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Abstract. The lattice Boltzmann method (LBM) can gain a great amount of perfor-
mance benefit by taking advantage of graphics processing unit (GPU) computing, and
thus, the GPU, or multi-GPU based LBM can be considered as a promising and compe-
tent candidate in the study of large-scale fluid flows. However, the multi-GPU based
lattice Boltzmann algorithm has not been studied extensively, especially for simula-
tions of flow in complex geometries. In this paper, through coupling with the mes-
sage passing interface (MPI) technique, we present an implementation of multi-GPU
based LBM for fluid flow through porous media as well as some optimization strate-
gies based on the data structure and layout, which can apparently reduce memory
access and completely hide the communication time consumption. Then the perfor-
mance of the algorithm is tested on a one-node cluster equipped with four Tesla C1060
GPU cards where up to 1732 MFLUPS is achieved for the Poiseuille flow and a nearly
linear speedup with the number of GPUs is also observed.
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1 Introduction

Recently, GPU (graphics processing unit) computing is becoming rapidly popular, espe-
cially after the emergence of new programming languages like compute unified device
architecture (CUDA) [1]. This is mainly due to the tremendous computing power and su-
perior memory bandwidth of the GPU architecture. For this reason, the GPU computing
has also been viewed as a cost-efficient tool to overcome the performance bottleneck. Up
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to now, many applications have achieved a significant speedup by exploiting the GPU
processing power.

The lattice Boltzmann method (LBM) [2, 3] is one of such algorithms that is perfectly
suitable for running on the GPU. As a kinetic based approach in modeling fluid flows,
the lattice Boltzmann method has been successfully applied in various fields. In order to
achieve a desirable performance, several researchers implemented the LBM on a single
GPU [4-7], and reported some satisfactory accelerations.

To gain a higher performance for complex problems with a large scale, the multi-
GPU based LBM has been developed, and studied preliminarily in some previous work-
s [8-14]. In these works, although almost a linear speedup was achieved, only the GPU
based LBM for fluid flow in a simple geometry is investigated. Recently, Bernaschi et al.
implemented multi-GPU based lattice Boltzmann method for flows in complex geome-
tries by utilizing sparse lattice representation technique [15, 16], which only stores fluid
nodes and could achieve high performance when the volume fraction of the fluid phase
is quite small. However, for porous media with a high porosity, the full matrix mode is a
better choice and can achieve a higher performance than the sparse matrix mode. In this
paper, based on the full matrix mode, we present an alternative multi-GPU based LB-
M algorithm for fluid flows through porous media, in which message passing interface
(MPI) technique is adopted for GPU management.

The rest of this paper is organized as follows. In Section 2, we will present a brief
overview on the lattice Boltzmann method. In Section 3, an improved multi-GPU based
lattice Boltzmann algorithm is proposed, and then, a detailed analysis on the perfor-
mance of the algorithm is given in Section 4. In the next Section, as an application, the
present algorithm is used to predict permeabilities of three types of porous medium, and
finally, some conclusions are summarized in Section 6.

2 The lattice Boltzmann method

The lattice Boltzmann method can be viewed as a discrete scheme of the continuous
Boltzmann equation. For every time step, particles collide at each node and then propa-
gate to neighboring sites along discrete directions. A popular class of lattice Boltzmann
models is the so-called lattice Bhatnagar-Gross-Krook (BGK) model with a single relax-
ation time approximation. In this model, the evolution equation reads

Fi(x+ ;o t+0t) — fi(x,t) = —% (i t)— £ (x,8)], 2.1)

where T is the dimensionless relaxation time, f;(x,t) is the density distribution function

for the particle moving with velocity ¢; at position x and time ¢, fl-(eq) (x,t) is the local equi-
librium distribution function. In this paper, a three-dimensional lattice Boltzmann model
with nineteen velocities (D3Q19 model) [17] is used, and the corresponding equilibrium
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distribution function is defined as
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where w; is the weighting factor, and given by wo=1/3, w1_¢=1/18, wy_18=1/36, p,
u are the fluid density and velocity, cs is the sound speed. The discrete velocities ¢; in
Eq. (2.2) are defined by

(0,0,0), i=0,
ci=ce;=c{ (£1,0,0),(0,4£1,0),(0,0,£1), i=1-6, (2.3)
(+1,41,0),(+1,0,41,),(0,+1,+1), i=7-18,

where c=0x/6t, 6x and 6t are the lattice spacing and time step, respectively. The relation
between ¢, and ¢ can be expressed as c¢; =c/+/3. The macroscopic density and velocity
are computed by

18 18
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For fluid flows in complex geometries, the most widely used boundary condition
is the halfway bounce-back scheme [18], which means particles that hit the boundary,
and then simply return back in the direction where they came from. In our simulations,
whether to apply the halfway bounce-back scheme or do a normal propagation, it de-
pends on the phase information of neighboring site (fluid or solid site). This process,
which is not included in the LBM algorithm for fluid flow in a simple geometry, brings
a heavy memory access to the array which stores phase information, and thus the per-
formance of the algorithm will be seriously damaged. This is one of the problems to be
studied in detail in the present paper.

3 Implementation and optimization of multi-GPU based LBM

Similar with the algorithm of Tolke et al. [4], two sets of the distribution functions located
in global memory are used. At even time steps, the distribution function values are read
from one of them and stored by the other, while at odd time steps the values are shifted
in the opposite direction.

To reduce the data access time, the collision and propagation steps are combined in
one kernel, named evolution(). In this kernel, each thread is assigned to one node, and
executed as follows: (1) calculate the index of present node; (2) load distribution function
values; (3) compute the macroscopic density and velocity; (4) perform the collision step
and store the distribution function values after propagation step.

GPU based LBM generally adopts the structure-of-array (SOA) data layout to meet
the requirement of coalescing memory access, i.e., fi((x,y,2z),t) is stored with the index
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(ixnzxnyxnx+zxnyxnx+yxnx+x). Under this layout, the computational domain
is divided along z direction (major direction). For each sub-domain, two ghost layers
are employed, which will be used to exchange data. Providing (nz X ny x nx) nodes are
assigned to one processor, then a grid with a size of (nz+2) xny x nx is allocated, and the
ghost layers are z=0 and z=nz+1.

3.1 Overlapping of the computation and data transfer

To overlap the computation and data transfer, the sub-domain is further divided into two
parts, outer layers (z=1,nz) and inner layers (1 <z <nz), then the two parts are assigned
to two CUDA streams [1]. A stream is a sequence of commands which are executed in
order, and commands within different streams can be executed concurrently. The stream
which deals with the outer layers is in charge of data transfer. In this way, data exchange
with the neighboring processor can be overlapped with the computation of inner layers,
which can be illustrated by Fig. 1.

l Stream| evolution | memory copy b MPI remory copy I
I 0 outer GPU to CPU communication | CPU to GPU
' Stream e

1 evolution nner

Each iteration

Next iteration

Figure 1: Flow diagram of the overlapped model.

3.2 Access of phase information

To apply the halfway bounce-back scheme for nodes in the computational region, we
need to access the phase information of neighboring node in each direction. Generically,
an integer is allocated for each node to denote the phase information (fluid or solid site).
For D3Q19 model used in the present work, 19 integers need to be loaded while the
evolution of each node. To reduce the memory access, the idea proposed by Habich [19]
is used. Here we use an integer to store the phase information of all neighboring nodes,
the k bit of the integer denotes the phase information of neighboring node in k direction,
as shown in Fig. 2.

Another critical issue is the if statements caused by whether to apply the halfway
bounce-back scheme or do a normal propagation. These if statements will influence the
performance of the algorithm since the GPU is inefficient to handle control flows. To
overcome this problem, we firstly calculate the location where to store the distribution
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Figure 2: Data structure of the phase information for a two-dimension model.

function values in a uniform manner, and then complete the data storage. For example,
for the i direction of node x, the storing location can be given as,

add =add(x+e;, i)+ ((flag>>1)&1) x (add(x,7) —add(x+e;,i)), (3.1)

where add(x,i) is the address of fi(x,t+1), i is the opposite direction of i, flag contain-
s phase information of the neighboring nodes. If the k bit of flag equal to zero, then
Eq. (3.1) represents a normal propagation, otherwise, the halfway bounce-back scheme
will be applied.

3.3 Communication between processors

The communication between processors can be split into three steps: (1) copy data from
global memory to host memory; (2) data exchange through MPI; (3) copy data from host
memory to global memory.

After the evolution of the outer layers, the data to be exchanged with neighboring
processors are located in ghost layers (z=0,nz+1). For each layer, the distribution func-
tion values propagating along +z/ —z directions need to be copied to host memory and
then are exchanged through MPI. After that, the data transferred from other processor
are copied back to ghost layers.

It should be noted that we do not copy the exchanged data directly to the outer layer.
Although the process of copying the exchanged data to the outer layer seems simpler,
it will overwrite the distribution function values which are derived from the halfway
bounce-back rule. Due to this issue, some distribution function values of the outer layer
are stored at outer layer, but the rest are located at ghost layer. Therefore, special attention
needs to be paid to the load of distribution function values in evolution_outer() kernel.

For the data transfers between CPU and GPU, five times of data copy are needed
for each ghost layer, since the distribution function values of certain z layer in +z or —z
directions are not continuous in the memory. Here we adopt a new data layout, where
fi((x,y,2),t) is stored with the index (zx19 xny x nx+ixny x nx+yxnx+x). This new
data layout maintains the advantage of structure-of-array, and is useful to merge the
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data copies. Furthermore, the directions of the D3Q19 model are rearranged so that those
directions with the same z field are gathered together (see Eq. (3.2)). In this way, the data
transfers between CPU and GPU can be completed through one data copy.
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4 Performance analysis

In this section, we will test the performance of our algorithm systematically through
performing simulations on a one-node cluster equipped with four Tesla C1060 GPU cards
using single precision.

4.1 Performance on a single GPU

We first test the performance of our algorithm for Poiseuille flow in a square pipe. Ac-
cording to the test, our algorithm can achieve 446MFLUPS (million fluid lattice updates
per second) for simulation of Poiseuille flow (simple geometry) on Tesla C1060 GPU card,
which is comparable with the results reported in some published literature [11]. We also
run the test on another computer equipped with K20 GPU card and achieve a MFLUPS
of 1029 (ECC off). In fact, GPU based LBM is a memory bandwidth limited algorithm.
According to the bandwidthTest program supplied by the NVIDIA CUDA SDK, the band-
width of Tesla C1060 and K20 are 72GB/s and 158GB/s, respectively. Thus our algorithm
achieve 90% and 94% of peak bandwidth, respectively.

Then simulations of fluid flows through porous media are performed on a single G-
PU. The porous medium composed of randomly arranged spheres with the same size is
used (see Fig. 3). The grid size of the computational domain is 1923, and porosity of the

Figure 3: Structure of the porous medium.
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Figure 4: Performance varies with different diameters.
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Figure 5: Performance varies with different porosity.

medium is about 80%. We performed several simulations under different diameters of
the sphere, and presented the performance in Fig. 4.

As seen from Fig. 4, the performance shows a decline when the sphere diameter get-
ting smaller. This interesting phenomenon can be explained by the following reasons.
Firstly, the global memory is accessed by a segment of 32, 64, or 128 bytes, even only one
byte in the segment is needed. Thus the distribution function values of solid nodes will
be still accessed if fluid node exists in the same segment. The number of the segments,
which contain function values of both fluid nodes and solid nodes, will be larger as the
diameter getting smaller. As a result, the effective bandwidth will be reduced. Secondly,
the execution of halfway bounce-back rule will cause uncoalesced access, which is ad-
verse to performance of the algorithm. While for the cases with smaller sphere diameter,
the solid nodes are more evenly distributed and bring more interface nodes, which means
the halfway bounce-back rule need to be applied for more nodes.

In addition, we also studied fluid flows through porous media with different porosi-
ties. To obtain a large range of the porosity, the diameter of the sphere is set to be 1 lattice
(a point). As seen from Fig. 5, the performance shows a significant decline with the de-
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crease of the porosity. This phenomenon can also be explained by the reasons accounted
for the phenomenon shown in Fig. 4.

According to the result of Bernaschi et al. [15], about 170 MFLUPS is achieved using
the sparse matrix mode. Comparing with our results, our algorithm based on full matrix
mode can achieve a higher performance when the porosity is higher than 50% (see Fig. 5).
This result demonstrates that the full matrix mode is a better choice when the medium
has a small fraction of obstacles.

From the above tests we can conclude that, the performance of the algorithm will be
affected if the solid nodes distribute evenly or if the porosity of the porous medium is
low. Our algorithm, which uses full matrix mode, is more appropriate for those porous
media with large obstacles and high porosity.

4.2 Performance on multi-GPU platform

Similar to Subsection 4.1, we also tested the performance of our algorithm on multi-GPU
platform (four GPU cards) through performing simulations of the Poiseuille flow and flu-
id flows through porous media. The porous medium with a porosity of 80% is composed
of randomly arranged spheres with a diameter of 40 lattices. Two sets of test cases are
included. In the first set, a lattice size 192 x 192 x 48 is assigned for each GPU; while in
the second one, a total lattice size 192 is assigned for all the GPUs. The performances of
the two test sets are presented in Fig. 6 and Fig. 7, respectively.

From Fig. 6 we can see clearly that our algorithm presents a linear speedup with the
number of GPUs, which indicates the excellent scalability of the algorithm. While for
the second set (see Fig. 7), the performance is lower than 100% efficiency, which may be
caused by the fact that the grid size assigned to each GPU is not large enough to fully
exploiting the computing power of the GPU. This can be confirmed by comparing the
performance on a single GPU when the grid sizes are 192 x 192 x 48 and 1923, respectively.

At last, we would like to discuss some limitations of our implementation. Firstly, we
only employed one-dimensional partition of the computational domain, which is already
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Figure 6: Performance on a lattice size 192 x 192 x 48 for each GPU.
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Figure 7: Performance on a total lattice size 1923.

sufficient for our tested problems. In fact, domain partition along x or y direction (non-
major direction) will lead to a large number of data transfer times between GPU and
CPU, which damage the performance heavily. This is because the data needed to be
exchanged with the sub-domains in these directions are not stored in contiguous memory
locations. Even using zero-copy technique provided by CUDA, the payment is still too
expensive [9]. However for systems with numerous GPU processors, it is necessary to
adopt two- or three-dimensional domain partition to reduce the amount of data to be
exchanged. Secondly, our algorithm is only tested on a one-node cluster, and thus further
works on the large-scale clusters are still needed, however, the optimization strategies we
described in the present paper will still work well.

5 Application

In what follows, as an application of our algorithm, we predict permeabilities of three
types of porous medium (see Fig. 8): simple cubic, body-centered cubic, and face-centered
cubic arrays of spheres. According to the Darcy law, when the flow velocity is assumed
to be sufficiently small, we can derive the permeability as

K=— (5.1)

Ko
VB
where p is the dynamic viscosity, P and i are the averaged pressure and velocity, re-
spectively. We carried out several simulations and presented the results in Fig. 9 where
the lattice size used is 643, the pressure gradient G = 1le—4, the dimensionless relaxation
time 7= 1.0, the diameter of the sphere ranges from 12 to 40 to gain different porosities.
As shown in this figure, our numerical results agree well with the theoretical solutions
proposed by Sangani et al. [20].
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Figure 8: Structure of three cubic arrays of spheres: (a) simple cubic arrays; (b) body-centered cubic arrays;
(c) face-centered cubic arrays.

(a) (b)

0.45 T r T T T T 0.2 r T T
e Present e Present
04} Sangani et al. | 0.18H Sangani et al.
0.35¢ [
2 03
=
S 0.25¢
E
o 0.2
a
0.15¢
0.1
0.05¢
0 L L L L L L 0 L L L L L
086 088 09 092 094 096 098 1 0.7 0.75 0.8 0.85 0.9 0.95 1
Porosity Porosity
©).00 : : :
e Present
0.08 1 Sangani et al.
0.07r
E0.0G
=
% 0.05
£
@ 0.04
a
0.03
0.02
0.01
0

0.4 0.5 0.6 0.7 0.8 0.9 1
Porosity

Figure 9: Relation between permeability and porosity: (a) simple cubic arrays; (b) body-centered cubic arrays;
(c) face-centered cubic arrays.

6 Conclusions

In this paper, a multi-GPU based lattice Boltzmann algorithm is proposed for fluid flows
through porous media by using MPI library to exchange data between processors. Three
major optimizations are made in this work: (1) to overlap the computation and data ex-
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change, asynchronous transfer is realized by using multiple CUDA streams; (2) the data
structure used to store phase information is altered to reduce the global memory access
using Habich’s manner [19]; (3) the data layout is redesigned to merge data copies be-
tween GPU and CPU. The numerical results show that our algorithm can achieve a high
performance on a one-node cluster equipped with four Tesla C1060 GPU cards, which
is up to 1732 MFLUPS for the Poiseuille flow. In addition, a near linear increase with
the number of GPUs for both the Poiseuille flow and flow through porous media is also
observed. This shows multi-GPU based LBM is a powerful tool to study fluid phenom-
ena in porous media as we shown in Section 5, where we predict the permeabilities of
three kinds of porous media and agree well with previous theoretical study. Our results
also show that, for porous media with a small obstacle fraction, the full matrix mode can
achieve a higher performance than the sparse matrix mode. In the future, we will aim at
optimizing the GPU based lattice Boltzmann algorithm on large-scale GPU clusters.
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