain

1

2
δ+t

2

δ−x ϕ
n+ 1

2
i+1,j+δ−x δ+x δ−x u

n+ 1
2

i+1,j+δ−x δ+y δ−y u
n+ 1

2
i+1,j=−1

2
δ−t

2

u
n+ 1

2
i+1,j−

1

2
δ−x (u

n+ 1
2

i,j )2. (2.22)

Note that

δ−x ϕ
n+ 1

2
i+1,j=δ+x ϕ

n+ 1
2

i,j =u
n+ 1

2
i,j . (2.23)

We obtain the following multi-symplectic scheme of the ZK equation:

1

2
δ+t

2

u
n+ 1

2
i,j +

1

2
δ−t

2

u
n+ 1

2
i+1,j+

1

2
δ−x (u

n+ 1
2

i+1,j)
2+δ−x δ+x δ−x u

n+ 1
2

i+1,j+δ−x δ+y δ−y u
n+ 1

2
i+1,j=0. (2.24)
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In finite difference format the scheme is given as follows:

1

2∆t
(un+1

i+1,j+un+1
i,j )+

1

2(∆x)3
(un+1

i+2,j−3un+1
i+1,j+3un+1

i,j −un+1
i−1,j)

+
1

2∆x(∆y)2
(un+1

i+1,j+1−2un+1
i+1,j+un+1

i+1,j−1−un+1
i,j+1+2un+1

i,j −un+1
i,j−1)

=
1

2∆t
(un

i+1,j+un
i,j)−

1

2(∆x)3
(un

i+2,j−3un
i+1,j+3un

i,j−un
i−1,j)

− 1

2∆x(∆y)2
(un

i+1,j+1−2un
i+1,j+un

i+1,j−1−un+1
i,j+1+2un

i,j−un
i,j−1)

− 1

2∆x

((un+1
i+1,j+un

i+1,j

2

)2
−
(un+1

i,j +un
i,j

2

)2)

. (2.25)

Theorem 2.2. The discrete multi-symplectic scheme (2.24) for the ZK equation (1.1) satisfies the
discrete multi-symplectic conservation law

1

2
δ+t

2

(dun
i,j∧dϕ

n+ 1
2

i,j )+δ+x (dp
n+ 1

2
i−1,j∧dϕ

n+ 1
2

i,j +du
n+ 1

2
i−1,j∧dv

n+ 1
2

i,j )

+δ+y (du
n+ 1

2
i,j−1∧dw

n+ 1
2

i,j )=0. (2.26)

Proof. From Eq. (2.8), we can get

δ+t
2

(dzn
i,j∧M+dz

n+ 1
2

i,j )+δ+x (dz
n+ 1

2
i−1,j∧K+dz

n+ 1
2

i,j )+δ+y (dz
n+ 1

2
i,j−1∧L+dz

n+ 1
2

i,j )

=
1

2
δ+t

2

(dun
i,j∧dϕ

n+ 1
2

i,j )+δ+x (dp
n+ 1

2
i−1,j∧dϕ

n+ 1
2

i,j +du
n+ 1

2
i−1,j∧dv

n+ 1
2

i,j )+δ+y (du
n+ 1

2
i,j−1∧dw

n+ 1
2

i,j )

=
1

∆t
(du

n+ 1
2

i,j ∧dϕn+1
i,j −dun

i,j∧dϕ
n+ 1

2
i,j )+

1

∆x
(dp

n+ 1
2

i,j ∧dϕ
n+ 1

2
i+1,j−dp

n+ 1
2

i−1,j∧dϕ
n+ 1

2
i,j

+du
n+ 1

2
i,j ∧dv

n+ 1
2

i+1,j−du
n+ 1

2
i−1,j∧dv

n+ 1
2

i,j )+
1

∆y
(du

n+ 1
2

i,j ∧dw
n+ 1

2
i,j+1−du

n+ 1
2

i,j−1∧dw
n+ 1

2
i,j )

=
1

2
du

n+ 1
2

i,j ∧
( 1

1
2 ∆t

(dϕn+1
i,j −dϕ

n+ 1
2

i,j )
)

+
1

2

( 1
1
2 ∆t

(du
n+ 1

2

i,j −dun
i,j)

)

∧dϕ
n+ 1

2

i,j

+dp
n+ 1

2
i,j ∧

( 1

∆x
(dϕ

n+ 1
2

i+1,j−dϕ
n+ 1

2
i,j )

)

+
( 1

∆x
(dp

n+ 1
2

i,j −dp
n+ 1

2
i−1,j)

)

∧dϕ
n+ 1

2
i,j

+du
n+ 1

2
i,j ∧

( 1

∆x
(dv

n+ 1
2

i+1,j−dv
n+ 1

2
i,j )

)

+
( 1

∆x
(du

n+ 1
2

i,j −du
n+ 1

2
i−1,j)

)

∧dv
n+ 1

2
i,j

+du
n+ 1

2
i,j ∧

( 1

∆y
(dw

n+ 1
2

i,j+1−dw
n+ 1

2
i,j )

)

+
( 1

∆y
(du

n+ 1
2

i,j −du
n+ 1

2
i,j−1)

)

∧dw
n+ 1

2
i,j

=
1

2
du

n+ 1
2

i,j ∧δ+t
2

dϕ
n+ 1

2
i,j +

1

2
δ−t

2

du
n+ 1

2
i,j ∧dϕ

n+ 1
2

i,j +dp
n+ 1

2
i,j ∧δ+x dϕ

n+ 1
2

i,j +δ−x dp
n+ 1

2
i,j ∧dϕ

n+ 1
2

i,j

+du
n+ 1

2
i,j ∧δ+x dv

n+ 1
2

i,j +δ−x du
n+ 1

2
i,j ∧dv

n+ 1
2

i,j +du
n+ 1

2
i,j ∧δ+y dw

n+ 1
2

i,j +δ−y du
n+ 1

2
i,j ∧dw

n+ 1
2

i,j . (2.27)
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Differentiating Eqs. (2.17a)-(2.17e) respectively, we can get

δ+x dϕ
n+ 1

2
i,j =du

n+ 1
2

i,j , (2.28a)

1

2
δ+t

2

dϕ
n+ 1

2
i,j +δ+x dv

n+ 1
2

i,j +δ+y dw
n+ 1

2
i,j =dp

n+ 1
2

i,j −u
n+ 1

2
i,j du

n+ 1
2

i,j , (2.28b)

− 1

2
δ−t

2

du
n+ 1

2
i,j −δ−x dp

n+ 1
2

i,j =0, (2.28c)

−δ−x du
n+ 1

2
i,j =−dv

n+ 1
2

i,j , (2.28d)

−δ−y du
n+ 1

2
i,j =−dw

n+ 1
2

i,j . (2.28e)

Taking Eqs. (2.28) into Eq. (2.27), we can get

δ+t
2

(dzn
i,j∧M+dz

n+ 1
2

i,j )+δ+x (dz
n+ 1

2
i−1,j∧K+dz

n+ 1
2

i,j )+δ+y (dz
n+ 1

2
i,j−1∧L+dz

n+ 1
2

i,j )

=du
n+ 1

2
i,j ∧(dp

n+ 1
2

i,j −)+u
n+ 1

2
i,j du

n+ 1
2

i,j −δ−x dp
n+ 1

2
i,j ∧dϕ

n+ 1
2

i,j +dp
n+ 1

2
i,j ∧du

n+ 1
2

i,j

+δ−x dp
n+ 1

2
i,j ∧dϕ

n+ 1
2

i,j +dv
n+ 1

2
i,j ∧dv

n+ 1
2

i,j +dw
n+ 1

2
i,j ∧dw

n+ 1
2

i,j

=0. (2.29)

The proof is completed.

3 Backward error analysis for the new multi-symplectic scheme

We now assume z is a sufficiently smooth function that, when evaluated at the lattice
points, satisfies Eq. (2.8) [19, 23]. Expanding z in a Taylor series about tn+1/2, we obtain

zn+1
i,j = z+

∆t

2
zt+

1

2

(

∆t

2

)2
ztt+

1

6

(

∆t

2

)3
zttt+

1

24

(

∆t

2

)4
ztttt+··· , (3.1a)

zn
i,j = z−∆t

2
zt+

1

2

(

∆t

2

)2
ztt−

1

6

(

∆t

2

)3
zttt+

1

24

(

∆t

2

)4
ztttt−··· , (3.1b)

where z= z(xi,yj,tn+1/2). We have

z
n+ 1

2
i,j =

zn
i,j+zn+1

i,j

2
= z+

1

2

(

∆t

2

)2
ztt+

1

24

(

∆t

2

)4
ztttt+O(∆t5). (3.2)

So we have

zn+1
i,j −z

n+ 1
2

i,j

1
2 ∆t

= zt+
∆t2

24
zttt+O(∆t4), (3.3a)

z
n+ 1

2
i,j −zn

i,j

1
2 ∆t

= zt+
∆t2

24
zttt+O(∆t4). (3.3b)
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From Eq. (3.2), we have

z
n+ 1

2
i,j = z+O(∆t2). (3.4)

Expanding z in a Taylor series about xi, we obtain

zn+1
i+1,j = zn+1

i,j +∆x(zx)
n+1
i,j +

∆x2

2
(zxx)

n+1
i,j +··· , (3.5a)

zn
i+1,j = zn

i,j+∆x(zx)
n
i,j+

∆x2

2
(zxx)

n
i,j+··· . (3.5b)

From Eqs. (3.5a) and (3.5b), we have

z
n+ 1

2
i+1,j=

zn
i+1,j+zn+1

i+1,j

2
= z

n+ 1
2

i,j +∆x(zx)
n+ 1

2
i,j +

∆x2

2
(zxx)

n+ 1
2

i,j +O(∆x3)

=z
n+ 1

2
i,j +∆x(zx)+

∆x2

2
zxx+O(∆x3)+O(∆x∆t2).

So we can get

z
n+ 1

2
i+1,j−z

n+ 1
2

i,j

∆x
= zx+

∆x

2
zxx+O(∆x2+∆t2). (3.6)

In the same way, we can get

z
n+ 1

2
i,j −z

n+ 1
2

i−1,j

∆x
= zx−

∆x

2
zxx+O(∆x2+∆t2), (3.7a)

z
n+ 1

2
i,j+1−z

n+ 1
2

i,j

∆y
= zy+

∆y

2
zyy+O(∆y2+∆t2), (3.7b)

z
n+ 1

2
i,j −z

n+ 1
2

i,j−1

∆y
= zy−

∆y

2
zyy+O(∆y2+∆t2). (3.7c)

Substituting Eqs. (3.3a)-(3.4) and Eqs. (3.6)-(3.7c) into Eq. (2.8) yields the modified PDE

M(zt+
∆t2

24
zttt)+Kzx+

∆x

2
(K+−K−)zxx+Lzy+

∆y

2
(L+−L−)zyy=∇zS(z). (3.8)

Substituting M, K, K+, K−, L, L+, L− and z into modified Eq. (3.8) gives

ϕx+
1

2
∆xϕxx=u, (3.9a)

1

2
ϕt+

1

48
(∆t)2 ϕttt+vx+

1

2
∆xvxx+wy+

1

2
∆ywyy = p− 1

2
u2, (3.9b)

− 1

2
ut−

1

48
(∆t)2uttt−px+

1

2
∆xpxx =0, (3.9c)

−ux+
1

2
∆xuxx =−v, (3.9d)

−uy+
1

2
∆yuyy =−w. (3.9e)
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Substituting Eq. (3.9d) and (3.9e) into Eq. (3.9b), we have

p=
1

2
ϕt+

1

48
(∆t)2 ϕttt+uxx−

1

4
(∆x)2uxxxx+uyy−

1

4
(∆y)2uyyyy+

1

2
u2. (3.10)

Substituting Eq. (3.10) into Eq. (3.9c), we have

− 1

2
ut−

1

48
(∆t)2uttt−

1

2
ϕxt−

1

48
(∆t)2 ϕxttt−uxxx+

1

4
(∆x)2uxxxxx−uxyy

+
1

4
(∆y)2uxyyyy−

1

2
(u2)x+

1

4
∆xϕxxt+

1

96
∆x(∆t)2 ϕxxttt+

1

2
∆xuxxxx

− 1

8
(∆x)3uxxxxxx+

1

2
∆xuxxyy−

1

8
∆x(∆y)2uxxyyyy+

1

4
∆x(u2)xx =0. (3.11)

Note that

ϕxt=ut−
1

2
∆xϕxxt, ϕxxt=uxt−

1

2
∆xϕxxxt,

ϕxttt=uttt−
1

2
∆xϕxxttt, ϕxxttt=uxttt−

1

2
∆xϕxxxttt,

we have

− 1

2
ut−

1

48
(∆t)2uttt−

1

2
ut+

1

4
∆xuxt−

1

8
(∆x)2 ϕxxxt−

1

48
(∆t)2uttt

+
1

96
∆x(∆t)2uxttt−

1

192
(∆x)2(∆t)2 ϕxxxttt−uxxx+

1

4
(∆x)2uxxxxx−uxyy

+
1

4
(∆y)2uxyyyy−

1

2
(u2)x+

1

4
∆xuxt−

1

8
(∆x)2 ϕxxxt+

1

96
∆x(∆t)2uxttt

− 1

192
(∆x)2(∆t)2 ϕxxxttt+

1

2
∆xuxxxx−

1

8
(∆x)3uxxxxxx+

1

2
∆xuxxyy

− 1

8
∆x(∆y)2uxxyyyy+

1

4
∆x(u2)xx =0. (3.12)

So we have

ut+
1

2
(u2)x+uxxx+uxyy

=
1

2
∆x

(

ut+
1

2
(u2)x+uxxx+uxyy

)

x
− 1

24
(∆t)2uttt−

1

4
(∆x)2 ϕxxxt

+
1

48
∆x(∆t)2uxttt−

1

96
(∆x)2(∆t)2 ϕxxxttt+

1

4
(∆x)2uxxxxx

+
1

4
(∆y)2uxyyyy−

1

8
(∆x)3uxxxxxx−

1

8
∆x(∆y)2uxxyyyy

=
1

2
∆x

(

ut+
1

2
(u2)x+uxxx+uxyy

)

x
+

1

48
∆x(∆t)2uxttt

− 1

8
(∆x)3uxxxxxx+O(∆t2+∆x2+∆y2), (3.13)



68 H. C. Li, J. Q. Sun and M. Z. Qin / Adv. Appl. Math. Mech., 7 (2015), pp. 58-73

which is an O(∆t2+∆x+∆y2) perturbation of the ZK equation (1.1).
The modified equation (3.8) can be written in the form of a standard multi-symplectic

PDE

M̃z̃t+K̃z̃x+ L̃z̃y =∇z̃S̃(z̃) (3.14)

for z̃=(z,zt,ztt,zx,zy)T, and

x̃=S(z)+
∆t2

24
zT

tt Mzt−
∆x

2
zT

x Pzx−
∆y

2
zT

y Qzy,

with the skew-symmetric matrices

M̃=















M 0 ∆t2

24 M 0 0

0 −∆t2

24 M 0 0 0
∆t2

24 M 0 0 0 0
0 0 0 0 0
0 0 0 0 0















, K̃=













K 0 0 ∆xP 0
0 0 0 0 0
0 0 0 0 0

−∆xP 0 0 0 0
0 0 0 0 0













,

L̃=













L 0 0 0 ∆yQ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−∆yQ 0 0 0 0













,

where P=(K+−K−)/2, Q=(L+−L−)/2.

4 Numerical simulations

In this section, we test the new derived schemes on the solitary wave of the ZK equation.
We consider the ZK equation with exact boundary condition. For fixed n, we give the
definition of maxerror(n):

maxerror(n)=max
i,j

|un
i,j−u(xi,yj,tn)|, (4.1)

where un
i,j is the numerical solution while u(xi,yj,tn) is the exact solution.

4.1 Numerical simulation 1

The steady progressive wave solutions of the form u=U(x−ct,y) satisfy the following
equation:

∆U= cU− 1

2
U2, ∆≡ ∂2

∂X2
+

∂2

∂y2
, X≡ x−ct, (4.2)
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where c represents the wave velocity to be determined by solving Eq. (4.2). It is easy to
see that a steady progressive wave solution of the form

U(x,y,t)=3csech2
[1

2

√
c(Xcosθ+ysinθ)

]

(4.3)

is an exact solution. This solution represents an oblique one-dimensional solitary wave
with an inclined angle θ with respect to the x-axis. We carry out our numerical computa-
tion on the domain [0,34]×[0,2] with the parameters c=2, θ=π/3, and choose ∆x=0.2,
∆y=0.1, ∆t=0.1. We take the following initial conditions

U(x,y,5)=3csech2
[1

2

√
c((x−5c)cosθ+ysinθ)

]

(4.4)

just for computing convenience, and it has nothing to do with the scheme and the results.
Fig. 1 shows the initial condition at t= 5. Figs. 2 and 3 show the numerical solution at
t = 8 and t = 11 respectively. We can see the moving of wave. Fig. 4 shows the error
between the numerical solution and the exact solution at t= 11. Fig. 5 shows the trend
of the maxerror(n) as time evolves. From that, we can see that the scheme has the good
numerical performance.
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Figure 1: The wave form of the solitary wave at t=5.
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Figure 2: Numerical solution of the solitary wave at t=8 with ∆x=0.2, ∆y=0.1 and ∆t=0.1.
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Figure 3: Numerical solution of the solitary wave at t=11 with ∆x=0.2, ∆y=0.1 and ∆t=0.1.
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Figure 4: The error between the numerical solution and the exact solution of the solitary wave at t= 11 with
∆x=0.2, ∆y=0.1 and ∆t=0.1.
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Figure 5: The trend of the maxerror(n) of the solitary wave as time evolves with ∆x=0.2, ∆y=0.1 and ∆t=0.1.

4.2 Numerical simulation 2

Next we try the cylindrical solitary wave of the ZK equation. The cylindrical solition of
the ZK equation can be expressed as

U(x,y,t)=3sech2
[1

2

√

(x−ct−x0)2+(y−y0)2
]

. (4.5)
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Figure 6: The wave form of the cylindrical solitary wave at t=0.
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Figure 7: Numerical solution of the cylindrical solitary wave at t=2.5 with ∆x=0.2, ∆y=0.2 and ∆t=0.1.

We take the following initial condition:

U(x,y,0)=3sech2
[1

2

√

(x−x0)2+(y−y0)2
]

. (4.6)

We compute in a rectangle [0,15]×[0,10] with the parameters c=0.5, x0=5.0, y0=5.0, and
choose ∆x=0.2, ∆y=0.2, ∆t=0.1.

Fig. 6 shows the initial condition at t= 0. Figs. 7 and 8 show the numerical solution
at t= 2.5 and t= 5 respectively. We can see the moving of wave from the graph. Fig. 9
shows the error between the numerical solution and the exact solution at t=5. The error
can be diminished by reducing the spacial step and the time step.

5 Conclusions

In this paper, we propose a new scheme for the ZK equation with the accuracy order
of O(∆t2+∆x+∆y2). The new scheme is a multi-symplectic scheme that preserves the
intrinsic geometry property of the equation. Numerical results show that the new multi-
symplectic scheme can well simulate the solitary evolution behaviors of the ZK equation.
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Figure 8: Numerical solution of the cylindrical solitary wave at t=5 with ∆x=0.2, ∆y=0.2 and ∆t=0.1.
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Figure 9: The error between the numerical solution and the exact solution of the cylindrical solitary wave at
t=5 with ∆x=0.2, ∆y=0.2 and ∆t=0.1.
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