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Abstract. The linear hyperbolic equation is of great interest in many branches of physics
and industry. In this paper, we use the weak Galerkin method to solve the linear hyper-
bolic equation. Since the weak Galerkin finite element space consists of discontinuous
polynomials, the discontinuous feature of the equation can be maintained. The opti-
mal error estimates are proved. Some numerical experiments are provided to verify
the efficiency of the method.
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1 Introduction

The linear hyperbolic equation arises in many branches of physics, including acoustics
and fluid mechanics. For example, in the computational fluid dynamics the Lagrangian
grids are usually employed, and the physical quantities, like density, velocity and pres-
sure, extend from one medium to another medium through the interface. A linear hy-
perbolic equation, which is also called the eikonal equation, needs to be solved to verify
the physical quantities on the ghost element near the interface. As to the derivation and
more applications of the linear hyperbolic equation, readers are referred to [7] and the
references therein.

Many numerical methods have been applied to the linear hyperbolic equation, such
as the finite difference method [17], the finite element method [18], and the finite volume
method [1, 6]. A key issue of the numerical simulation of the linear hyperbolic equation
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is the approximation near the shock. The exact solution of the linear hyperbolic equation
may be discontinuous, and it is a challenge for the numerical scheme to avoid oscillation
around the discontinuity. In this aspect, the discontinuous Galerkin method [4] is a com-
petitive candidate. The optimal order estimate of the discontinuous Galerkin method
is discussed in [11]. The superconvergence phenomenon of the discontinuous Galerkin
method is also studied, the k+2 order superconvergence and 2k+1 order superconver-
gence are investigated in [24] and [2], respectively. There are also many other schemes
for the linear hyperbolic equation, such as SUPG [8, 9] and least squares method [5, 10].

Recently, a numerical method called the weak Galerkin (WG) finite element method
is proposed for solving PDEs. The weak Galerkin method has been introduced and an-
alyzed in [20] for the second order elliptic equations. The main idea of the WG method
is to use totally discontinuous polynomials as basis functions, and replace the classical
derivative operators by specifically defined weak derivative operators in the numerical
scheme. It has been applied to a variety of PDEs, including the second order elliptic
equation [3, 12, 21], the biharmonic equation [14, 15, 27], the Stokes equation [16, 22, 26],
the Brinkman equation [13, 23, 25] and the linear elasticity equation [19], etc. The weak
Galerkin method employs discontinuous polynomials in the finite element space, which
can help describe the discontinuity of the solution.

In the computational fluid dynamics, the mesh grid is usually polytopal and unstruc-
tured. The WG method can solve this kind of problems efficiently since it utilizes discon-
tinuous elements and suits for polytopal meshes. The numerical simulation of the linear
hyperbolic equation is also an important issue in computational fluid dynamics, and we
are interested in solving this problem by the WG method.

We consider the linear hyperbolic equation that seeks an unknown function u satisfy-
ing

β ·∇u+cu= f , in Ω, (1.1)

u= g, on Γ−, (1.2)

where Ω is a polytopal domain in Rd (polygonal or polyhedral domain for d= 2,3), the
coefficients β and c are non-negative functions, and

Γ−={x∈∂Ω,β ·n≤0 at x}.

For the simplicity of analysis, we suppose β and c are piecewise constants.

In this paper, we apply the WG method to the linear hyperbolic equation, and give
the corresponding estimates.

The rest of paper is structured as follows. In Section 2, we introduce some notations,
definitions, and the WG scheme. In Section 3 we derive the error equations for the WG
approximations and we give the error estimates. Some numerical experiments are pre-
sented in Section 4.
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2 The weak Galerkin schemes

In this section, we define some notations, definitions necessary for the WG method, and
introduce the WG scheme for (1.1)-(1.2).

Suppose Th is a polytopal partition of Ω satisfying regularity assumptions verified
in [21]. We denote T to represent an element in Th and e to represent an edge/face in Th.
For every element T∈Th, hT is its diameter and h=maxT∈Th

hT . Let Eh be the set of all the
edges/faces in Th. For any e∈Eh, suppose T1,e and T2,e are two adjoint elements and ne is
a uniform normal vector of e. Define

E0
h ={e∈Eh, β|T1,e

·ne =β|T2,e
·ne =0}.

On partition Th, the weak Galerkin finite element space is defined as follows

Vh={(v0,vb) : v0 ∈Pk(T), ∀T∈Th, and vb ∈Pk(e), ∀e∈Eh}.

It should be noted that v0 and vb can be totally discontinuous, i.e. vb is not supposed
to be the trace of v0. We can also define

V0
h ={v∈Vh, vb =0 on Γ−}.

Now we introduce some projection operators. For each element T, we denote by
Q0 the L2 projection operator onto Pk(T), and Qh be the L2 projection operator onto
[Pk−1(T)]

d. On each edge/face e, denote by Qb the L2 projection operator onto Pk(e).
Combining Q0 and Qb, we have Qh={Q0,Qb} the projection operator onto Vh.

One of key feature of the weak Galerkin method is to use the weak derivative operator
instead of the classical derivative operator. On the weak Galerkin finite element space,
we define the weak gradient operator as follows.

Definition 2.1. [20] For any v={v0,vb}∈Vh, on each element T, define ∇wv the unique
polynomial in [Pk−1(T)]

d satisfying

(∇wv,q)T =−(v0,∇·q)T+〈vb,q·n〉∂T, ∀q∈ [Pk−1(T)]
d,

where n is the unit outward normal vector of ∂T.

Let v,w∈Vh. Introduce the following two bilinear forms on Vh,

aw(v,w)=(β·∇wv+cv0,β·∇ww+cw0),

s(v,w)= ∑
T∈Th

h−1
T 〈v0−vb,w0−wb〉∂T.

For any v∈Vh, define

|||v|||2 = aw(v,v)+s(v,v).

We claim that |||·||| defines a norm on V0
h . First we need the following identity.
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Lemma 2.1. For any v={v0,vb}∈Vh, ϕ∈Pk−1(T), the following identity holds true on each T,

(β·∇wv,ϕ)T =(β·∇v0,ϕ)T−〈(β·n)(v0−vb),ϕ〉∂T.

Proof. From the definition of weak gradient and the integration by parts, we can obtain

(β·∇wv,ϕ)T =−(v0,∇·(βϕ))T+〈vb,(β·n)ϕ〉∂T

=−(v0,∇·(βϕ))T+〈v0,(β·n)ϕ〉∂T−〈v0−vb,(β·n)ϕ〉∂T

=(β·∇v0,ϕ)T−〈(β·n)(v0−vb),ϕ〉∂T,

which completes the proof.

Lemma 2.2. |||·||| defines a norm on V0
h .

Proof. We need to prove that |||v|||= 0 implies v= 0 in V0
h . From the definition of |||·|||,

aw(v,v)≥0 and s(v,v)≥0, which implies aw(v,v)=s(v,v)=0. Therefore on each element,
we have β·∇wv+cv0 =0 in T, and v0−vb =0 on ∂T.

From Lemma 2.1, for each element T and ϕ∈Pk−1(T),

(β·∇wv,ϕ)T =(β ·∇v0,ϕ)T−〈(β ·n)(v0−vb),ϕ〉∂T

=(β ·∇v0,ϕ)T,

which implies β·∇wv=β ·∇v0. It follows that,

β·∇v0+cv0 =0, in Ω,

v0=0, on Γ−.

From the uniqueness of solution of Eqs. (1.1)-(1.2), we can obtain v0 = 0 on Ω. That
implies vb =0 which completes the proof.

Now we can introduce the following weak Galerkin method for the linear convection
equation (1.1)-(1.2).

Weak Galerkin Algorithm 1. Find uh∈Vh, such that ub =Qbg on Γ−, and

aw(uh,v)+s(uh,v)=( f ,β ·∇wv+cv0), ∀v∈V0
h . (2.1)

3 Error analysis

In this section, we derive an error equation and analyze the order of convergence of Weak
Galerkin Algorithm 1.
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3.1 Error equation

The following communicative property plays an essential role in the analysis, which re-
veals the relationship between the classical gradient operator and the weak gradient op-
erator.

Lemma 3.1. For any w∈H1(Ω),

∇w(Qhw)=Qh(∇w), ∀T∈Th.

Proof. For any q∈ [Pk−1(T)]
d, from the definition of weak gradient and the integration by

parts, we can obtain

(∇w(Qhw),q)T =−(Q0w,∇·q)T+〈Qbw,q·n〉∂T

=−(w,∇·q)T+〈w,q·n〉∂T

=(∇w,q)T

=(Qh(∇w),q)T,

which completes the proof.

On the regular polytopal partition, the following trace inequality and inverse inequal-
ity hold true. The proof can be found in [21].

Lemma 3.2 (Trace inequality). Suppose ϕ∈H1(T), then the following inequality holds on each
element T∈Th,

‖ϕ‖2
∂T ≤C(h−1

T ‖ϕ‖2
T+hT‖ϕ‖2

1,T).

Lemma 3.3 (Inverse inequality). Suppose ψ∈Pk(T), then there exists a constant C such that
on each element T∈Th,

‖∇ψ‖T ≤Ch−1
T ‖ψ‖T .

The well posedness of the Weak Galerkin Algorithm 1 is a direct corollary of Lemma
2.2.

Lemma 3.4. The Weak Galerkin Algorithm 1 has a unique solution.

Proof. Since the Weak Galerkin Algorithm 1 is a linear system, we just need to verify the
uniqueness of the homogeneous problem. Suppose f = g= 0, from the scheme (2.1) we
can obtain

aw(uh,v)+s(uh,v)=0, ∀v∈Vh.

By letting v=uh, it follows that

|||uh|||
2 = aw(uh,uh)+s(uh,uh)=0.

From Lemma 2.2 we have uh =0, which completes the proof.
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Lemma 3.5. Suppose u∈H1(Ω) is the exact solution of (1.1)-(1.2), uh is the numerical solution
of the Weak Galerkin Algorithm 1, and eh=Qhu−uh. Then for any v∈Vh, the following equation
holds

aw(eh,v)+s(eh,v)=(β ·(Qh(∇u)−∇u),β·∇wv+cv0)+s(Qhu,v).

Proof. From Lemma 3.1, we have

aw(Qhu,v)+s(Qhu,v)

=(β·∇w(Qhu)+cQ0u,β·∇wv+cv0)+s(Qhu,v)

=(β·Qh(∇u)+cQ0u,β·∇wv+cv0)+s(Qhu,v). (3.1)

Testing Eq. (1.1) by (β·∇wv+cv0) yields

(β·∇u+cu,β·∇wv+cv0)=( f ,β ·∇wv+cv0)

= aw(uh,v)+s(uh,v). (3.2)

Subtracting (3.2) from (3.1),

aw(eh,v)+s(eh,v)

=(β ·Qh(∇u)+cQ0u,β·∇wv+cv0)+s(Qhu,v)−(β ·∇u+cu,β·∇wv+cv0)

=(β ·(Qh(∇u)−∇u),β·∇wv+cv0)+s(Qhu,v),

which completes the proof.

3.2 Error estimate

The remainders in error equation can be estimate by the following lemma.

Lemma 3.6. Suppose u∈Hk+1(Ω), then for any v∈Vh, the following estimates hold

|(β·(Qh(∇u)−∇u),β·∇wv+cv0)|≤Chk‖u‖k+1|||v|||, (3.3)

|s(Qhu,v)|≤Chk‖u‖k+1|||v|||. (3.4)

Proof. To prove the inequality (3.3), we use the property of L2 projection operator to ob-
tain

|(β ·(Qh(∇u)−∇u),β·∇wv+cv0)|

≤C‖β·(Qh(∇u)−∇u)‖.‖β ·∇wv+cv0‖

≤C

(

∑
T∈Th

‖β ·(Qh(∇u)−∇u)‖2
T

)
1
2

|||v|||

≤Chk‖u‖k+1|||v|||.
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As to (3.4), it follows from the trace inequality and the inverse inequality,

|s(Qhu,v)|= ∑
T∈Th

h−1
T 〈Q0u−Qbu,v0−vb〉∂T

= ∑
T∈Th

h−1
T 〈Q0u−u,v0−vb〉∂T

≤

(

∑
T∈Th

h−1
T ‖Q0u−u‖2

∂T

)
1
2
(

∑
T∈Th

h−1
T ‖v0−vb‖

2
∂T

)
1
2

≤C

(

∑
T∈Th

(h−2
T ‖Q0u−u‖2

T+‖Q0u−u‖2
1,T)

)
1
2
(

∑
T∈Th

h−1
T ‖v0−vb‖

2
∂T

)
1
2

≤Chk‖u‖k+1|||v|||,

which completes the proof.

Theorem 3.1. Suppose u∈Hk+1(Ω) is the exact solution of (1.1)-(1.2), uh ∈Vh is the solution
of the weak Galerkin scheme (2.1). Then the following estimate holds.

|||Qhu−uh|||≤Chk‖u‖k+1.

Proof. Denote eh=Qhu−uh. Letting v= eh in Lemma 3.5 we have

|||eh|||
2 = aw(eh,eh)+s(eh,eh)

=(β·(Qh(∇u)−∇u),β·∇weh+ce0)+s(Qhu,eh).

Applying Lemma 3.6 yields

|||eh|||
2 =(β·(Qh(∇u)−∇u),β·∇weh+ce0)+s(Qhu,eh)

≤Chk‖u‖k+1|||eh|||,

which completes the proof.

Lemma 3.7. For any φ∈H1(T) and v∈Vh, the following identity is true on each element T,

(β·∇φ,β ·∇v0)T =(β·∇wQhφ,β·∇wv)T+〈β·Qh∇φ,(β·n)(v0−vb)〉∂T.

Proof. Let φ∈H1(T) and v∈Vh. Using Lemma 3.1,

(β·∇wQhφ,β·∇wv)T =(β·Qh∇φ,β·∇wv)T

=−(v0,∇·(βTβ·Qh∇φ))T+〈(β·n)vb,β·Qh∇φ〉∂T

=(∇v0,(β·Qh∇φ))T−〈(β·n)(v0−vb),β·Qh∇φ〉∂T

=(β·∇v0,β·(∇φ))T−〈β·Qh∇φ,(β·n)(v0−vb)〉∂T,

which completes the proof.
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Lemma 3.8. Suppose u∈Hk+1(Ω), then for any v∈Vh, the following estimate holds
∣

∣

∣

∣

∣

∑
T∈Th

〈β·(Qh(∇u)−∇u),β·(v0−vb)〉∂T

∣

∣

∣

∣

∣

≤Chk‖u‖k+1|||v|||. (3.5)

Proof. It follows from Cauchy-Schwartz inequality,

∣

∣

∣

∣

∣

∑
T∈Th

(β·(Qh(∇u)−∇u),β·(v0−vb))∂T

∣

∣

∣

∣

∣

≤C

(

∑
T∈Th

hT‖β ·(Qh(∇u)−∇u)‖2
∂T

)
1
2
(

∑
T∈Th

h−1
T ‖β ·(v0−vb)‖

2
∂T

)
1
2

≤Chk‖u‖k+1|||v|||.

This completes the proof.

The L2 error estimate can be obtained by using a dual argument. Consider an auxil-
iary problem,

−β·∇ϕ= e0, in Ω, (3.6)

β·∇ψ+c2ψ= ϕ, in Ω, (3.7)

ϕ=0, on ∂Ω\Γ−, (3.8)

ψ=0, on Γ−. (3.9)

Suppose β and c are continuous on Ω, and the dual problem (3.6)-(3.9) has H2-regularity,
i.e.

‖ψ‖2 ≤C‖ϕ‖1≤C‖e0‖.

Theorem 3.2. Suppose u∈Hk+1(Ω) is the exact solution of (1.1)-(1.2), uh∈Vh is the solution
of the weak Galerkin scheme (2.1), and the dual problem (3.6)-(3.9) has H2-regularity. When h
is sufficiently small, the following estimate holds

‖Q0u−u0‖≤Chk+1‖u‖k+1.

Proof. By testing (3.6) by e0, we obtain,

‖e0‖
2=(−β·∇ϕ,e0)

= ∑
T∈Th

(β·∇ψ,β ·∇e0)T− ∑
T∈Th

〈(β·n)(e0−eb),β·∇ψ〉∂T+ ∑
T∈Th

(cψ,ce0)T.

Setting φ=ψ and v= e0 in Lemma 3.7 we get,

(β·∇ψ,β ·∇e0)T =(β·∇wQhψ,β·∇weh)T+〈β·Qh∇ψ,(β·n)(e0−eb)〉∂T.
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Then,

‖e0‖
2= ∑

T∈Th

(β·∇wQhψ,β·∇weh)T+ ∑
T∈Th

〈β·Qh∇ψ,(β ·n)(e0−eb)〉∂T

+ ∑
T∈Th

(cψ,ce0)T− ∑
T∈Th

〈(β ·n)(e0−eb),β·∇ψ〉∂T .

Adding and subtracting the terms ∑T∈Th
(β·∇wQhψ,ce0)T, ∑T∈Th

(cQhψ,β·∇weh)T, and
s(Qhψ,eh), we get,

‖e0‖
2 = ∑

T∈Th

(β·∇wQhψ+cQ0ψ,β·∇weh+ce0)T− ∑
T∈Th

(β·∇wQhψ,ce0)T+s(Qhψ,eh)

− ∑
T∈Th

(cQhψ,β ·∇weh)T+ ∑
T∈Th

〈β·(Qh∇ψ−∇ψ),(β ·n)(e0−eb)〉∂T−s(Qhψ,eh)

= ∑
T∈Th

(β·∇wQhψ+cQ0ψ,β·∇weh+ce0)T+s(Qhψ,eh)− ∑
T∈Th

(β·∇wQhψ,ce0)T

− ∑
T∈Th

(cQ0ψ,β ·∇weh)T−s(Qhψ,eh)+ ∑
T∈Th

〈β ·(Qh∇ψ−∇ψ),(β ·n)(e0−eb)〉∂T,

from Eq. (3.1), we have

‖e0‖
2=− ∑

T∈Th

(β·∇wQhψ,ce0)T− ∑
T∈Th

(cQhψ,β·∇weh)T−s(Qhψ,eh)

+ ∑
T∈Th

〈β·(Qh∇ψ−∇ψ),(β ·n)(e0−eb)〉∂T+aw(Qhψ,eh)+s(Qhψ,eh).

Consider the first two terms

∑
T∈Th

(β·∇wQhψ,ce0)+ ∑
T∈Th

(cQhψ,β ·∇weh)T

= ∑
T∈Th

(β·∇wQhψ,ce0)+ ∑
T∈Th

(cψ,β·∇weh)T

= ∑
T∈Th

(β·Qh∇ψ,ce0)− ∑
T∈Th

(ce0,∇·(βψ))T+ ∑
T∈Th

〈ceb,(β·n)ψ〉∂T

= ∑
T∈Th

(β·Qh∇ψ,ce0)− ∑
T∈Th

(ce0,∇·(βψ))T

= ∑
T∈Th

(β·(Qh∇ψ−∇ψ),ce0)T

≤Ch‖ψ‖2‖e0‖. (3.10)
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Denote Q̂0 the L2 projection onto Pk−1(T). From Lemma 3.5 we have

aw(Qhψ,eh)+s(Qhψ,eh)

=(β·(Qh(∇u)−∇u),β·∇wQhψ+cQ0ψ)+s(Qhu,Qhψ)

=(β·(Qh(∇u)−∇u),c(Q0ψ−Q̂0ψ))+ ∑
T∈Th

h−1
T 〈Q0u−Qbu,Q0ψ−Qbψ〉∂T

≤C‖Qh(∇u)−∇u‖‖Q0ψ−Q̂0ψ‖

+

(

∑
T∈Th

h−1
T ‖Q0u−Qbu‖2

∂T

)
1
2
(

∑
T∈Th

h−1
T ‖Q0ψ−Qbψ‖2

∂T

)
1
2

≤Chk+1‖u‖k+1‖ψ‖2. (3.11)

Letting k=1, u=ψ and v= eh in Lemma 3.8 yields

∑
T∈Th

〈β·(Qh∇ψ−∇ψ),(β ·n)(e0−eb)〉∂T ≤Ch‖ψ‖2|||eh|||. (3.12)

Therefore by using inequalities (3.4), (3.10), (3.11), and (3.12), we get

‖e0‖
2≤Ch‖ψ‖2|||eh|||+Chk+1‖u‖k+1‖ψ‖2+Ch‖ψ‖2‖e0‖,

which implies

‖e0‖≤Chk+1‖u‖k+1.

This completes the proof.

4 Numerical experiments

In this section, we present some numerical results to verify the efficiency and robustness
of the weak Galerkin method.

Example 4.1. Consider the problem (1.1)-(1.2) on a unit square domain (0,1)×(0,1),
where the exact solution is set to be

u=sin(πx)sin(πy).

The coefficients are β=(1,2)T and c=1. The homogenous boundary is applied on Γ−=
{(x,y) :x=0,y∈[0,1]}∪{(x,y) :y=0,x∈ [0,1]}. The right-hand side function f is calculated
accordingly. The uniform triangle mesh is employed.

The results for k = 1, k = 2 and k = 3 are listed in Table 1-Table 3, respectively. The
numerical results coincide with the theoretical analysis in the previous section.



162 Q. Zhai et al. / Commun. Comput. Phys., 24 (2018), pp. 152-166

Table 1: Convergence orders for k=1.

h |||Qhu−uh||| order ‖Q0u−u0‖ order

1/4 2.55044e-1 6.65463e-2

1/8 9.32122e-2 1.4522 1.56324e-2 2.0898

1/16 3.33496e-2 1.4828 3.83604e-3 2.0268

1/32 1.18564e-2 1.4920 9.54415e-4 2.0069

1/64 4.20351e-3 1.4960 2.38440e-4 2.0010

1/128 1.48825e-3 1.4980 5.96209e-5 1.9997

Table 2: Convergence orders for k=2.

h |||Qhu−uh||| order ‖Q0u−u0‖ order

1/4 3.24396e-2 5.93643e-3

1/8 5.89965e-3 2.4591 7.12894e-4 3.0578

1/16 1.05244e-3 2.4869 8.74500e-5 3.0272

1/32 1.86678e-4 2.4951 1.08500e-5 3.0108

1/64 3.30470e-5 2.4980 1.35175e-6 3.0048

1/128 5.84565e-6 2.4991 1.68697e-7 3.0023

Table 3: Convergence orders for k=3.

h |||Qhu−uh||| order ‖Q0u−u0‖ order

1/4 3.17560e-3 4.33191e-4

1/8 2.86789e-4 3.4690 2.74788e-5 3.9786

1/16 2.55011e-5 3.4914 1.72617e-6 3.9927

1/32 2.25826e-6 3.4973 1.07870e-7 4.0002

1/64 1.99716e-7 3.4992 6.73036e-9 4.0025

1/128 1.76994e-8 3.4962 4.30970e-10 3.9650

Example 4.2. Consider the problem (1.1)-(1.2) on a unit square domain (0,1)×(0,1),
where the exact solution is set to be

u=sin(πx)sin(πy).

The coefficients are

β(x,y)=

{

(1,2)T , when x+y≤1,

(2,4)T , when x+y>1,

and

c(x,y)=

{

1, when x+y≤1,

2, when x+y>1.
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The homogenous boundary is applied on Γ−= {(x,y) : x= 0,y∈ [0,1]}∪{(x,y) : y= 0,x∈
[0,1]}. The right-hand side function f is calculated accordingly. The non-uniform triangle
mesh generated by Matlab is employed.

The results for k = 3 are listed in Table 4. The numerical results coincide with the
theoretical analysis in the previous section.

Table 4: Convergence orders for k=3 on non-uniform mesh.

h |||Qhu−uh||| order ‖Q0u−u0‖ order

1/4 2.5186e-3 2.8637e-4

1/8 2.2017e-4 3.5159 2.1295e-5 3.7493

1/16 2.0802e-5 3.4038 3.3490e-6 2.6687

1/32 1.8593e-6 3.4840 2.6066e-7 3.6835

1/64 1.9035e-7 3.2880 1.2111e-8 4.4278

1/128 1.5253e-8 3.6415 8.5772e-10 3.8196

Example 4.3. Consider the problem (1.1)-(1.2) on a unit square domain (0,1)×(0,1). The
coefficients are β = (1,tan(35◦))T and c = 0. The right-hand side function f is set to be
0. The inflow boundary is Γ−= {(x,y) : x= 0,y∈ [0,1]}∪{(x,y) : y= 0,x∈ [0,1]}, and the
boundary condition is

g(x,y)=

{

2, on {0}×(0,1),

1, on (0,1)×{0}.

The uniform triangle mesh is employed and k=1.

The figures of solution and contour curve are presented in Fig. 1(a)-Fig. 1(b), respec-
tively.

Example 4.4. Consider the problem (1.1)-(1.2) on a unit square domain (0,1)×(0,1). The
coefficients are β=(−y,x)T and c= 0. The right hand side function f is set to be 0. The
inflow boundary is Γ−={(x,y) :x=1,y∈ [0,1]}∪{(x,y) :y=0,x∈ [0,1]}, and the boundary
condition is

g(x,y)=























−1, on
(

0,
43

64

)

×{0},

1, on
(43

64
,1
)

×{0},

1, on {1}×(0,1).

The uniform triangle mesh is employed and k=1.

The figures of solution and contour curve are presented in Fig. 2(a)-Fig. 2(b), respec-
tively.
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(a) The plot of numerical solution. (b) The contour of numerical solution.

Figure 1: The numerical solution of Example 4.3.

(a) The plot of numerical solution. (b) The contour of numerical solution.

Figure 2: The numerical solution of Example 4.4.

Example 4.5. Consider the problem (1.1)-(1.2) on a unit square domain (0,1)×(0,1). The
coefficients are β=(y,0.5−x)T and c=0. The right-hand side function f is set to be 0. The
inflow boundary is Γ−={(x,y) :x=0,y∈ [0,1]}∪{(x,y) :y=0,x∈ [0,0.5]}∪{(x,y) :y=1,x∈
[0.5,1]}, and the boundary condition is

g(x,y)=

{

1, on (0.17,0.33)×{0},

0, otherwise.

The uniform triangle mesh is employed and k=1.

The figures of solution and contour curve are presented in Fig. 3(a)-Fig. 3(b), respec-
tively.
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(a) The plot of numerical solution. (b) The contour of numerical solution.

Figure 3: The numerical solution of Example 4.5.
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