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Abstract. A new hybrid variational model for recovering blurred images in the presence

of multiplicative noise is proposed. Inspired by previous work on multiplicative noise

removal, an I-divergence technique is used to build a strictly convex model under a

condition that ensures the uniqueness of the solution and the stability of the algorithm.

A split-Bregman algorithm is adopted to solve the constrained minimisation problem

in the new hybrid model efficiently. Numerical tests for simultaneous deblurring and

denoising of the images subject to multiplicative noise are then reported. Comparison

with other methods clearly demonstrates the good performance of our new approach.
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1. Introduction

Image restoration is a classical and important inverse problem in imaging science. In

past decades, many restoration methods have been developed for this task — cf. [4,11,15,

33, 39, 46] and references therein. In this article, we consider the restoration of blurred

images that are also corrupted by multiplicative noise.

Suppose that an image û is a real function defined on Ω, a connected bounded open

subset of R2 with compact Lipschitz boundary — i.e. û : Ω→ R. The degraded image f in

the presence of simultaneous blurring and multiplicative noise can be represented as

f = (Aû)η , (1.1)

where f is positive, A ∈ L (L2(Ω)) is a known bounded linear operator, and η denotes

a multiplicative noise with mean one. Multiplicative noise commonly appears in real
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applications such as laser images, ultrasound imaging, synthetic aperture radar (SAR),

etc. [5,38,42,44]. Here we specifically focus on multiplicative Gamma noise — i.e. where

η follows a Gamma distribution [2, 30]. Compared with the denoising case where A is

the identity operator, the deblurring poses some extra challenges. This is because image

deblurring is an ill-posed problem, due to either the possible nonuniqueness of the solu-

tion or numerical instability induced by the operator A [15]. In order to overcome these

problems, several variational models with regularisation have been proposed, based on the

image degradation model and prior information on û.

Indeed, according to the statistical properties of η, the recovery of the image û may be

achieved by solving the constrained minimisation problem [38]

inf
u∈S(Ω)

∫

Ω

|Du|

subject to

∫

Ω

f /(Au) d x = 1 and

∫

Ω

[ f /(Au)− 1]2 d x = θ2 ,

(1.2)

where θ is the standard deviation of η and S(Ω) = {v ∈ BV (Ω) : v > 0}. Here BV (Ω)

denotes the space of functions of bounded variation (i.e. u ∈ BV (Ω) if and only if u ∈
L1(Ω)), and the BV-seminorm

∫

Ω

|Du| := sup

¨∫

Ω

u · div(ξ(x))d x : ξ ∈ C∞0 (Ω,R2),‖ξ‖L∞(Ω,R2) ≤ 1

«

(1.3)

is finite. The space BV (Ω) endowed with the norm ‖u‖BV = ‖u‖L1 +
∫

Ω
|Du| is a Banach

space. If u ∈ BV (Ω), the distributional derivative Du is a bounded Radon measure and

the term
∫

Ω
|Du| defined in (1.3) corresponds to the total variation (TV). Based on the

compactness of BV (Ω), in the two-dimensional case one has the embedding BV (Ω) ,→
Lp(Ω) for 1≤ p ≤ 2, compact for p < 2 — cf. [1,3,15] for more detail.

In the model (1.2), which we call the RLO model, the TV of u is applied as the objective

function in order to preserve edge information in the images. Only basic statistical prop-

erties of the noise η (viz. the mean and the variance) are involved in (1.2), which slightly

limits the quality of the restored images. Consequently, based on maximum a posteriori

(MAP) analysis of the multiplicative Gamma noise, Aubert & Aujol [2] proposed the fol-

lowing variational model for image deblurring under multiplicative noise, which we refer

to as the AA model:

inf
u∈S(Ω)

∫

Ω

�

log(Au)+
f

Au

�

d x +λ

∫

Ω

|Du| , (1.4)

where the TV of u is again used as the regularisation term and λ > 0 is the regularisation

parameter that controls the trade-off between a good fit of f and smoothness due to the

TV regularisaton. Since both the RLO model (1.2) and the AA model (1.4) are non-convex,

the gradient projection algorithms proposed in Refs. [2,38] may lead to certain local min-

imisers, so the quality of the corresponding restoration results is strongly dependent on the

initial estimations of û and the numerical optimisation procedures used.
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For multiplicative noise removal in (1.4), Huang et al. [29] recently suggested that an

auxiliary variable z = log u be used, and Shi et al. [42] added an extra quadratic term. Both

initiatives produced convex models, such that the denoising results are independent of the

initialisations. In addition, Steidl et al. [43] combined the I-divergence term with the TV

or nonlocal means regularisation, for multiplicative Gamma noise removal. In Ref. [20],

the multiplicative noise removal task was approached by applying an L1-data-fitting term

on the frame coefficients. However, none of these developments addressed the image

restoration problem in the simultaneous presence of blurring.

In this article, we consider the restoration of images that are distorted by some blurring

operator in the presence of multiplicative Gamma noise. Although the AA model (1.4)

is based on MAP analysis of the multiplicative Gamma noise, the model non-convexity

revokes uniqueness and convergence in the numerical solution. Given the success of the

I-divergence technique in multiplicative noise removal [43], we combine that technique

with the data-fitting term from MAP analysis in the context of (1.4), and propose a new

hybrid model that is convex under a mild condition. The existence and uniqueness of a

solution under the new hybrid model on continuous spaces are then considered. Here

the TV regularisation is applied to preserve edges during the reconstruction, and it can be

readily replaced by some modern regularisation terms — e.g. non-local TV [24, 47], the

framelet approach [11], etc. The minimisation problem in our model is solved by the split-

Bregman algorithm [10], instead of the gradient projection method used in Refs. [2, 38].

The numerical results indicate that our method outperforms both the RLO model [38] and

the AA model [2], with respect to both image restoration capability and computational

efficiency.

In summary, we introduce a superior new convex hybrid model to simultaneously de-

blur and remove multiplicative Gamma noise. Further, we present a theoretical discussion

of this new model — including its convexity, solution existence and uniqueness, compar-

ison theorem and (importantly) bias correction. Together with I-divergence, in Section 2

we discuss multiplicative Gamma noise removal under our new convex hybrid model, in-

cluding solution existence and uniqueness and several other important properties as men-

tioned. In Section 3, we extend the model to the general case of simultaneous denoising

and deblurring, with the corresponding mathematical properties likewise discussed. In

Section 4, we apply the split-Bregman algorithm to solve the optimisation problem in our

model, based on the work done previously in Refs. [23, 26]. The numerical results pre-

sented in Section 5 show that our new model is indeed a significant advance, and some

concluding remarks are made in Section 6.

2. New Hybrid Multiplicative Denoising Model

Let us first consider denoising alone — i.e. where A is the identity operator in (1.1).

Furthermore, we assume that the noise η follows a Gamma distribution, as is common in

synthetic aperture radar (SAR) for example. We recall that the probability density function
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of the Gamma-distributed random variable η is

pη(x ;θ , K) =
1

θ KΓ(K)
xK−1e−x/θ for x ≥ 0 , (2.1)

where Γ is the classical Gamma-function and θ and K denote the scale and shape param-

eters, respectively. Moreover, the mean of η is Kθ , and the variance is Kθ2 [27]. For

multiplicative noise, one usually assumes that the mean of η is one (i.e. Kθ = 1) and the

variance is 1/K [2,20].

The non-convex variational model (1.4) was proposed to remove multiplicative Gamma

noise, based on MAP noise analysis [2]. Due to its lack of global convexity, the restored

results obtained on solving (1.4) strongly depend upon the initialisation and numerical

optimisation procedures adopted. To overcome this, an I-divergence model was introduced

in Ref. [43], where the I-divergence (sometimes called the “generalised Kullback-Leibler

divergence" [18]) defined by

I( f ,u) :=

∫

Ω

�

f log
f

u
− f + u

�

d x

was used as the data-fitting term. This corresponds to the Bregman distance of the function

Q(u) :=
∫

Ω
u logu d x — i.e. I( f ,u) = Q( f ) − Q(u) −




q, f − u
�

with q ∈ ∂Q(u), as in

Ref. [10] except that the choice of Q(u) is slightly different, and so inherits the attractive

properties of the Bregman distance (e.g. I( f ,u) ≥ 0). On removing constant terms, the

I-divergence model for multiplicative Gamma noise removal may be rewritten as

inf
u∈S(Ω)

∫

Ω

�

u− f logu
�

d x +λ

∫

Ω

|Du| , (2.2)

where λ > 0 is the regularisation parameter. Significantly, this reduced model (2.2) is

convex. Although the data-fitting term
∫

Ω

�

u− f logu
�

d x in (2.2) is somewhat more

closely related to Poisson noise according to MAP analysis [34], this model is also success-

ful in removing multiplicative Gamma noise [43]. Given the perceived advantages and

disadvantages of (1.4) and (2.2), we have been led to propose the following new hybrid

multiplicative denoising model.

2.1. Our new model

In order to retain both the outcome from MAP analysis of the Gamma noise and con-

vexity from the I-divergence, we introduce the following hybrid multiplicative denoising

model:

inf
u∈S̄(Ω)

E(u) :=

∫

Ω

�

log u+
f

u

�

d x +α

∫

Ω

�

u− f logu
�

d x +λ

∫

Ω

|Du| , (2.3)

where the parameter α > 0 and S̄(Ω) := {v ∈ BV (Ω) : v ≥ 0} is a closed convex set. In

addition, we define log0= −∞ and 1/0= +∞.
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The parameter α in (2.3) controls the balance of the first two terms. Thus if α is small

and close to 0, (2.3) approximates the non-convex AA model (1.4); and conversely, the I-

divergence term dominates in the first two terms if α is sufficiently large, so (2.3) tends to

the convex I-divergence model (2.2). Moreover, there is the interesting possibility that not

only may α may be chosen small enough to retain relevance to the Gamma distribution,

but also big enough to overcome the non-convexity shortcoming of (1.4). In the following

section, we obtain such a moderate value for the parameter α, and discuss the existence

and uniqueness of the corresponding solution to (2.3).

2.2. General Bregman distance model

Before discussing the mathematical properties of our new model (2.3), we make an

interesting observation. For an arbitrary function Q(u), on defining the Bregman distance

IQ( f ,u) :=Q( f )−Q(u)−



q, f − u
�

with q ∈ ∂Q(u) we can consider a general Bregman distance model — viz.

inf
u

IQ( f ,u) +λ

∫

Ω

|Du | . (2.4)

Ignoring any constant term, this model reduces to: (1) the TV model for Gaussian noise

removal [39] when Q(u) =
∫

Ω
u2 d x ; (2) the AA model when Q(u) =

∫

Ω
− logu d x ; and

(3) the I-divergence model [43] when Q(u) =
∫

Ω
u log u d x . Moreover, if we choose Q(u) =

∫

Ω

�

− log u+αu log u
�

d x , (2.4) becomes our hybrid model (2.3).

2.3. Solution existence and uniqueness

To investigate the existence and uniqueness of a solution to (2.3), we start by discussing

the convexity of the model. The I-divergence term provides additional convexity, and we

can prove that E(u) defined in (2.3) is strictly convex if the parameter α satisfies a certain

condition as follows.

Proposition 2.1. If α≥ 1/infΩ f > 0, then the model (2.3) is strictly convex.

Proof. For a fixed x ∈ Ω, we define a function g(t) ∈ R+ with a given α as

g(t) := log t +
f (x)

t
+α
�

t − f (x) log t
�

.

The second derivative of this function is

g′′(t) = (α f (x)− 1)t−2 + 2 f (x)t−3 ,

hence if α≥ 1/infΩ f then g′′(t) > 0 — i.e. g is strictly convex.

Now considering all x ∈ Ω, we have strict convexity of the first two terms in (2.3); and
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given the convexity of the TV regularisation, we deduce that E(u) in (2.3) is strictly convex

if α ≥ 1/infΩ f . Since the feasible set S̄(Ω) is convex, the assertion follows immediately.

With this convexity result, we have the following theorem on the existence and unique-

ness of a solution to the model (2.3), and also a maximum principle.

Theorem 2.1. Let f be in L∞(Ω) with infΩ f > 0. Then the model (2.3) has a solution u∗ in

S̄(Ω), satisfying

0< inf
Ω

f ≤ u∗ ≤ sup
Ω

f .

Moreover, if α ≥ 1/infΩ f , the solution of (2.3) is unique.

A proof of this theorem is readily realised under Theorem 4.1 in Ref. [2]. In particular, if

α≥ 1/infΩ f the uniqueness follows directly from the strict convexity of the function E.

In Ref. [2], a comparison principle was given for the model (1.4), and this principle

remains valid for (2.3) as follows.

Proposition 2.2. Let f1 and f2 be in L∞(Ω) with infΩ f1 > 0 and infΩ f2 > 0. Assume that

f1 < f2. Suppose that u∗1 (respectively u∗2) is a solution of (2.3) with f = f1 (respectively

f = f2). Then u∗1 ≤ u∗2.

The proof of this proposition for (2.3) has a structure similar to the proof of Proposi-

tion 4.3 in Ref. [2]. Except for the uniqueness of the solution, the results in Theorem 2.1

and Proposition 2.2 do not depend on the selection of α, hence they also hold for the I-

divergence model (2.2). Moreover, since the objective function of the model (2.2) is strictly

convex, uniqueness is straightforward. The extension to the general model (2.4) under a

mild condition is also possible, but we leave the relevant details to interested readers.

3. New Hybrid Model for Simultaneous Deblurring and Denoising

During acquisition and transmission, images are commonly blurred and corrupted by

noise, and we now return to simultaneous deblurring and denoising. We consider the

model (2.3) for multiplicative Gamma noise removal, and based on the statistical proper-

ties of the Gamma distribution proceed to encompass simultaneous deblurring and denois-

ing — i.e. we seek to restore the image û in (1.1) subject to the blurring operator A and

Gamma noise in (2.3). The restoration proceeds via the constrained minimisation problem

inf
u∈S̄(Ω)

EA(u) :=

∫

Ω

�

log(Au)+
f

Au

�

d x +α

∫

Ω

(Au− f log(Au)) d x +λ

∫

Ω

|Du| , (3.1)

where A ∈ L (L2(Ω)) is a known bounded linear operator. Since it is a blurring operator,

we assume that A is nonnegative (i.e. A ≥ 0) such that Au ≥ 0 where u ∈ S̄(Ω). As in

Proposition 2.1, since A is linear we can readily establish the following convexity result.

Proposition 3.1. If α ≥ 1/infΩ f , then the model (3.1) is convex. Furthermore, if A is also

injective, then (3.1) is strictly convex.
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3.1. Solution existence and uniqueness

From the properties of the space of bounded variation functions and total variation, we

prove the following existence and uniqueness result for (3.1).

Theorem 3.1. Suppose that A∈ L (L2(Ω)) is nonnegative, and it does not annihilate constant

functions — i.e. A1 6= 0. If f ∈ L∞(Ω) satisfies infΩ f > 0, then the model (3.1) admits a

solution u∗. Moreover, if α ≥ 1/infΩ f and A is injective, then the solution is unique.

Proof. Since EA is bounded from below, we choose a minimising sequence {un} ∈ S̄(Ω)

for (3.1) with n = 1,2, · · · , so {
∫

Ω
|Dun|} is bounded. Recalling that Ω is bounded, based

on the Poincaré inequality (cf. Remark 3.50 in Ref. [1]) we obtain

‖un −mΩ(un)‖2 ≤ C

∫

Ω

|D(un−mΩ(un))|= C

∫

Ω

|Dun| , (3.2)

where mΩ(un) =
∫

Ω
un d x/|Ω| involves |Ω| denoting the measure of Ω and C is a constant

depending only on Ω. Consequently, ‖un −mΩ(un)‖2 is bounded for each n. According to

the continuity of the operator A, {A(un − mΩ(un))} must be uniformly bounded in L2(Ω)

and in L1(Ω).

As {un} is a minimisation sequence, it is not difficult to check that ‖Aun‖1 is bounded.

Indeed, since both
∫

Ω

�

log(Aun) +
f

Aun

�

d x and

∫

Ω

�

Aun− f log(Aun)
�

d x

are uniformly bounded for x ∈ Ω, if we define

gn(x) :=

¨

supΩ f , if Aun(x)≥ 1 ,

infΩ f , otherwise ,

then gn is measurable and therefore
∫

Ω

gn(x) ·
�

log(Aun) +α
f

Aun

�

d x +

∫

Ω

(Aun− f log(Aun)) d x

is uniformly bounded. For any x ∈ Ω,

(gn(x)− f (x)) log(Aun(x))≥ 0 and gn(x) ·
f (x)

Aun(x)
> 0 ,

so we immediately have that
∫

Ω
Aun d x — i.e. ‖Aun‖1 is uniformly bounded. Since

|mΩ(un)| · ‖A1‖1 = ‖A(un−mΩ(un))− Aun‖1 ≤ ‖A(un−mΩ(un))‖1+ ‖Aun‖1 ,

we have that |mΩ(un)|·‖A1‖1 is uniformly bounded, and thus mΩ(un) is uniformly bounded

since A1 6= 0. Together with the boundedness of {un − mΩ(un)}, this implies the bound-

edness of {un} in L2(Ω) and thus in L1(Ω). Since S̄(Ω) is closed and convex, {un} is also

bounded in S̄(Ω).
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Consequently, a subsequence {unk
} exists that converges weakly in L2(Ω) to some u∗ ∈

L2(Ω), and {Dunk
} converges weakly as a measure to Du∗. Given continuity of the linear

operator A, it follows that {Aunk
} converges weakly to Au∗ in L2(Ω). Then from the lower

semi-continuity of the total variation and Fatou’s lemma, we have that u∗ is a solution of

the model (3.1). From Proposition 3.1, when α ≥ 1/infΩ f and A is injective the model

(3.1) is strictly convex, so its solution is unique.

Remark 3.1. In the proof of Theorem 3.1, with the α-term we obtain the boundedness

of the sequence {Aun} in L1(Ω). However, when α = 0 — i.e. in the model (1.4) — it is

difficult to get the same result, so in the continuous case the proof of existence of a solution

to (1.4) remains an open question.

Because of the constraint u ∈ S̄(Ω), the solution of (3.1) is nonnegative. Further, we

have the following result.

Proposition 3.2. Suppose that u∗ is a solution of (3.1), and define C1 = EA(u
∗). Then for

any 0< ε < 1,

|{x ∈ Ω : Au∗(x)≤ ε f (x)}| ≤
ε

1+ ε logε

�

C1 −

∫

Ω

(log f −α f log f +α f ) d x

�

.

Proof. Based on the definition of TV in (1.3), the TV of u∗ is nonnegative, so we obtain

∫

Ω

�

log w +
1

w

�

d x +α

∫

Ω

f (w− log w) d x +

∫

Ω

(log f −α f log f ) d x ≤ C1

with w = Au∗/ f . For any t > 0, t − log t ≥ 1 so that

∫

Ω

�

log w +
1

w

�

d x +

∫

Ω

(log f −α f log f +α f ) d x ≤ C1 .

Moreover, log t+ t−1 > 0 for any t > 0; and if 0< t ≤ ε < 1, then log t+ t−1 ≥ logε+ε−1.

From these two inequalities, we readily obtain

|{x ∈ Ω : w(x)≤ ε}| ≤
ε

1+ ε logε

�

C1 −

∫

Ω

(log f −α f log f +α f ) d x

�

,

such that with w = Au∗/ f we arrive at the assertion.

It follows that |{x ∈ Ω : Au∗(x) = 0}| = 0 (i.e. Au∗ > 0 almost everywhere in Ω); and

moreover, in the discrete case Au∗ is strictly positive — cf. also the results in Ref. [30].

3.2. Bias correction

When TV regularisation was proposed in Ref. [39], the problem of Gaussian noise

removal was investigated. Based on MAP analysis of the Gaussian distribution, the L2-

data-fitting term
∫

Ω
|Au− f |2 d x was combined with TV regularisation in the restoration
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model. Theoretical analysis showed that the mean value of the image f is preserved by

the solution u∗ automatically in this case [13,15]— i.e.
∫

Ω

Au∗ d x =

∫

Ω

f d x . (3.3)

However, several known models for multiplicative noise removal (including the AA and

RLO models) do not have the property (3.3). In Ref. [20], a bias correction step for

multiplicative noise removal was consequently proposed, and we now consider this for our

new hybrid model (3.1).

Proposition 3.3. Suppose that A1 = 1, and let u∗ be a solution of (3.1). Then the following

equality holds:
∫

Ω

�

1

Au∗
+α

��

1−
f

Au∗

�

d x = 0 .

Proof. We define a function with a single non-negative variable t ∈ R (t ≥ 0) — viz.

e(t) :=

∫

Ω

�

log(A(u∗+ t)) +
f

A(u∗+ t)

�

d x +α

∫

Ω

�

A(u∗+ t)− f log(A(u∗+ t))
�

d x

+λ

∫

Ω

|D(u∗ + t)| .

For A1= 1, we necessarily have

e(t) =

∫

Ω

�

log(Au∗+ t) +
f

Au∗+ t

�

d x +α

∫

Ω

�

Au∗+ t − f log(Au∗+ t)
�

d x

+λ

∫

Ω

|Du∗| .

Since t = 0 is a (local) minimiser of e(t), we have e′(0) = 0 such that
∫

Ω

�

1

Au∗
+α

��

1−
f

Au∗

�

d x = 0 .

Proposition 3.3 indicates that for our hybrid model (3.1) the property (3.3) is also not

met — i.e. in general the mean value of the original image is not automatically preserved.

To reduce the influence from the bias and keep the restored image in the same scale as f ,

we improve the model (3.1) by adding a constraint mΩ(u) = mΩ( f )— i.e.

inf
{u∈S̄(Ω):mΩ(u)=mΩ( f )}

∫

Ω

�

log(Au)+
f

Au

�

d x +α

∫

Ω

[Au− f log(Au)] d x+λ

∫

Ω

|Du| . (3.4)

In deriving the constraint mΩ(u) = mΩ( f ) here, we implicitly use (1.1), and the property

that E(X · Y ) = E(X ) ·E(Y ) if the random variables X , Y are independent. Moreover, it is

straightforward to show that the feasible set {u ∈ S̄(Ω) : mΩ(u) = mΩ( f )} is closed and

convex, and that the existence and uniqueness results of (3.4) are obtained by extending

Theorem 3.1.
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4. The Split-Bregman Algorithm for Solving the Improved Model

Because of the convexity, many methods can be used for the minimisation problem in

solving the improved model (3.4). For example, the primal-dual algorithm [6,7,14,22,37]

can readily be adapted to various non-smooth convex optimisation problems and it is easy

to implement; the alternating direction method [9, 23] is convergent and well-suited to

large-scale convex problems; and the split-Bregman algorithm [23,26,40,41,45] is widely

used to solve the L1 regularisation problems, including TV regularisation. As observed in

Ref. [40], the alternating split Bregman algorithm coincides with the alternating direction

method of multipliers, which is a special augmented Lagrangian method. In this article,

we extend the split-Bregman algorithm to solve the minimisation problem in (3.4).

In the discrete version of (3.4), for simplicity we retain the notation from the contin-

uous context. Suppose that the original image f ∈ Rn ( f > 0) is obtained from a two-

dimensional pixel array by concatenation in the usual column-wise fashion, where n is the

number of pixels. We denote S̄ = {v ∈ Rn : v ≥ 0} and S̄0 = {v ∈ Rn : v ≥ 0, and
∑n

i=1 vi =
∑n

i=1 fi}, and define the function G : S̄→ R∪ {+∞} as

G(v) :=

n
∑

i=1

�

log vi +
fi

vi

�

+α

n
∑

i=1

�

vi − fi log vi

�

.

Then the discrete version of the model (3.4) reads as follows:

min
u∈S̄0

EA(u) := G(Au) +λ‖∇u‖1 , (4.1)

where A ∈ Rn×n has nonnegative elements and the gradient operator is a map ∇ : Rn →
R

2n defined as

∇v =

�

∇x v

∇y v

�

for v ∈ Rn, with ∇x and ∇y ∈ R
n×n the respective discrete derivative in the x -direction

and y-direction. In our numerics,∇x and∇y are obtained by applying finite difference ap-

proximations for the derivatives with symmetric boundary conditions. In addition, ‖∇v‖1
denotes the discrete total variation of v — i.e.

‖∇v‖1 =
n
∑

i=1

Æ

(∇x v)2
i
+ (∇y v)2

i
.

We introduce two new variables w and q, and formulate the corresponding constrained

optimisation problem

min
u∈S̄0,w∈S̄,q∈R2n

G(w) +λ


q




1
such that w = Au and q =∇u ,

which can be solved by the augmented Lagrangian method [36]. We consider the uncon-

strained augmented functional:

L (u, w, b1, b2,q) := G(w) +λ


q




1
+

1

2γ



b1 + Au−w




2

2
+

1

2γ



b2+∇u− q




2

2
, (4.2)
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where b1 ∈ R
n, b2 ∈ R

2n, ‖ ·‖2 denotes the l2-vector-norm, and γ > 0 is a given parameter.

The split-Bregman algorithm is defined through the iterations:

uk+1 =arg min
u∈S̄0

1

2γ



bk
1 + Au−wk




2

2
+

1

2γ



bk
2 +∇u− qk




2

2
, (4.3)

wk+1 =arg min
w∈S̄

G(w) +
1

2γ



bk
1 + Auk+1−w




2

2
, (4.4)

qk+1 =arg min
q∈R2n

λ


q




1
+

1

2γ



bk
2 +∇uk+1− q




2

2
, (4.5)

bk+1
1 =bk

1 + Auk+1−wk+1, (4.6)

bk+1
2 =bk

2 +∇uk+1− qk+1. (4.7)

The convergence analysis of such an alternating direction method is addressed in Refs. [21,

23, 31], and it is notable that (4.4) and (4.5) can be grouped together. Moreover, the up-

dates of the variable b1 and b2 in the above algorithm are explicit; and since the objective

function of (4.3) is quadratic, the solution can be approximated by

ūk+1 =
A⊤(wk − bk

1) +∇
⊤(qk − bk

2)

A⊤A+∇⊤∇
(4.8)

followed by one projection step

uk+1
i

:=

∑n

j=1 f j
∑n

j=1 max(ūk+1
j

, 0)
max(ūk+1

i
, 0) , for i = 1, · · · , n , (4.9)

to ensure that uk+1 is nonnegative and preserves the mean of f . As the objective func-

tion of (4.3) corresponds to a typical singly linearly constrained quadratic programming

problem subject to upper and lower bounds, we could also solve for the uk+1 by the algo-

rithm proposed in Ref. [19]. However, in numerical experiments it has been found that

this method is very time consuming, and produces almost identical results compared with

formulae (4.8) and (4.9). In addition, the inexact Split-Bregman approach has previously

produced quite good results [35], so here we calculate the uk+1 according to the formulae

(4.8) and (4.9). In (4.4), the minimisation problem is strictly convex and involves the

second derivative, but it can be solved efficiently by the Newton method with a projection.

In our numerical experiments, we use four Newton iterations to calculate w2, and then

only one Newton iteration to obtain wk+1 with k > 2. The solution of (4.5) can readily be

obtained by applying the soft thresholding operator (cf. Ref. [15] for relevant properties)

— i.e.

qk+1 = Tλγ(b
k
2 +∇uk+1,λγ) ,

where the soft thresholding operator is defined as

Tτ(t) =max (‖t‖ −τ, 0)
t

‖t ,‖
,

with t ∈ R2n, ‖t‖ = (|t1|2, · · · , |tn|2, |t1|2, · · · , |tn|2)
⊤ ∈ R2n involving |t i |2 =

p

t2
i
+ t2

i+n

for i = 1, · · · , n and the multiplication and division are point-wise.
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(a) (b) (c)Figure 1: Original images. (a) �Cameraman�, (b) �Lena�, () �Man�.
5. Numerical Results

We compare the image restoration capabilities and CPU-time needed for our method

with: (1) the method proposed in Ref. [2] for solving the AA model (1.4); (2) the method

in Ref. [38] for solving the RLO model (1.2); and (3) the method in Ref. [43] for solving the

KL-TV model (2.2). We recall that the AA model, the RLO model and our new model are all

capable of deblurring simultaneously with multiplicative noise. The original grey level test

images “Cameraman (256×256)”, “Lena (512×512)” and “Man (512×512)" considered

are shown in Fig. 1. The quality of the restoration results is compared quantitatively by

means of the peak signal-to-noise ratio (PSNR), which is a widely used image quality

assessment measure [8]. All simulations described here were run in Matlab 7.14 (R2012a)

on a Dell PC Optiplex 9010.

In all of the numerical tests, we set the degraded image f ≥ 1. For the AA model

and the RLO model, we used the time-marching algorithm to solve the corresponding

minimisation problem or its Lagrangian with multiplier λ, as proposed in Refs. [2, 38].

We set the step size to be 0.1 to ensure a stable iterative procedure, and the algorithms

were stopped when a maximum number of iterations was reached. In addition, for all of

the AA, RLO model and KL-TV models we adjusted the parameter λ through numerical

tests until the largest PSNR values were reached. Based on Proposition 2.1 and 3.1, in

order to obtain a convex model in our new hybrid method we set α = 1 for all numerical

simulations. Furthermore, the parameter γ in (4.2) was set at 50, which is critical [23,41].

Moreover, we stopped our iterative procedure as soon as the value of the objective function

no longer showed a big relative decrease — i.e. when



uk+1− uk




2


uk+1




2

< ǫ .

In all tests, we set ǫ = 10−4 and tuned the parameter λ was empirically.
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(a) (b) (c) (d) (e)Figure 2: Results from di�erent methods when restoring �Cameraman" orrupted by multipliative noisewhere K = 10 (�rst row) and K = 6 (seond row), respetively: (a) noisy images; (b) AA model; ()RLO model; (d) KL-TV model; (e) our method.

(a) (b) (c) (d) (e)Figure 3: Results from di�erent methods when restoring �Lena" orrupted by multipliative noise for
K = 10 (�rst row) and K = 6 (seond row), respetively: (a) noisy images; (b) AA model; () RLOmodel; (d) KL-TV model; (e) our method.
5.1. Image denoising

Although our hybrid method is intended to deal with the simultaneous deblurring and

denoising of images subject to multiplicative noise, we first show that it can provide very

good results for the noise removal alone. In the example, the test images are corrupted

by multiplicative noise with K = 10 and K = 6, respectively. The results are shown in

Figs. 2–4.

We chose to use λ = 0.18 for the noise level K = 10 and λ = 0.21 for the noise level

K = 6, for both of the AA and RLO models; and for the KL-TV model, we set λ = 0.35 for
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(a) (b) (c) (d) (e)Figure 4: Results from di�erent methods when restoring �Man" orrupted by multipliative noise for
K = 10 (�rst row) and K = 6 (seond row), respetively: (a) noisy images; (b) AA model; () RLOmodel; (d) KL-TV model; (e) our method.Table 1: Comparison of PSNR values in dB, the number of iterations, and the CPU-time inseonds, using the four di�erent models for denoising.

K = 10 K = 6

PSNR k Time PSNR k Time

AA 24.27 3000 7.72 23.24 3000 7.77

Cameraman RLO 24.20 3000 33.34 23.16 3000 31.47

KL-TV 25.64 200 2.26 24.60 200 2.37

Ours 25.96 58 1.29 24.81 60 1.47

AA 27.12 3000 58.87 25.78 3000 60.23

Lena RLO 27.10 3000 156.14 25.75 3000 157.19

KL-TV 28.35 200 17.04 27.29 200 16.61

Ours 28.48 59 6.94 27.39 61 7.64

AA 25.03 3000 59.14 24.40 3000 59.64

Man RLO 24.87 3000 158.73 24.21 3000 155.86

KL-TV 26.50 200 16.77 25.66 200 16.61

Ours 26.96 56 6.69 26.01 58 7.04

K = 10 and λ = 0.45 for K = 6. For our model, we set λ = 0.3 and λ = 0.4 for the noise

levels K = 10 and K = 6, respectively. As shown in Figs. 2–4, we found that much more

noise remains in the restored images from the AA and RLO models compared to our model.

The contrast details from the AA and RLO models are also noticeably reduced because of

over-smoothing during noise removal. The KL-TV model produces better results than the

AA and RLO models — some high-level noise is still visible, but especially there it does

preserve more detail (cf. the tripod in “Cameraman” and the hat in “Lena”). To further

compare recovery detail, in Fig. 4 we show the results for denoising the highly detailed

image “Man”. Comparing the textures surrounding the hat and hair, it is clear that our

method suppresses noise successfully while preserving significant details.

To compare performance and computational efficiency, in Table 1 we list the PSNR val-

ues of the restored results, the number of iterations required, and CPU-times. We observe
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Motion Blur Gaussian Blur Uniform Blur

PSNR k Time PSNR k Time PSNR k Time

AA 21.74 104 24.54 21.38 104 24.09 20.82 104 23.96

Camera- RLO 21.69 104 107.66 21.38 104 107.86 20.80 104 107.42

man Ours 22.45 89 2.45 22.65 110 2.73 22.19 109 2.64

AA 25.79 104 196.22 25.55 104 196.75 24.97 104 195.45

Lena RLO 25.72 104 511.90 25.47 104 514.63 24.98 104 514.71

Ours 26.80 82 11.50 26.83 93 13.46 26.29 98 13.70

AA 23.44 104 190.13 23.23 104 190.35 22.66 104 193.35

Man RLO 23.40 104 506.80 23.17 104 510.06 22.59 104 507.53

Ours 24.13 82 12.00 24.42 107 14.52 23.93 100 14.54

that the PSNR values from our method are more than 1 dB higher than those from the

AA and RLO models. Moreover, our method is seen to produce consistently higher PSNR

values than the KL-TV model. In addition, to obtain a stable iterative procedure the numer-

ical solution methods for the AA and RLO models require a small step size, so some 3000

iterations were needed to provide the results with the best PSNR values. Although the

numerical method to solve the KL-TV model requires rather less iterations, some 200 iter-

ations were still needed to guarantee large PSNR values. However, with the split-Bregman

algorithm used in our method, the stopping rule is satisfied after only around 60 itera-

tions and better restored results are obtained. Furthermore, on comparing CPU-times our

method is much more efficient than the other three methods. For example, when restoring

the image “Lena” corrupted by multiplicative noise with noise level K = 6, the numerical

methods for solving the AA, RLO and KL-TV models take 16, 25 and 3 times more CPU-time

than our method, respectively. Moreover, the approach in Ref. [28] provides even better

PSNR values, since it learns a “hidden dictionary” from noisy image patches.

5.2. Image deblurring and denoising

Let us now focus on restoring blurred images with multiplicative noise. In our numer-

ical tests, we consider three different blurring operators — viz. motion blur with length

5 and angle 30, Gaussian blur with a window size 7× 7 and a standard deviation of 2,

and uniform blur with a window size 7 × 7. Further, after blurring the test images are

then corrupted by multiplicative noise with K = 10. In these tests, we set λ = 0.05 in the

numerical methods used to solve the AA and RLO models, and λ= 0.2 in our method.

Figs. 5-7 show the degraded images and restored results for all three methods; and in

Table 2 we list the PSNR values, the number of iterations, and the CPU-times. It is clear

that our method gives the best PSNR values with the least iterations and CPU-times, for all

images and blurring operators. Moreover, our method removes the noise successfully and

preserves more details — cf. the tripod in “Cameraman” and the hats in “Lena” and “Man”,

for example. In summary, our method turns out to be more efficient and outperforms the

other methods that handle deblurring, while simultaneously removing multiplicative noise.
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(a) (b) (c) (d)Figure 5: Results from three di�erent methods for restoring the degraded �Cameraman" image, orruptedby multipliative noise with K = 10 and motion blur (�rst row), Gaussian blur (seond row), or uniformblur (third row). (a) Degraded images; (b) AA model; () RLO model; (d) our method.
6. Conclusion

We have proposed a new convex variational model for restoring images corrupted by

blurring operators and multiplicative Gamma noise. The classical model for this task is

non-convex, when the restoration is strongly dependent on the initialisation and numeri-

cal optimisation procedures. In order to overcome this difficulty, given previous work on

multiplicative noise removal we combine MAP analysis of the Gamma distribution and I-

divergence, in introducing our hybrid model that we have proven to be convex under a

certain condition. In addition, we have investigated some important properties of this new

model, such as the maximal principle and bias correction. To enhance our overall method,

the split-Bregman algorithm was applied to solve the constrained minimisation problem in

our hybrid model. Numerical results show that our method outperforms several recently

proposed methods, both visually and quantitatively. Furthermore, the CPU-time consumed

by our method is significantly less.
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(a) (b) (c) (d)Figure 6: Results from three di�erent methods for restoring the degraded �Lena" image, orrupted bymultipliative noise with K = 10 and motion blur (�rst row), Gaussian blur (seond row), or uniformblur (third row). (a) Degraded images; (b) AA model; () RLO model; (d) our method.
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