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Abstract. The GMRES(m) method proposed by Saad and Schultz is one of the most

successful Krylov subspace methods for solving nonsymmetric linear systems. In this

paper, we investigate how to update the initial guess to make it converge faster, and in

particular propose an efficient variant of the method that exploits an unfixed update. The

mathematical background of the unfixed update variant is based on the error equations,

and its potential for efficient convergence is explored in some numerical experiments.
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1. Introduction

In recent years, there has been extensive research on Krylov subspace methods for

solving large and sparse linear systems of the form

Ax = b, A∈ Rn×n, x , b ∈ Rn , (1.1)

where the coefficient matrix A is assumed to be nonsymmetric and nonsingular. These lin-

ear systems often arise from the discretization of partial differential equations in computa-

tional science and engineering. The CG method [10] and the MINRES method [16] are two

well known Krylov subspace methods for solving symmetric linear systems, but for general

nonsymmetric linear systems the GMRES method [17] and the Bi-CGSTAB method [25]

(and its variants [9,20,28]) are the most widely used. The IDR(s) method [22] proposed

by Sonneveld and van Gijzen has recently also attracted considerable attention [21, 24].

Further details may be found in several surveys [8,18,19].
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In this paper, we focus on further developments in the GMRES method context. Let us

first note that the original GMRES method [17] has shown good convergence, but it has

considerable computational cost and storage requirements due to long-term recurrence.

This is avoided in the GMRES(m) method [17] now widely used in practice, which involves

a so-called restart that can be described as follows. In the first restart cycle, the restart

frequency m is chosen and an initial guess x
(1)
0 is made. For any lth restart cycle, the

GMRES method using the initial guess x
(l)
0 is applied with m iterations to the linear system

(1.1), to produce the approximate solution x (l)m that may then be used to update the initial

guess (i.e. x
(l+1)
0 := x (l)m ) in the (l + 1)th restart cycle. This process is repeated until there

is satisfactory convergence.

However, although the restart procedure avoids the computational cost and storage

drawbacks of the GMRES method, it usually slows down the convergence. To improve the

convergence of the GMRES(m) method, several techniques have recently been proposed

for the “inside part" of m iterations [1–5,7,12–15,23,27]. When the initial guess of each

restart cycle is updated via x
(l+1)
0 := x (l)m as outlined above, we call this the fixed update

procedure. To further improve the convergence, in this paper we propose variants of the

GMRES(m) method with unfixed update, mathematically based on the error equations and

iterative refinement scheme.

The paper is organized as follows. In Section 2, we briefly discuss the GMRES(m)

method. The proposed GMRES(m) method with unfixed update, and its mathematical

background based on the error equations and iterative refinement scheme, is then pre-

sented in Section 3. An example variant of the GMRES(m) method with unfixed update is

considered in Section 4, and in particular its convergence is explored in some numerical

experiments in Section 5. Our conclusions are summarized in Section 6.

2. The GMRES(m) Method

Let x0 denote an initial guess for the solution of system (1.1), and r0 := b − Ax0 the

corresponding initial residual. The Krylov subspace methods form a family of projection

methods that extract an approximate solution xk from an affine space spanned by the

initial guess x0 and the Krylov subspace Kk(A, r0)≡ span{r0,Ar0, · · · ,Ak−1r0} such that

xk = x0 + zk, zk ∈Kk(A, r0).

The GMRES method [17] constructs the approximate solution xk by the minimum residual

condition as follows:

xk = x0 + Vksk, sk = arg min
s∈Rk
‖r0 − AVks‖2, (2.1)

where Vk is the n × k matrix with columns the orthogonal basis of the Krylov subspace

Kk(A, r0) often obtained by the Arnoldi procedure. Thus in the GMRES algorithm, the

minimization problem (2.1) is transformed by using the matrix formula of the Arnoldi pro-

cedure, and solved by QR factorization based on the Givens rotation. However, the com-

putational cost of the GMRES method grows by at least O(k2n) and storage requirements
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by O(kn) as the number of iterations k increases, under a long-term recurrence based on

the Arnoldi procedure. As we discussed above, the restarted version of the GMRES method

known as the GMRES(m) method [17] has therefore been used. The GMRES(m) algorithm

is as follows.

Algorithm 2.1 The GMRES(m) method

1: Choose the restart frequency m and the initial guess x0

2: Compute r0 = b− Ax0 and set β = ‖r0‖2, v1 = r0/β

3: for j = 1,2, · · · , m, do

4: Compute w j = Av j

5: for i = 1,2, · · · , j, do

6: hi, j = (w j, vi)

7: w j = w j − hi, j vi

8: end for

9: h j+1, j = ‖w j‖2
10: v j+1 = w j/h j+1, j

11: end for

12: Define the (m+ 1)×m Hessenberg matrix eHm = {hi, j}1≤i≤m+1,1≤ j≤m

13: xm = x0 + Vmsm, where sm = arg mins∈Rm ‖βe1 − eHms‖2
14: Compute rm = b− Axm. If convergence then Stop

15: Update x0 := xm, and go to 2

3. Updating the Initial Guess

In this section, we reconsider the update of the initial guess in the GMRES(m) method,

with focus on the restart in Section 3.1 and the unfixed update in Section 3.2.

3.1. The restart

As noted in Section 1, the restart of the GMRES(m) method can be decomposed into

the three main parts — viz.

Part 1. Choose the restart frequency m and the initial guess x
(1)
0 in the 1st restart cycle.

Part 2. Solve Ax = b by m iterations of the GMRES method with the initial guess x
(l)

0 , to

obtain the approximate solution x (l)m .

Part 3. Update the initial guess of the next restart cycle — i.e. adopt x
(l+1)
0 := x (l)m (before

repeating the iterative procedure).

Then, based on these three main parts, Algorithm 2.1 can be simplified as shown in

Algorithm 3.1 below.

As previously mentioned, the restart avoids the long-term recurrence of the Arnoldi

procedure but usually slows down the convergence, so several improvement techniques



22 A. Imakura, T. Sogabe and S.-L. Zhang

Algorithm 3.1 The GMRES(m) method as a simplified description

1: Choose the restart frequency m and the initial guess x
(1)
0

2: for l = 1,2, · · · , until convergence do

3: Solve (approximately) Ax = b by m iterations of the GMRES method

with the initial guess x
(l)
0 , and get the approximate solution x (l)m

4: Update the initial guess x
(l+1)
0 := x (l)m

5: end for

for the GMRES(m) method have been proposed. These improvements can be classified

according to techniques for any one or two of the three parts. Thus the adaptive precondi-

tioning techniques based on deflation [1, 5, 7] and those based on the augmented Krylov

subspace [2, 4, 12–14] are improvements for Part 2 (Algorithm 3.1, Step 3). Techniques

based on adaptively determining the restart frequency m [3, 23, 27] are improvements

for Part 1 (Algorithm 3.1, Step 1); and a deflation technique with adaptively determined

restart frequency m [15] is an improvement for both Part 1 and Part 2. On the other hand,

until now Part 3 has been regarded as a connection that must remain the same — i.e. as

in the original GMRES algorithm [17].

3.2. The GMRES(m) method with unfixed update

In this paper, we turn the focus onto Part 3 in Section 3.1, and investigate how to better

update the initial guess to make the GMRES(m) convergence even faster.

In Algorithm 2.1, the initial guess of each restart cycle is updated such that

x
(l+1)
0 := x (l)m . (3.1)

This fixed update has not only been used in the traditional GMRES(m) method but also

when any improvement technique for Part 1 and Part 2 has been included [1–5, 7, 12–15,

23,27]. Instead of the fixed update (3.1), we introduce the following unfixed update:

x
(l+1)
0 := x (l)m + y (l+1), (3.2)

where y (l+1) ∈ Rn is set by a certain strategy.

Our strategy will be discussed in Section 4, where we consider the GMRES(m) variant

with unfixed update in detail. The algorithm of our GMRES(m) method with unfixed

update is as follows:

4. A Variant of the GMRES(m) Method

In this section, we first discuss the mathematical background of the unfixed update

(3.2) from analysis based on the error equations and the iterative refinement scheme.

Efficient methods in the context of the GMRES(m) method with unfixed update (Algorithm
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Algorithm 3.2 The GMRES(m) method with an unfixed update

1: Choose the restart frequency m and the initial guess x
(1)
0

2: for l = 1,2, · · · , until convergence do

3: Solve (approximately) Ax = b by m iterations of the GMRES method

with the initial guess x
(l)
0 , and get the approximate solution x (l)m

4: Set the vector y (l+1) based on a certain strategy

5: Update the initial guess x
(l+1)
0 := x (l)m + y (l+1)

6: end for

3.2) are called variants of the GMRES(m) method; and by setting a strategy to define the

vector y (l+1), we indeed provide an example that has more efficient convergence than

the GMRES(m) method. In Section 4.1, the error equations and the iterative refinement

scheme are briefly introduced. In Section 4.2, we analyze the mathematical background

of the unfixed update based on the error equations and the iterative refinement scheme.

Then in Section 4.3 we provide an example of how to define y (l+1) for a variant of the

GMRES(m) method.

4.1. The error equations and iterative refinement scheme

Let x be the exact solution x := A−1b of the linear system (1.1), and bx an approximate

numerical solution. Let e := x − bx denote the error vector, and br := b − Abx the residual

vector. Then from the relation

e := x − bx = A−1(b− Abx ) = A−1br ,

the error vector e can be computed by solving the error equation

Ae = br . (4.1)

Solving the error equations (4.1) recursively to improve the accuracy of the numerical

solution constitutes the iterative refinement scheme, originally introduced by Wilkinson in

[26] to eliminate the effect of round-off error in direct methods such as LU factorization.

4.2. Mathematical background of the unfixed update

In this section, we analyze the mathematical background of the unfixed update based

on the error equations and the iterative refinement scheme. For the following analysis,

we introduce two kinds of iterative refinement schemes — viz. Algorithm 4.1 and Algo-

rithm 4.2 as shown, where each error equation is solved by m iterations of the GMRES

method to achieve higher accuracy.

In Algorithm 4.1, the initial guess for each error equation is fixed as e
(l)
0 := 0. On

the other hand, in Algorithm 4.2 each initial guess is set as e
(l)
0 := y (l), where y (l) ∈ Rn

is decided using a certain strategy. From these Algorithms, we analyze the mathematical

background of the unfixed update. The analysis involves three steps (cf. also Fig. 1) — viz.
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Algorithm 4.1 The iterative refinement scheme based on m iterations of the GMRES

method with the initial guess e
(l)
0 := 0

1: Choose the initial guess x0 and set x (0)m := 0, r (0)m := b,e
(1)
0 := x0

2: for l = 1,2, · · · , until convergence do

3: Solve (approximately) Ae = r (l−1)
m by m iterations of the GMRES method

with the initial guess e
(l)
0 , and get the approximate solution e(l)m

4: Update x (l)m := x (l−1)
m + e(l)m , r (l)m := b− Ax (l)m ,e

(l+1)
0 := 0

5: end for

Algorithm 4.2 The iterative refinement scheme based on m iterations of the GMRES

method with the initial guess e
(l)
0 := y (l)

1: Choose the initial guess x0 and set x (0)m := 0, r (0)m := b,e
(1)
0 := x0

2: for l = 1,2, · · · , until convergence do

3: Solve (approximately) Ae = r (l−1)
m by m iterations of the GMRES method

with the initial guess e
(l)
0 , and get the approximate solution e(l)m

4: Set the vector y (l+1) based on a certain strategy

5: Update x (l)m := x (l−1)
m + e(l)m , r (l)m := b− Ax (l)m ,e

(l+1)
0 := y (l+1)

6: end for

Step 1. Algorithms 3.1 and 4.1 are shown to be mathematically equivalent.

Step 2. Algorithm 4.2 is shown to be a natural extension of Algorithm 4.1.

Step 3. Algorithms 3.2 and 4.2 are shown to be mathematically equivalent.

Step 1. Comparison between Algorithm 3.1 and Algorithm 4.1.

The mathematical equivalence of the GMRES(m) under Algorithm 3.1 and the iterative

refinement scheme based on m iterations in the GMRES (Algorithm 4.1) is covered by the

following proposition.

Proposition 4.1. Let x (l)m = x
(l)
0 + z(l)m be the approximate solution of the linear system

Ax = b obtained by m iterations of GMRES with the initial guess x
(l)

0 := x (l−1)
m ; and let

e(l)m = e
(l)
0 + ez(l)m be the approximate solution of the linear system Ae = r (l−1)

m obtained by m

iterations of GMRES with the initial guess e
(l)
0 := 0. Then we have the equality

z(l)m = ez(l)m ,

where r (l−1)
m := b− Ax (l−1)

m .
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Step 2: 

Natural extension

Step 1: Mathematically equivalent Step 3: Mathematically equivalent

Algorithm 3.1: GMRES(m)

Run m iterations of GMRES

Input:       , Output:       

Algorithm 3.2: GMRES(m) with unfixed update

Run m iterations of GMRES

Input:       , Output:       

Algorithm 4.1

Run m iterations of GMRES

Input:       , Output:       

Algorithm 4.2

Run m iterations of GMRES

Input:       , Output:       Figure 1: The analysis pro
edure on the mathemati
al ba
kground of the un�xed update.
Proof. From the minimum residual condition (2.1) for m iterations of GMRES, the

vectors z(l)m and ez(l)m can be written as

z(l)m = arg min
z∈Km(A,r

(l)
0 )

‖b−A(x
(l)
0 + z)‖2,

ez(l)m = arg min
z∈Km(A,r

(l−1)
m )

‖r (l−1)
m − A(0+ z)‖2 ,

where from x
(l)
0 := x (l−1)

m and r (l−1)
m := b−Ax (l−1)

m we have

arg min
z∈Km(A,r

(l)
0 )

‖b− A(x
(l)
0 + z)‖2 =arg min

z∈Km(A,r
(l)
0 )

‖(b− Ax (l−1)
m )− Az‖2

=arg min
z∈Km(A,r

(l−1)
m )

‖r (l−1)
m − A(0+ z)‖2 .

Step 2. Comparison between Algorithms 4.1 and 4.2

In general, when one solves the linear systems (1.1) by some Krylov subspace method (CG,

GMRES etc.), it is not necessary to fix the initial guess at x0 := 0. From this viewpoint,

Algorithm 4.2 can be regarded as a natural extension of Algorithm 4.1, in the sense that

one can use any initial guess for each error equation.
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Step 3. Comparison between Algorithms 3.2 and 4.2

The mathematical equivalence of the GMRES(m) with unfixed update (Algorithm 3.2) and

the iterative refinement scheme based on m iterations in the GMRES (Algorithm 4.2) is

covered by the following proposition.

Proposition 4.2. Let x (l)m = x
(l)

0 + z(l)m be the approximate solution for the linear system

Ax = b obtained by m iterations of GMRES with the initial guess x
(l)
0 := x (l−1)

m + y (l); and let

e(l)m = e
(l)
0 + ez(l)m be the approximate solution for the linear system Ae = r (l−1)

m obtained by m

iterations of GMRES with the initial guess e
(l)
0 := y (l). Then we have the equality

z(l)m = ez(l)m ,

where r (l−1)
m := b− Ax (l−1)

m .

Proof. Proposition 4.2 can be proved in the same way as Proposition 4.1.

Short remark on the analysis

From Steps 1, 2 and 3, the vector y (l+1) of the unfixed update (3.2) corresponds to the

initial guess of each error equation in the iterative refinement scheme. Thus GMRES(m)

with unfixed update (Algorithm 3.2) can be regarded as a natural extension of GMRES(m)

(Algorithm 3.1), in reference to the iterative refinement scheme (cf. also Fig. 1).

4.3. An example of how to define y (l+1) for efficient convergence

As noted in Section 4.2, the GMRES(m) method with unfixed update (Algorithm 3.2)

can be regarded as a natural extension of the GMRES(m) method (Algorithm 3.1). How-

ever, if we do not have any strategy to define y (l+1), then the unfixed update may lead to

poor convergence. In this section, we illustrate an example where the vector y (l+1) is set

without any strategy (randomly), and then we provide another example to suggest how to

define the vector y (l+1) for more efficient convergence.

Fig. 2(a) shows the relative residual 2-norm history of the GMRES(m) method and the

GMRES(m) method with unfixed update under no strategy. (The vector y (l+1) is set ran-

domly.) One can see that the GMRES(m) method with unfixed update does not guarantee

a monotonic decrease in the residual 2-norm, and there is slower convergence than with

the GMRES(m) method. Thus in general, an arbitrary vector y (l+1) cannot guarantee good

convergence — so we require a suitable strategy to define y (l+1) for efficient convergence

compared with the GMRES(m) method, and we now provide one example: i.e.

y (l+1) =

¨
0 (l = 1)

α(l+1)(z(l)m + y (l)+ z(l−1)
m ) (l ≥ 2)

, (4.2)
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(a) y(l+1) is set as a random vector
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(b) y(l+1) is set by (4.2)
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with unfixed update

Figure 2: The relative residual 2-norm history for MEMPLUS, where m= 10.
where α(l+1) = arg minα∈R ||r

(l)
m −αA(z(l)m + y (l)+ z(l−1)

m )||2. In our current implementation,

the computational cost to obtain vector y (l+1) based on (4.2) is one matrix-vector multi-

plication and some AXPY† and inner products. Strategy (4.2) guarantees the monotonic

decrease in the residual 2-norm as well as the GMRES(m) method — i.e. we have

||r (l+1)
m ||2 ≤ ||r

(l+1)
0 ||2 = ||r

(l)
m − Ay (l+1)||2 ≤ ||r

(l)
m ||2.

Fig. 2(b) shows the relative residual 2-norm history of the GMRES(m) method and the

GMRES(m) method with unfixed update, based on (4.2). In this result, the GMRES(m)

method with unfixed update shows good convergence compared with the GMRES(m)

method.

The GMRES(m) method with unfixed update based on (4.2) is the specific variant we

consider further, and in the next section we present some numerical experiments to show

the potential for efficient convergence.

5. Numerical Experiments and Results

We have proposed an efficient variant of the GMRES(m) method by reconsidering the

update to the initial guess, but a suitable strategy to define y (l+1) for efficient convergence

in general requires further investigation. However, to show the potential for efficient con-

vergence, we now present some results from numerical experiments.

5.1. Numerical experiments

We test the performance of the GMRES(m) method Algorithm 3.1, and the variant of

the GMRES(m) method Algorithm 3.2 where y (l+1) is set by (4.2). Their performance is

evaluated using test problems from the Matrix Market [11] and UF Sparse Matrix Collec-

tion [6] that came from Finite element modeling (CAVITY), Circuit simulation problem

(CIRCUIT, COUPLED, RAJAT), Optimization problem (CRASHBASIS), Thermal problem

(FEM_3D_THERMAL), Partial differential equations (PDE), Chemical engineering (RDB),

†Addition of scaled vectors.
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Structural problem (T2D_Q4), Petroleum engineering (WATT) and Materials problem (XENON).

Since our purpose is to show a convergence potential within the specific variant of the

GMRES(m) method, we set m = 10 and 50 for the restart frequency and did not use pre-

conditioners. We set b = [1,1, · · · , 1]T as the right-hand side vector, x0 = [0,0, · · · , 0]T for

the initial guess, and the stopping criterion as ||rk||2/||b||2 ≤ 10−10. The notation † de-

notes that the methods did not converge within 50000 iterations. The numerical experi-

ments were implemented with standard Fortran 77 in double precision arithmetic, on an

Intel Xeon (2.8GHz).

5.2. Numerical results

The numerical results for m = 10 and 50 are presented in Tables 1 and 2, respectively.

We analyze the results in terms of three aspects: the number of iterations; computation

time per one restart cycle (m iterations); and total computation time.

First, let us consider the number of iterations (Iter) of both methods. In most cases, the

variant of the GMRES(m) method shows almost the same or lower Iter than the GMRES(m)

method. In particular, for CAVITY05 (m = 10), CAVITY10 (m = 50), COUPLED (m = 50)

and RAJAT03 (m = 10,50), the GMRES(m) method did not converge within 50000; on

the other hand, the variant of the GMRES(m) method converged to the solution satisfying

the required accuracy ||rk||2/||b||2 ≤ 10−10. The variant of the GMRES(m) method also

converged within 1/20 iterations of the GMRES(m) method for WATT__2, XENON1 and

XENON2 (m = 10). Moreover, from the comparison between Table 1 for m= 10 and Table

2 for m = 50, we can see that the smaller restart frequency m leads to a larger difference

in Iter between both methods.

Next, we consider the computation time per restart cycle (tRestart). In terms of tRestart,

for m = 10 the variant of the GMRES(m) method requires at most 10% more time than the

GMRES(m) method. When m= 50, both methods require almost the same tRestart, because

in the current implementation the additional operations for the variant of the GMRES(m)

method are one matrix-vector multiplication and some AXPY and inner-products per restart

cycle for computing the vector y (l+1) by (4.2).

In terms of the total computation time (tTotal), from the smaller Iter and almost the

same tRestart, we can see that the variant of the GMRES(m) method can converg within a

much smaller computation time, except for the cases RDB2048L (m = 10) and PDE2961

(m = 50).

The relative residual 2-norm histories for CAVITY05, PDE2961, RDB2048L and XENON1

are shown in Fig. 3. We can see that the variant of the GMRES(m) method shows a mono-

tonic decrease in the residual, as does the GMRES(m) method. In Fig. 3 for PDE2961

and RDB2048L, both methods show the same level of convergence throughout the whole

iteration. On the other hand, for CAVITY05 and XENON1, the variant of the GMRES(m)

method shows a better convergence than the GMRES(m) method throughout the whole

iteration.

From these results, it appears that the variant of the GMRES(m) method may have a

high potential for efficient convergence.



An efficient variant of the GMRES(m) method based on error equations 29Table 1: Test problems (n: order of matrix, N nz: number of nonzeros in matrix) and 
onvergen
eresults (Iter: the number of iterations, tTotal: total 
omputation time, tRestart: 
omputation time per onerestart 
y
le) of the GMRES(m) method and the variant of the GMRES(m) method, where m= 10.
Matrix Solver Iter Time[sec.]

n N nz tTotal tRestart

CAVITY05 GMRES(m) † † 3.98× 10−3

1182 32747 Variant 11791 5.03× 100 4.26× 10−3

CAVITY10 GMRES(m) † † 9.23× 10−3

2597 76367 Variant † † 9.89× 10−3

CIRCUIT_1 GMRES(m) 938 4.30× 10−1 4.57× 10−3

2597 35823 Variant 394 1.92× 10−1 4.91× 10−3

CIRCUIT_2 GMRES(m) 8830 5.06× 100 5.71× 10−3

4510 21199 Variant 4862 2.88× 100 5.93× 10−3

COUPLED GMRES(m) † † 2.05× 10−2

11341 98523 Variant † † 2.15× 10−2

CRASHBASIS GMRES(m) 819 2.63× 101 3.21× 10−1

160000 1750416 Variant 678 2.27× 101 3.35× 10−1

FEM_3D_THERMAL1 GMRES(m) 711 4.14× 100 5.82× 10−2

17880 430740 Variant 281 1.74× 100 6.18× 10−2

FEM_3D_THERMAL2 GMRES(m) 2660 1.33× 102 5.01× 10−1

147900 3489300 Variant 591 3.16× 101 5.34× 10−1

PDE2961 GMRES(m) 641 2.38× 10−1 3.77× 10−3

2961 14585 Variant 491 1.86× 10−1 3.82× 10−3

RAJAT03 GMRES(m) † † 9.19× 10−3

7602 32653 Variant 38701 3.65× 101 9.44× 10−3

RDB2048L GMRES(m) 741 1.98× 10−1 2.70× 10−3

2048 12032 Variant 898 2.44× 10−1 2.75× 10−3

RDB3200L GMRES(m) 1294 5.44× 10−1 4.21× 10−3

3200 18880 Variant 1072 4.64× 10−1 4.33× 10−3

T2D_Q4 GMRES(m) 2520 3.88× 100 1.54× 10−2

9801 87025 Variant 356 5.70× 10−1 1.61× 10−2

WATT__2 GMRES(m) 29129 7.38× 100 2.51× 10−3

1856 11550 Variant 1630 4.22× 10−1 2.61× 10−3

XENON1 GMRES(m) 34112 5.40× 102 1.57× 10−1

48600 1181120 Variant 1891 3.22× 101 1.70× 10−1

XENON2 GMRES(m) 47602 2.60× 103 5.45× 10−1

157464 3866688 Variant 2415 1.41× 102 5.84× 10−1

6. Conclusion

In this paper, we considered the algorithm of the GMRES(m) method with unfixed up-

date. From analysis based on the error equations and the iterative refinement scheme, we



30 A. Imakura, T. Sogabe and S.-L. ZhangTable 2: Test problems (n: order of matrix, N nz: number of nonzeros in matrix) and 
onvergen
eresults (Iter: number of iterations, tTotal: total 
omputation time, tRestart: 
omputation time per onerestart 
y
le) of the GMRES(m) method and the variant of the GMRES(m) method, where m= 50.
Matrix Solver Iter Time[sec.]

n N nz tTotal tRestart

CAVITY05 GMRES(m) 45027 3.00× 101 3.33× 10−2

1182 32747 Variant 4801 3.23× 100 3.37× 10−2

CAVITY10 GMRES(m) † † 7.65× 10−2

2597 76367 Variant 10251 1.58× 101 7.71× 10−2

CIRCUIT_1 GMRES(m) 310 3.30× 10−1 5.33× 10−2

2597 35823 Variant 289 3.06× 10−1 5.40× 10−2

CIRCUIT_2 GMRES(m) 441 7.08× 10−1 8.12× 10−2

4510 21199 Variant 384 6.22× 10−1 8.28× 10−2

COUPLED GMRES(m) † † 2.38× 10−1

11341 98523 Variant 26953 1.28× 102 2.39× 10−1

CRASHBASIS GMRES(m) 431 3.16× 101 3.73× 100

160000 1750416 Variant 422 3.10× 101 3.78× 100

FEM_3D_THERMAL1 GMRES(m) 318 3.09× 100 4.93× 10−1

17880 430740 Variant 276 2.68× 100 4.99× 10−1

FEM_3D_THERMAL2 GMRES(m) 775 6.83× 101 4.44× 100

147900 3489300 Variant 559 4.96× 101 4.47× 100

PDE2961 GMRES(m) 483 5.12× 10−1 5.43× 10−2

2961 14585 Variant 572 6.04× 10−1 5.40× 10−2

RAJAT03 GMRES(m) † † 1.37× 10−1

7602 32653 Variant 12701 3.49× 101 1.37× 10−1

RDB2048L GMRES(m) 337 2.48× 10−1 3.60× 10−2

2048 12032 Variant 300 2.26× 10−1 3.87× 10−2

RDB3200L GMRES(m) 477 5.42× 10−1 5.83× 10−2

3200 18880 Variant 470 5.40× 10−1 5.83× 10−2

T2D_Q4 GMRES(m) 517 1.98× 100 1.94× 10−1

9801 87025 Variant 455 1.77× 100 1.96× 10−1

WATT__2 GMRES(m) 4606 3.14× 100 3.40× 10−2

1856 11550 Variant 1452 9.90× 10−1 3.40× 10−2

XENON1 GMRES(m) 7047 1.90× 102 1.35× 100

48600 1181120 Variant 1892 5.13× 101 1.36× 100

XENON2 GMRES(m) 9456 9.10× 102 4.82× 100

157464 3866688 Variant 2341 2.27× 102 4.86× 100

found the GMRES(m) method with unfixed update is a natural extension of the GMRES(m)

method. The variant of the GMRES(m) method based on (4.2) was examined, and some

numerical experiments showed more efficient convergence than the GMRES(m) method
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Figure 3: The relative residual 2-norm history for CAVITY05, PDE2961, RDB2048L and XENON1,where m= 10.
widely used to solve large sparse nonsymmetric linear systems. In future work, the con-

vergence behavior of the variant of the GMRES(m) method should be analysed, to design

the most suitable strategy to define the vector y (l+1).
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