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Abstract. In this paper we use two numerical methods to solve constrained optimal
control problems governed by elliptic equations with rapidly oscillating coefficients: one
is finite element method and the other is multiscale finite element method. We derive
the convergence analysis for those two methods. Analytical results show that finite
element method can not work when the parameter ǫ is small enough, while multiscale
finite element method is useful for any parameter ǫ.
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1. Introduction

Optimal control plays a very important role in many engineering applications. Efficient
numerical methods are necessary to successful applications of optimal control. Finite ele-
ment method seems to be the most widely used numerical method in computing optimal
control problems, and the relevant literature is huge. It is impossible to give even a very
brief review here. A systematic introduction of finite element method for PDEs and optimal
control problems can be found in [1,9,10,24,26]. For elliptic and parabolic optimal con-
trol problems, a priori error estimates of finite element method were established in [18],
a posteriori error estimates of residual type have been derived in [20, 21], a posteriori
error estimates of recovery type have been derived in [17, 19], and some superconver-
gence results can be found in [2–4]. However, many fundament and practical problems in
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engineering have multiscale solutions, such as composite materials, porous media, turbu-
lent transport in high Reynods number flows and so on. The direct numerical simulation
of multiple scale problems is difficult even with modern supercomputers for the requisite
of tremendous amount of computer memory and CPU time which can easily exceed the
limitation of today’s computer resources.

In practical applications, it is often sufficient to predict the large scale solutions to
certain accuracy. Multiscale finite element method [8, 11, 13, 14, 27] provides an efficient
way to capture the large scale structures of the solutions on a coarse mesh. The main idea
is to construct multiscale finite element base functions which capture the local small scale
information within each element. The small scale information is then brought to the large
scales through the coupling of the global stiffness matrix. It is through these multiscale
base functions and the finite element formulation that the effect of small scales on the
large scales is correctly captured. Mixed multiscale finite element methods for multiscale
problems can be found in [5, 15, 22]. Recently, Chu et al. investigated a new multiscale
finite element method for high-contrast elliptic interface problems in [6] and Parvazinia
considered a multiscale finite element for the solution of transport equations in [25].

The purpose of this work is to obtain the convergence analysis for finite element
method and multiscale finite element method solving a constrained optimal control prob-
lems governed by elliptic equations with rapidly oscillating coefficients. Such problems
often arise in composite materials and flows in porous media.

Let Ω be a bounded domain in Rn(n= 2,3)with a Lipschitz boundary ∂Ω. In this paper,
we adopt the standard notation W m,q(Ω) for Sobolev spaces on Ω with norm ‖ · ‖W m,q(Ω)

and seminorm | · |W m,q(Ω). We set H1
0(Ω) ≡

¦

v ∈ H1(Ω) : v|∂Ω = 0
©

and denote W m,2(Ω)

by Hm(Ω). In addition, c or C denotes a generic positive constant.
We are interested in the following optimal control problem:











min
u∈K

�

1

2
‖yǫ − yd‖

2 +
1

2
‖u‖2

�

,

−∇ · (A(x , x/ǫ)∇yǫ) = Bu, in Ω,

yǫ = 0, on ∂Ω,

(1.1)

where K is a nonempty closed convex set in L2(Ω), A(x , x/ǫ) is a symmetric matrix which
satisfies the uniform ellipticity condition:

α|ξ|2 ≤ ai j(x , x/ǫ)ξiξ j ≤ β |ξ|
2, ∀ξ ∈ Rn,

with 0 < α < β , yd ∈ L2(Ω), B is a continuous linear operator. Further more, we assume
that ai j(x , x̃) is periodic function with respect to the unit cube I in the "fast" variable
x̃ = x/ǫ, and

K =
¦

v ∈ L2(Ω) : a ≤ v ≤ b, a.e. in Ω
©

,

where a and b are constants.
The paper is organized as follows: In Section 2, we shall construct a finite element ap-

proximation scheme and a multiscale finite element approximation scheme for the model
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problem (1.1), respectively. In Section 3, we introduce homogenization theory and related
estimates for the state equation. In Section 4, we derive the convergence analysis of the
finite element approximation scheme. In Section 5, we derive the convergence analysis of
the multiscale finite element approximation scheme.

2. Approximation Schemes for the Model Problem

In this section, we consider a finite element approximation scheme and a multiscale
finite element approximation scheme for the above model problem (1.1), respectively. For
simplicity, we let W = H1

0(Ω)with norm ‖·‖1,Ω = ‖·‖H1(Ω), ‖·‖2,Ω = ‖·‖H2(Ω) and U = L2(Ω)

with norm ‖ · ‖ = ‖ · ‖L2(Ω).
First of all, we obtain the following weak formulation of (1.1): Find (yǫ,u) ∈ W × K

such that






min
u∈K

�

1

2
‖yǫ − yd‖

2 +
1

2
‖u‖2

�

,

(A(x , x/ǫ)∇yǫ,∇w) = (Bu, w), ∀w ∈W.

(2.1)

It is well known (see, e.g., [18]) that the optimal control problem (2.1) has a unique
solution (yǫ,u) ∈ W × K , and a pair (yǫ,u) ∈ W × K is the solution of (2.1) if and only
if there is a co-state pǫ ∈ W such that the triplet (yǫ, pǫ ,u) ∈ W ×W × K satisfies the
following optimality conditions:

�

A(x , x/ǫ)∇yǫ,∇w
�

= (Bu, w), ∀w ∈W, (2.2)

(A(x , x/ǫ)∇q,∇pǫ) = (yǫ − yd ,q), ∀q ∈W, (2.3)

(u+ B∗pǫ, v − u)≥ 0, ∀v ∈ K , (2.4)

where B∗ is the adjoint operator of B. It is well known that (2.4) is equivalent to

u=max(a,min(b,−B∗pǫ)). (2.5)

In the second, we discuss the approximation scheme of the model problems. Let T h

be a regular triangulation or rectangulation of Ω and satisfy the following angle condition,
namely there is a positive constant C such that for all τ ∈ T h,

C−1h2
τ ≤ |τ| ≤ Ch2

τ,

where |τ| is the area of τ and hτ is the diameter of τ. Let h=maxτ∈T h{hτ}.

2.1. Finite element approximation scheme for the model problem

A finite element approximation scheme is obtained by restricting the optimality condi-
tions (2.2)-(2.4) to a finite dimensional subspace of H1

0(Ω). Note that the regularity of the
control variable is lower than the regularity of the state variable and the co-state variable,
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we use piecewise constant functions to approximate the control variable and use piecewise
linear functions to approximate the state variable and the co-state variable, respectively.
So we define the following two finite element function spaces. Associated with T h are two
finite dimensional subspaces:

Wh =
¦

vh ∈ C(Ω̄) : vh|τ ∈ P1, ∀τ ∈ T h, vh|∂Ω = 0
©

,

Kh =
¦

vh ∈ K : vh|τ = constant, ∀τ ∈ T h
©

,

where P1 is the space of polynomials of total degree no more than 1.
Then the finite element approximation scheme of (2.1) is as follows: Find (yh,uh) ∈

Wh× Kh such that







min
uh∈Kh

�

1

2
‖yh− yd‖

2 +
1

2
‖uh‖

2

�

,

(A(x , x/ǫ)∇yh,∇wh) = (Buh, wh), ∀wh ∈Wh.

(2.6)

This optimal control problem (2.6) has a unique solution (yh,uh) ∈Wh×Kh, and a pair
(yh,uh) ∈Wh×Kh is the solution of (2.6) if and only if there is a co-state ph ∈Wh such that
the triplet (yh, ph,uh) ∈Wh×Wh× Kh satisfies the following optimality conditions:

(A(x , x/ǫ)∇yh,∇wh) = (Buh, wh), ∀wh ∈Wh, (2.7)

(A(x , x/ǫ)∇qh,∇ph) = (yh− yd ,qh), ∀qh ∈Wh, (2.8)

(uh+ B∗ph, vh− uh)≥ 0, ∀vh ∈ Kh. (2.9)

It is easy to see that the inequality (2.9) is equivalent to

uh|τ =max(a,min(b,−B∗ph|τ)), ∀τ ∈ T h, (2.10)

where B∗ph|τ =
1
|τ|

∫

τ
B∗ph and |τ| is the measure of τ.

2.2. Multiscale finite element approximation scheme for the model problem

Since the basis functions of multiscale finite element method are absolutely different
from the base functions of finite element method (see, e.g., [13]). We shall describe how to
construct the base functions of multiscale finite element method in detail. In each element
τ ∈ T h, we define a set of nodal basis functions { φ i

τ, i = 1, · · · , d } with d being the
number of nodes of τ. And φ i

τ satisfies

−∇ · (A(x , x/ǫ)∇φ i
τ) = 0, in τ ∈ T h. (2.11)

Let x j ∈ τ̄( j = 1, · · · , d) be the nodal points of τ. As usual, we require φ i
τ(x j) = δi j , where

δi j is the Kronecker delta. We need to specify the Dirichlet boundary condition of φ i
τ for

well-posedness of (2.11). Let φ i
τ are linear along ∂ τ. We assume that the basis functions
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are continuous across the boundaries of the elements, so we can define the following
multiscale finite element space:

Vh = span
¦

φ i
τ : i = 1, · · · , d; ∀τ ∈ T h

©

⊂ H1
0(Ω).

Then the multiscale finite element approximation of (2.1) is as follows: Find ( ŷh, ûh) ∈
Vh× Kh such that







min
ûh∈Kh

�

1

2
‖ ŷh− yd‖

2 +
1

2
‖ûh‖

2

�

,

(A(x , x/ǫ)∇ ŷh,∇ŵh) = (Bûh, ŵh), ∀ŵh ∈ Vh.

(2.12)

This control problem (2.12) has a unique solution ( ŷh, ûh), and a pair ( ŷh, ûh) ∈ Vh × Kh

is the solution of (2.12) if and only if there is a co-state p̂h ∈ Vh such that the triplet
( ŷh, p̂h, ûh) ∈ Vh× Vh× Kh satisfies the following optimality conditions:

(A(x , x/ǫ)∇ ŷh,∇ŵh) = (Bûh, ŵh), ∀ŵh ∈ Vh, (2.13)

(A(x , x/ǫ)∇q̂h,∇p̂h) = ( ŷh− yd , q̂h), ∀q̂h ∈ Vh, (2.14)

(ûh+ B∗ p̂h, vh− ûh) ≥ 0, ∀vh ∈ Kh. (2.15)

It is clear that the inequality (2.15) is equivalent to

ûh|τ =max(a,min(b,−B∗ p̂h|τ)), ∀τ ∈ T h, (2.16)

where B∗ p̂h|τ =
1
|τ|

∫

τ
B∗ p̂h and |τ| is the measure of τ.

3. Homogenization Theory and Related Estimates

In this section, we review the homogenization theory of the state equation (2.2). Let
us consider the following state equation:

Lǫ yǫ = −∇ · (A(x , x/ǫ)∇yǫ) = Bu, in Ω, (3.1)

yǫ = 0, on ∂Ω.

Following from [23,28], we may write the first equation of (3.1) as a first order system:

A(x , x/ǫ)∇yǫ = vǫ, (3.2)

−∇ · vǫ = Bu, (3.3)

and look for a formal expansion of the form

yǫ =y0(x , x/ǫ)+ ǫ y1(x , x/ǫ)+ · · · ,

vǫ =v0(x , x/ǫ)+ ǫv1(x , x/ǫ)+ · · · ,

where yi(x , x̃) and vi(x , x̃) are periodic in the “fast" variable x̃ = x/ǫ.
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By introducing ∇ =∇x + ǫ
−1∇ x̃ , and substituting the expansion of yǫ and vǫ into the

system (3.2)-(3.3), we get

A(x , x̃)∇ x̃ y0 = 0, (3.4)

−∇ x̃ · v0 = 0, (3.5)

A(x , x̃)∇ x̃ y1 + A(x , x̃)∇x y0 − v0 = 0, (3.6)

−∇ x̃ · v1 −∇x · v0 = Bu. (3.7)

From (3.1) and (3.4)-(3.7), we have y0 = y0(x) satisfying the following equations:

−∇ · (A∇y0) = Bu, in Ω, (3.8)

y0 = 0, on ∂Ω,

where A= (ai j)n×n is given by

ai j(x) =
1

|I |

∫

I

 

ai j(x , x̃) +

n
∑

k=1

�

aik

∂ χ j

∂ x̃k

�

(x , x̃)

!

d x̃ , (3.9)

and χ j satisfies the following equations:

−∇ x̃ · (A(x , x̃)∇ x̃χ
j(x , x̃)) =

n
∑

i=1

∂

∂ x̃ i

ai j(x , x̃), x̃ ∈ I ,

∫

I

χ j(x , x̃)d x̃ = 0. (3.10)

It is well known that A is a symmetric and positive definite constant matrix in Ω. Denote
the homogenized operator as

L0 = −∇ · (A∇).

Then L0 y0 = Bu0. In addition, we have

y1(x , x̃) = −χ j
∂ y0

∂ x j

. (3.11)

Note that y0(x , x̃) + ǫ y1(x , x̃) 6= yǫ on ∂Ω, due to the construction of y1. We introduce a
first order correction term θǫ, satisfying

Lǫθǫ = 0, in Ω, (3.12)

θǫ = y1(x , x̃), on ∂Ω.

Thus y0(x)+ ǫ(y1(x , x̃)− θǫ) satisfies the boundary condition of yǫ.
Just like the Proposition 1 of [23], we have the following lemma:

Lemma 3.1. Let y0 be the solution of (3.8) and y0 ∈ H2(Ω). Assume y1 be given by (3.11),
and θǫ ∈ H1(Ω) is the solution of (3.12). Then there exists a constant C independent of y0, ǫ

and Ω such that

‖yǫ − y0 − ǫ(y1 − θǫ)‖1,Ω ≤ ǫC |y0|2,Ω. (3.13)

For the adjoint state equation (2.3), we have similar results.
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4. Convergence Analysis for the Finite Element Method

In this section, we consider convergence analysis of finite element method. From [16],
we have the following regularity estimates of equations (2.2) and (2.3),

‖yǫ‖2,Ω ≤ Cǫ‖u‖, (4.1)

‖pǫ‖2,Ω ≤ Cǫ(‖y
ǫ‖+ ‖yd‖), (4.2)

where Cǫ is of the order of 1/ǫ.
We first give the following lemma:

Lemma 4.1. [7] Let πh be the standard Lagrange interpolation operator. For m = 0 or 1,

q > n/2 and v ∈W 2,q(Ω),

|v−πhv|m,q(Ω) ≤ Ch2−m|v|W2,q(Ω). (4.3)

For ease of exposition, we let

a(v, w) =

∫

Ω

((A(x , x/ǫ)∇v) · ∇w), ∀v, w ∈W,

J(u) =
1

2
‖yǫ − yd‖

2 +
1

2
‖u‖2.

It can be shown that

(J ′(u), v) = (u+ B∗pǫ, v),

(J ′(uh), v) = (uh+ B∗pǫ(uh), v),

where pǫ(uh) satisfies the following system:

(A(x , x/ǫ)∇yǫ(uh),∇w) = (Buh, w), ∀w ∈W, (4.4)

(A(x , x/ǫ)∇q,∇pǫ(uh)) = (y
ǫ(uh)− yd ,q), ∀q ∈W. (4.5)

Lemma 4.2. Let (yǫ, pǫ ,u) and (yh, ph,uh) be the solutions of equations (2.2)-(2.4) and

(2.7)-(2.9), respectively. Assume that

(J ′(v)− J ′(u), v − u)≥ c‖v − u‖2, ∀u, v ∈ K , (4.6)

and uI = πhu ∈ Kh be the standard Lagrange interpolation of u such that

(u+ B∗pǫ,uI − u)≤ Ch2, (4.7)

‖u− uI‖ ≤ Ch. (4.8)

Then

‖u− uh‖ ≤ C
�

h+ ‖ph− pǫ(uh)‖
�

. (4.9)
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Proof. It follows from (2.4), (2.9), (4.6)-(4.8), Hölder inequality and Young inequality
that

c‖u− uh‖
2

≤(J ′(u)− J ′(uh),u− uh)

=(u+ B∗pǫ,u− uh)− (uh+ B∗pǫ(uh),u− uh)

≤− (uh+ B∗ph,u− uh) + (B
∗(ph− pǫ(uh)),u− uh)

=(u+ B∗pǫ,uI − u) + (uh− u,uI − u) + (B∗(ph− pǫ(uh)),uI − u)

+ (B∗(pǫ(uh)− pǫ),uI − u) + (uh+ B∗ph,uh− uI ) + (B
∗(ph− pǫ(uh)),u− uh)

≤Ch2 + C(δ)‖uI − u‖2 + δ‖u− uh‖
2 + δ‖pǫ(uh)− pǫ‖2 + C(δ)‖ph− pǫ(uh)‖

2

≤Ch2 + δ‖u− uh‖
2 + δ‖pǫ(uh)− pǫ‖2 + C(δ)‖ph− pǫ(uh)‖

2. (4.10)

Subtracting (2.2)-(2.3) from (4.4)-(4.5), we obtain,

(A(x , x/ǫ)∇(yǫ(uh)− yǫ),∇w) = (B(uh− u), w), ∀w ∈W, (4.11)

(A(x , x/ǫ)∇q,∇(pǫ(uh)− pǫ)) = (yǫ(uh)− yǫ ,q), ∀q ∈W. (4.12)

From the regularity estimation of (4.11)-(4.12) and Friedriechs inequality, we have

‖pǫ(uh)− pǫ‖ ≤ C‖pǫ(uh)− pǫ‖1,Ω ≤ C‖yǫ(uh)− yǫ‖, (4.13)

‖yǫ(uh)− yǫ‖ ≤ C‖yǫ(uh)− yǫ‖1,Ω ≤ C‖uh− u‖. (4.14)

Let δ be small enough, then (4.9) follows from (4.10) and (4.13)-(4.14).

Theorem 4.1. Let (yǫ, pǫ ,u) and (yh, ph,uh) be the solutions of equations (2.2)-(2.4) and

(2.6)-(2.8), respectively. Assume that yǫ, pǫ ∈ H2(Ω) and all the conditions in Lemma 4.2
are valid. Then,

‖yǫ − yh‖1,Ω + ‖p
ǫ − ph‖1,Ω + ‖u− uh‖ ≤ Cǫh. (4.15)

Proof. It follows from the assumptions on A(x , x/ǫ) that

c‖pǫ(uh)− ph‖
2
1,Ω

≤a(pǫ(uh)− ph, pǫ(uh)− ph)

=a(pǫ(uh)−πh(p
ǫ(uh)), pǫ(uh)− ph) + a(πh(p

ǫ(uh))− ph, pǫ(uh)− ph)

=a(pǫ(uh)−πh(p
ǫ(uh)), pǫ(uh)− ph) + (y

ǫ(uh)− yh,πh(p
ǫ(uh))− ph)

≤C‖pǫ(uh)− ph‖1,Ω‖p
ǫ(uh)−πh(p

ǫ(uh))‖1,Ω + C‖yǫ(uh)− yh‖‖πh(p
ǫ(uh))− ph‖

≤C(δ)‖pǫ(uh)−πh(p
ǫ(uh))‖

2
1,Ω + C(δ)‖yǫ(uh)− yh‖

2 + Cδ‖πh(p
ǫ(uh))− ph‖

2
1,Ω

+ Cδ‖(pǫ(uh))− ph‖
2
1,Ω

≤C(δ)‖pǫ(uh)−πh(p
ǫ(uh))‖

2
1,Ω + C(δ)‖yǫ(uh)− yh‖

2 + Cδ‖pǫ(uh)− ph‖
2
1,Ω. (4.16)
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Let δ to be small enough, using Lemma 4.1, we have

‖pǫ(uh)− ph‖1,Ω ≤C‖pǫ(uh)−πh(p
ǫ(uh))‖1,Ω + C‖yǫ(uh)− yh‖

≤Ch‖pǫ(uh)‖2,Ω + C‖yǫ(uh)− yh‖.

Note that Ω is convex. From regularity estimates, we get

‖pǫ(uh)‖2,Ω ≤‖p
ǫ‖2,Ω + ‖p

ǫ(uh)− pǫ‖2,Ω

≤‖pǫ‖2,Ω + C‖yǫ(uh)− yǫ‖

≤‖pǫ‖2,Ω + C‖uh− u‖ ≤ Cǫ.

Therefore,

‖pǫ(uh)− ph‖1,Ω ≤ Cǫh+ C‖yǫ(uh)− yh‖. (4.17)

Similarly, we can prove that

‖yǫ(uh)− yh‖1,Ω ≤ Ch‖yǫ(uh)‖2,Ω ≤ Cǫh. (4.18)

It follows from (4.17) and (4.18) that

‖pǫ(uh)− ph‖ ≤ ‖p
ǫ(uh)− ph‖1,Ω ≤ Cǫh. (4.19)

From the Lemma 4.2 and (4.19), we have

‖u− uh‖ ≤ Cǫh. (4.20)

Note that

‖yǫ − yh‖1,Ω ≤ ‖y
ǫ − yǫ(uh)‖1,Ω + ‖y

ǫ(uh)− yh‖1,Ω, (4.21)

‖pǫ − ph‖1,Ω ≤ ‖p
ǫ − pǫ(uh)‖1,Ω + ‖p

ǫ(uh)− ph‖1,Ω, (4.22)

and

‖pǫ − pǫ(uh)‖1,Ω ≤ C‖yǫ − yǫ(uh)‖1,Ω ≤ C‖u− uh‖. (4.23)

Then, (4.15) follows from (4.17)-(4.23).

Remark 4.1. Since Cǫ is usually of the order of 1/ǫ, when ǫ is small enough, we have to
use very fine mesh size which should be smaller than ǫ to approximate yǫ and pǫ. It is
often beyond our computational powers even for two-dimensional cases. Thus in this case
the finite element method can not work.
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5. Convergence Analysis for the Multiscale Finite Element Method

In this section, we study convergence analysis of multiscale finite element method for
the model problem (1.1). Just like the Lemma 4.2, it is easy to prove the following lemma:

Lemma 5.1. Let (yǫ, pǫ ,u) and ( ŷh, p̂h, ûh) be the solutions of equations (2.2)-(2.4) and

(2.13)-(2.15), respectively. Assume that

(J ′(v)− J ′(u), v − u)≥ c‖v − u‖2, ∀u, v ∈ K , (5.1)

and uI = πhu ∈ Kh be the standard Lagrange interpolation of u such that

(u+ B∗pǫ,uI − u)≤ Ch2, (5.2)

‖u− uI‖ ≤ Ch. (5.3)

Then

‖u− ûh‖ ≤ C(h+ ‖p̂h− pǫ(ûh)‖), (5.4)

where pǫ(ûh) satisfies the following system:

(A(x , x/ǫ)∇yǫ(ûh),∇w) = (Bûh, w), ∀w ∈W, (5.5)

(A(x , x/ǫ)∇q,∇pǫ(ûh)) = (y
ǫ(ûh)− yd ,q), ∀q ∈W, (5.6)

with ûh ∈ Kh.

Since ai j(x , x̃) is periodic in the “fast" variable x̃ = x/ǫ, from Lemma 5.3 in [14], it is
easy to prove the following lemma:

Lemma 5.2. Let pǫ(ûh) ∈ H1(Ω) satisfy equation (5.6) and pǫ(ûh)I ∈ Vh be the interpolation

of its homogenized solution p0(ûh), using the multiscale base functions φ i . Then there exists

constant C independent of ǫ and h, such that

‖pǫ(ûh)I − pǫ(ûh)‖1,Ω ≤ C
�

h(‖yǫ(ûh)‖+ ‖yd‖) +
p

ǫ/h
�

. (5.7)

Theorem 5.1. Let (yǫ, pǫ ,u) and ( ŷh, p̂h, ûh) be the solutions of equations (2.2)-(2.4) and

(2.13)-(2.15), respectively. Assume that all the conditions in Lemmas 5.1-5.2 are valid.

Moveover, assume that yǫ , pǫ ∈ H2(Ω). Then there exists a constant C independent of ǫ and

h such that

‖yǫ − ŷh‖1,Ω + ‖p
ǫ − p̂h‖1,Ω + ‖u− ûh‖ ≤ C

�

h+
p

ǫ/h
�

. (5.8)
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Proof. It follows from the assumptions on A(x , x/ǫ), Lemma 5.2, ǫ-Cauchy inequality
and Friedriechs inequality, we have

c‖pǫ(ûh)− p̂h‖
2
1,Ω

≤a(pǫ(ûh)− p̂h, pǫ(ûh)− p̂h)

=a(pǫ(ûh)− pǫ(ûh)I , pǫ(ûh)− p̂h)+ a(pǫ(ûh)I − p̂h, pǫ(ûh)− p̂h)

=a(pǫ(ûh)− pǫ(ûh)I , pǫ(ûh)− p̂h)+ (y
ǫ(ûh)− ŷh, pǫ(ûh)I − p̂h)

≤C‖pǫ(ûh)− p̂h‖1,Ω‖p
ǫ(ûh)− pǫ(ûh)I‖1,Ω + C‖yǫ(ûh)− ŷh‖‖p

ǫ(ûh)I − p̂h‖

≤C(δ)‖pǫ(ûh)− pǫ(ûh)I‖
2
1,Ω + C(δ)‖yǫ(ûh)− ŷh‖

2 + Cδ‖pǫ(ûh)I − p̂h‖
2
1,Ω

+ Cδ‖pǫ(ûh)− p̂h‖
2
1,Ω

≤C(δ)‖pǫ(ûh)− pǫ(ûh)I‖
2
1,Ω + C(δ)‖yǫ(ûh)− ŷh‖

2 + Cδ‖pǫ(ûh)− p̂h‖
2
1,Ω

≤C
�

h(‖yǫ(ûh)‖+ ‖yd‖) +
p

ǫ/h
�2
+ C(δ)‖yǫ(ûh)− ŷh‖

2 + Cδ‖pǫ(ûh)− p̂h‖
2
1,Ω. (5.9)

Let δ be small enough, we get

‖pǫ(ûh)− p̂h‖1,Ω ≤ C
�

h(‖yǫ(ûh)‖+ ‖yd‖) +
p

ǫ/h
�

+ C(δ)‖yǫ(ûh)− ŷh‖. (5.10)

Similarly, it is easy to prove

‖yǫ(ûh)− ŷh‖1,Ω ≤ C
�

h‖ûh‖+
p

ǫ/h
�

. (5.11)

Thus,

‖yǫ(ûh)− ŷh‖1,Ω + ‖p
ǫ(ûh)− p̂h‖1,Ω ≤ C

�

h+
p

ǫ/h
�

. (5.12)

Note that

‖yǫ − ŷh‖1,Ω ≤ ‖y
ǫ − yǫ(ûh)‖1,Ω + ‖y

ǫ(ûh)− ŷh‖1,Ω, (5.13)

‖pǫ − p̂h‖1,Ω ≤ ‖p
ǫ − pǫ(ûh)‖1,Ω + ‖p

ǫ(ûh)− p̂h‖1,Ω, (5.14)

and

‖pǫ − pǫ(ûh)‖1,Ω ≤ C‖yǫ − yǫ(ûh)‖1,Ω ≤ C‖u− uh‖. (5.15)

Then, (5.8) follows from (5.11) and (5.12)-(5.15).

Remark 5.1. Since the multiscale finite element method is of the order h+
p

ǫ/h conver-
gence. It is useful for any parameter ǫ.
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