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Abstract. Retinex theory explains how the human visual system perceives colors. The
goal of retinex is to decompose the reflectance and the illumination from the given
images and thereby compensating for non-uniform lighting. The existing methods for
retinex usually use a single image with a fixed exposure to restore the reflectance of the
image. In this paper, we propose a variational model for retinex problem by utilizing
multi-exposure images of a given scene. The existence and uniqueness of the solutions
of the proposed model have been elaborated. An alternating minimization method is
constructed to solve the proposed model and its convergence is also demonstrated. The
experimental results show that the proposed method is effective for reflectance recovery
in retinex problem.
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1. Introduction

Retinex theory was first proposed by Edwin H. Land in [11] which explains how the
human visual system perceives colors. Upon this theory, color sensations correlate with
the intrinsic reflectance of objects and are independent of the radiance values captured by
eyes. Therefore, human visual system (HVS) can identify the same colors of a given scene
under varying illumination conditions, which is commonly regarded as the color constancy,
see, for instance, [11–13]. Based on retinex theory, eyes can see colors correctly when light
is low, while cameras and video cameras can not manage this well. Images taken under
different illumination levels may shift the real color of the object. In retinex theory, it is
assumed that the observed image intensity S can be decomposed as pixel-wise product of
two components, they are reflectance function R and illumination function L as

S = RL. (1.1)
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In order to compensate for the non-uniform lighting in a given image and enhance the
contrast of images, the primary task of retinex is to find efficient methods to separate the
reflectance R from the observed intensity S. The retinex theory is widely applied in image
editing [19], shadow removal [5], multi-spectral image fusion [22], image and video fu-
sion for context enhancement [20] and high dynamic range compression [4]. There have
been many methods for retinex proposed in the literature. For example, the well-known
path-based algorithms which were put forward by Land in [12, 13] and the one put for-
ward by Brainard et al. in [2]. Path-based algorithms require to tune many parameters
and the implementation is very complicate. A recursive matrix calculation was designed
to replace the path computation and recursive algorithms were proposed in [6, 7]. The
single scale retinex model was proposed in [8], though the optimized single scale retinex
result is short of human observation, it succeeds in producing the correct beige scene color
and some dynamic range compression of the shadow. The multi-scale retinex was pro-
posed in [9] which more closely approaches the performance of human vision. In 2009,
Bertalmo, Caselles, and Provenzi [1] proposed a kernel-based retinex method in which the
main computation is to get the expectation value of a suitable random variable weighted by
a kernel function. The partial differential equation based algorithms are important meth-
ods for retinex. For example, the methods proposed by Morel et al. in [16,17] utilize fast
Fourier transformation to perform the computation cheaply to get the decomposition of re-
flectance and illumination in recorded images. Morel et al. also further demonstrated that
the random walk method and the partial differential equation formulation are equivalent.
Efficient variational methods for retinex have surged in recent years. Ma et al. [14] pro-
posed a model in which the L1 regularization is used to recover sharp edges and boundaries
of the reflectance component and a fast approach based on Bregman iteration is designed
to solve the model. Kimmel et al. [10] presented a variational method based on H1-norm
regularization for the reflectance function. Ma and Osher established a total variation and
nonlocal TV regularized model in [15]. In [18], Ng and Wang proposed a model for retinex
which consists of a data-fidelity term, a total variation term for reflectance function, an H1-
norm regularization term for illumination function. An alternating minimization method
is designed to solve this problem. In this method, due to the blurring recovering effect of
the recovered R from the model, R′ = S/L instead of R is used in image enhancement and
illumination compensation. In 2014, Zosso et al. in [26] and Wang, Ng in [24] constructed
methods in which the nonlocal total variation regularization of the reflectance function is
used in order to improve the reflectance recovering effect. Wang and He [25] proposed a
variational model which has the same data-fidelity term as the one used in [18], but two
barrier functions are added. The details and edges of the recovered reflectance R from this
model is clearer and sharper than the one got from [18]. In [3], Chang et al. used sparse
and redundant representations of the reflectance component in the retinex model over a
learned dictionary and more details are revealed in the low-light part.

In the above mentioned methods, only single image with a fixed exposure is used to
restore the reflectance of the image. Although reflectance is a constant property and related
to the physical characteristics of the material object, in practice, certain parts of image
details may be lost in the saturated or over-dark regions due to the different exposure
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times, see, for instance, [21]. In this paper, we develop a variational model for retinex
problem by utilizing multi-exposure images. The proposed method is constructed based on
the variational model plus barrier functions for retinex proposed in [25]. We expect that
the reflectance can preserve image details by using the information of the image details got
under different exposures.

The paper is organized as follows: In Section 2, we present the proposed model and
give some theoretical analysis to show the existence and the uniqueness of the solutions
of the model; in Section 3, we introduce an alternating iterative method to solve the pro-
posed model and discuss the convergence of the algorithm; in Section 4, some numerical
experiments are given to demonstrate the effectiveness of the proposed method; finally, we
end the paper in Section 5 by giving some concluding remarks.

2. The Proposed Model

Assume that S1, S2, · · · , SK are intensities of recorded images of a same scene taken
under different exposures. From (1.1), Si (i = 1, · · · , K) are the pixel-wise product of the
illumination function Li (i = 1, · · · , K) and the reflectance function R, that is,

Si = LiR, i = 1, · · · , K . (2.1)

Where 0 < R ≤ 1 (reflectivity) and then 0 < Si ≤ Li < ∞ (i = 1, · · · , K). Let si =

log(Si), r = log(R), li = log(Li) (i = 1, · · · , K). We perform logarithm operation on both
sides of (2.1) and the product expression is converted to the following additive expression
of new variables r and li .

si = r + li, i = 1, · · · , K .

Same as the variational method proposed in [25], we assume that the reflectance function
R and the illumination functions Li are spatial smoothness for each i = 1, · · · , K , such that
r, li ∈ W 1,2(Ω) and si ∈ W 1,2(Ω), li + r is close to si for each i = 1, · · · , K . For each input
image Si, since the reflectance 0< R≤ 1, it holds that r ≤ 0 and li ≥ si (i = 1, · · · , K).

Based on these assumptions, we propose the following minimization model for retinex
problem by utilizing multiple exposure images.

min Ẽµ,ν(r, l1, · · · , lK), r, l1, · · · , lK ∈W
1,2
0 (Ω),

Subject to r ≤ 0 and li ≥ si (i = 1, · · · , K). (2.2)

Energy function Ẽµ,ν(r, l1, · · · , lK) is defined as

Ẽµ,ν(r, l1, · · · , lK) =α

∫

Ω

|∇r|2 + β
K
∑

i=1

∫

Ω

(li + r − si)
2

+

K
∑

i=1

∫

Ω

|∇li|2 +µ
K
∑

i=1

∫

Ω

2

li − si

− ν
∫

Ω

2

r
. (2.3)
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Where α and β are real positive parameters, µ and ν are small positive barrier parameters.
The change of space from W 1,2(Ω) to W

1,2
0 (Ω) which r and li (i = 1, · · · , K) belong to is just

for theoretical analysis. We note that
∫

Ω

2
r and

∫

Ω

2
li−si
(i = 1, · · · , K) are terms by borrowing

the idea of barrier methods to meet the constraints r ≤ 0 and li ≥ si (i = 1, · · · , K). But now
we should use the constraints r < 0 and li > si, i = 1, · · · , K a.e. (almost everywhere) to
avoid the last two terms in (2.3) being infinite. The new constraints are practical in view of
the physical characteristics of the material object. By introducing variable transformations
γ= −r andωi = li−si (i = 1, · · · , K), we get the equivalent minimization problem to (2.2)
as follows:

min Eµ,ν(γ,ω1, · · · ,ωK), γ,ω1, · · · ,ωK ∈W
1,2
0 (Ω),

Subject to γ > 0 and ωi > 0 (i = 1, · · · , K). (2.4)

Where

Eµ,ν(γ,ω1, · · · ,ωK) =α

∫

Ω

|∇γ|2+
K
∑

i=1

∫

Ω

|∇(ωi + si)|2

+ β

K
∑

i=1

∫

Ω

(ωi − γ)2 +µ
K
∑

i=1

∫

Ω

2

ωi

+ ν

∫

Ω

2

γ
. (2.5)

In the rest of this section, we will give some theoretical analysis about the solutions of the
minimization problem (2.4) and numerical algorithm for solving it will be demonstrated in
the next section.

Theorem 2.1. Letµ andν be any fixed positive constants, then the function Eµ,ν(γ,ω1, · · · ,ωK)

in (2.5) is strictly convex in {(γ,ω1, · · · ,ωK)|γ,ω1, · · · ,ωK ∈ W
1,2
0 (Ω),γ,ω1, · · · ,ωK >

0 a.e.}.
Proof. Since both functions

∫

Ω
|∇(·)|2 and

∫

Ω
(·)2 are convex, the function

∫

Ω

2
(·) is strictly

convex, the conclusion is obvious.

Theorem 2.2. Suppose for i = 1, · · · , K, si ∈ W
1,2
0 (Ω), then the problem (2.4) has a unique

solution.

Proof. It is clear that the energy function Eµ,ν(γ,ω1,ω2, · · · ,ωK) is nonnegative and
proper. Suppose {(γn,ωn

1,ωn
2, · · · ,ωn

K
)} (n = 1,2, · · · ) is a minimizing sequence of the

problem (2.4), then there exists a constant C , such that

Eµ,ν(γ
n,ωn

1,ωn
2, · · · ,ωn

K)≤ C . (2.6)

For i = 1, · · · , K , according to the formula of Eµ,ν(·) in (2.5), we can get that

∫

Ω

|∇γn|2 ≤ Cα−1,

∫

Ω

|∇ωn
i
|2 ≤

 

p
C +

√

√

√

∫

Ω

|∇si|2
!2

, (2.7)
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and
∫

Ω

2

γn
≤ Cν−1,

∫

Ω

2

ωn
i

≤ Cµ−1. (2.8)

Consider the classical Poincaré inequality and the constraints γn,ωn
i
∈W

1,2
0 (Ω), we derive

that
∫

Ω

|γn|2 ≤ M

∫

Ω

|∇γn|2 and

∫

Ω

|ωn
i |2 ≤ M

∫

Ω

|∇ωn
i |2 for i = 1, · · · , K , (2.9)

with M > 0 being a constant. Because of the boundedness of
∫

Ω
|∇γn|2 and

∫

Ω
|∇ωn

i
|2

shown in (2.7) and boundedness of
∫

Ω
|γn|2 and

∫

Ω
|ωn

i
|2 shown in (2.9), for any i =

1, · · · , K , it follows that

‖γn‖2
W

1,2
0 (Ω)

=

∫

Ω

�|γn|2 + |∇γn|2�≤ C(1+M)α−1,

and

‖ωn
i ‖2W1,2

0 (Ω)
=

∫

Ω

�|ωn
i |2 + |∇ωn

i |2
�≤ C(1+M).

Therefore, for i = 1, · · · , K , the sequences {γn} and {ωn
i
} are bounded in W

1,2
0 (Ω), we can

find subsequences (which are still denoted by {γn}, {ωn
i
} ∈ W

1,2
0 (Ω) for the simplicity of

description) and points γ∗,ω∗
i
∈W

1,2
0 (Ω) such that

γn+γ∗, ωn
i +ω

∗
i in W

1,2
0 (Ω) as n→∞. (2.10)

Since W
1,2
0 (Ω) is compactly embedded in L2(Ω), we have

γn→ γ∗, ωn
i →ω∗i in L2(Ω) as n→∞. (2.11)

From (2.10) and (2.11), it derives that

ωn
i + si +ω

∗
i + si in W

1,2
0 (Ω) as n→∞, (2.12)

and
γn −ωn

i → γ∗ −ω∗i in L2(Ω) as n→∞. (2.13)

For i = 1, · · · , K , γ∗,ω∗
i
> 0, otherwise,

Eµ,ν(γ
n,ωn

1,ωn
2, · · · ,ωn

K)≥ µ
K
∑

i=1

∫

Ω

2

ωn
i

+ ν

∫

Ω

2

γn
→ +∞.

This is contrary to the fact that {(γn,ωn
1,ωn

2, · · · ,ωn
K
)} is a minimizing sequence of the

problem (2.4). By utilizing the weakly lower semicontinuity of
∫

Ω
|∇(·)|2 and the relations

between (2.10) and (2.12), it follows that

lim inf
n→∞ α

∫

Ω

|∇γn|2 ≥ α
∫

Ω

|∇γ∗|2,
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and

lim inf
n→∞

∫

Ω

|∇(ωn
i + si)|2 ≥

∫

Ω

|∇(ω∗i + si)|2 for i = 1, · · · , K .

Similarly, since L2(Ω) norm is lower semi-continuous, by (2.13), for i = 1, · · · , K , it follows
that

lim inf
n→∞ β

∫

Ω

(ωn
i
− γn)2 ≥ β

∫

Ω

(ω∗
i
− γ∗)2.

Based on Lebesgue’s dominated convergence theorem and the boundedness of
∫

Ω

2
γn and

∫

Ω

2
ωn

i
shown in (2.8), by (2.11), for i = 1, · · · , K , we have

lim
n→∞ν

∫

Ω

2

γn
= ν

∫

Ω

2

γ∗
and lim

n→∞µ
∫

Ω

2

ωn
i

= µ

∫

Ω

2

ω∗
i

.

By considering the definition of the energy functional Eµ,ν(·) in (2.5), we can derive that

min
γ,ωi∈W

1,2
0 (Ω),γ,ωi>0

Eµ,ν(γ,ω1,ω2, · · · ,ωK)

= lim inf
n→∞ Eµ,ν(γ

n,ωn
1,ωn

2, · · · ,ωn
K) ≥ Eµ,ν(γ

∗,ω∗1,ω∗2, · · · ,ω∗K). (2.14)

Therefore, (γ∗,ω∗1,ω∗2, · · · ,ω∗K) is a solution of the optimization problem (2.4). Based on
Theorem 2.1, it is easily obtained that the minimization problem (2.4) has a unique solution
(γ∗,ω∗1,ω∗2, · · · ,ω∗

K
).

3. The Alternating Minimization Algorithm

In this section, an alternating minimization algorithm is designed to solve (2.4). The
following minimization subproblems (3.1) with respect to γ and (3.2) with respect to
ωi, i = 1, · · · , K , are solved.

min
γ

Eν(γ) = α

∫

Ω

|∇γ|2+
K
∑

i=1

β

∫

Ω

(ωi − γ)2 + ν
∫

Ω

2

γ
,

Subject to γ > 0 and γ ∈W
1,2
0 (Ω). (3.1)

For i = 1, · · · , K ,

min
ωi

Eµ(ωi) = β

∫

Ω

(ωi − γ)2 +
∫

Ω

�

�∇(ωi + si)
�

�

2
+ µ

∫

Ω

2

ωi

,

Subject to ωi > 0 and ωi ∈W
1,2
0 (Ω). (3.2)

The Euler-Lagrange equation of (3.1) is as follows:

∂ Eν

∂ γ
= Kβ(γ−ω)−α∆γ− ν

γ2
= 0.
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Where ω = (
∑K

i=1ωi)/K . The steepest descent method is applied to solve the problem
(3.1), and the corresponding gradient descent flow equation is

∂ γ

∂ t
= α∆γ− Kβ(γ−ω) + ν

γ2
. (3.3)

Implicit scheme is used to discrete (3.3), and we obtain

γ j+1 − γ j

τγ
= α∆γ j − Kβ(γ j −ω) + ν

(γ j+1)2
,

which implies that

(γ j+1)3 +
�

Kτγβ(γ
j −ω)− γ j −τγα∆γ j

�

(γ j+1)2 −τγν= 0. (3.4)

Therefore, γ can be obtained by solving the cubic equation (3.4) pixel by pixel. In the same
way, we can have that all ωi (i = 1, · · · , K) of the problems (3.2) can be solved by the
following cubic equations pixel by pixel

(ω
j+1
i
)3 +

�

τωβ(ω
j

i
− γ)−ω j

i
−τω∆(ωi + si)

j
�

(ω
j+1
i
)2 −τωµ = 0. (3.5)

The following theorem shows that both equations (3.4) and (3.5) have only one positive
solution.

Theorem 3.1. There exists a unique positive solution of (3.4) and (3.5).

Proof. Let F(x) = (x−x1)(x−x2)(x−x3) = x3−(x1+x2+x3)x
2+(x1 x2+x1 x3+x2 x3)x−

x1 x2 x3 be a cubic function. In cubic equation F(x) = 0, it satisfies x1 x2+ x1 x3+ x2 x3 = 0,
and x1 x2 x3 > 0, which implies that F(0) < 0, F(∞) > 0, and then F(x) has one positive
root or three positive roots. Clearly, only one of the three solutions x1, x2, x3 is positive,
otherwise, there is a contradiction in the fact that x1 x2 + x1 x3 + x2 x3 = 0. That is to say
that both (3.4) and (3.5) have only one positive root.

The whole computation of the alternating minimization procedure for solving (2.4) can
be performed through the following Algorithm 3.1.

Algorithm 3.1. Set initial values γ0,ω0
i

(i = 1, · · · , K), the maximum iteration numbers of

outer iteration N and inner iteration n, the tolerances εω, εγ. Denote ω0 = (
∑K

i=1ω
0
i
)/K

and t being the index of the outer iteration, set t = 0.

1 Set γ1,t = γt , update γt+1 by solving the problem (3.1). For j = 1 to n, find the
positive solution of the following equation by the root formula of the cubic equation.

(γ j+1,t)3 +
�

Kτγβ(γ
j,t −ωt)− γ j,t −τγα∆γ j,t

�

(γ j+1,t)2 −τγν= 0. (3.6)

If the positive solution of (3.6) γ j+1,t satisfies

‖γ j+1,t − γ j,t‖
‖γ j,t‖ ≤ εγ,

then γt+1 = γ j+1,t , break;
Set γt+1 = γ j+1,t .
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2 For i = 1, · · · , K , set ω1,t
i
=ωt

i
, update ωt+1

i
by solving the problem (3.2). For j = 1

to n, find the positive solution of the following equation by the root formula of the
cubic equation.

(ω
j+1,t
i
)3 +

�

τωβ(ω
j,t
i
− γt+1)−ω j,t

i
−τω∆(ωi + si)

j,t
�

(ω
j+1,t
i
)2 −τωµ = 0. (3.7)

If the positive solution of (3.7) ω j+1,t
i

satisfies

‖ω j+1,t
i
−ω j,t

i
‖

‖ω j,t
i
‖

≤ εω.

then ωt+1
i
=ω

j+1,t
i

, break;

Set ωt+1
i
=ω

j+1,t
i

.

3 Update ωt+1 = (
∑K

i=1ω
t+1
i
)/K .

4 If

t = N or
‖γt+1 − γt‖
‖γt‖ ≤ εγ,

‖ωt+1
i
−ωt

i
‖

‖ωt
i
‖ ≤ εω, i = 1, · · · , K .

break; otherwise set t = t + 1, go to step 1.
Output γ= γt+1,ωi =ω

t+1
i
(i = 1, · · · , K).

The convergence of the Algorithm 3.1 can be guaranteed by the following theorem.

Theorem 3.2. Let {(γt ,ωt
1,ωt

2, · · · ,ωt
K)} be a sequence generated by the Algorithm 3.1.

Then {(γt ,ωt
1,ωt

2, · · · ,ωt
K)} converges to (γ∗,ω∗1,ω∗2, · · · ,ω∗K) (up to a subsequence), which

is in L2(Ω) × L2(Ω) × · · · × L2(Ω), as t →∞. And, Eµ,ν(γ
t ,ωt

1,ωt
2, · · · ,ωt

K) converges to

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K). For i = 1, · · · , K, γ, ωi ∈ W

1,2
0 (Ω), and γ, ωi > 0 , we have

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K) ≤ Eµ,ν(γ,ω

∗
1,ω∗2, · · · ,ω∗K),

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K) ≤ Eµ,ν(γ

∗,ω1,ω∗2, · · · ,ω∗K),
...

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K) ≤ Eµ,ν(γ

∗,ω∗1,ω∗2, · · · ,ωK).

Proof. It is easy to deduce the following inequality from the Algorithm 3.1.

Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K )

≤Eµ,ν(γ
t+1,ωt

1,ωt
2, · · · ,ωt

K)≤ Eµ,ν(γ
t ,ωt

1,ωt
2, · · · ,ωt

K).

That is, Eµ,ν(γ
t ,ωt

1,ωt
2, · · · ,ωt

K
) ≤ Eµ,ν(γ

0,ω0
1,ω0

2, · · · ,ω0
K
) and Eµ,ν(γ

t ,ωt
1,ωt

2, · · · ,ωt
K
)

decreases with t, similar to the proof of Theorem 2.2 (from (2.6) to (2.14)), for i = 1, · · · , K ,
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we can find subsequences (which are still noted by {γt}, {ωt
i
} for the simplicity of descrip-

tion) and points γ∗, ω∗
i
∈ W

1,2
0 (Ω), γ∗, ω∗

i
> 0, satisfying the formulas:

γt + γ∗, ωt
i
+ω∗

i
in W

1,2
0 (Ω) as t →∞,

γt → γ∗, ωt
i →ω∗i in L2(Ω) as t →∞,

and

lim inf
t→∞ Eµ,ν(γ

t ,ωt
1,ωt

2, · · · ,ωt
K) ≥ Eµ,ν(γ

∗,ω∗1,ω∗2, · · · ,ω∗K). (3.8)

Recall that Eµ,ν(γ
t ,ωt

1,ωt
2, · · · ,ωt

K) is nonnegative and decreasing with t, then there exists
e > 0 such that

e = lim
t→∞ Eµ,ν(γ

t ,ωt
1,ωt

2, · · · ,ωt
K). (3.9)

From (3.8) and (3.9), it follows that

e = lim inf
t→∞ Eµ,ν(γ

t ,ωt
1,ωt

2, · · · ,ωt
K
) ≥ Eµ,ν(γ

∗,ω∗1,ω∗2, · · · ,ω∗
K
). (3.10)

Based on the following inequalities

Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K
)

≤Eµ,ν(γ
t+1,ωt

1,ωt
2, · · · ,ωt

K
)≤ Eµ,ν(γ

∗,ωt
1,ωt

2, · · · ,ωt
K
),

and

Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K )

≤Eµ,ν(γ
t ,ωt

1,ωt
2, · · · ,ωt

K)≤ Eµ,ν(γ
t ,ω∗1,ω∗2, · · · ,ω∗K),

we have

2Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K
)

≤Eµ,ν(γ
∗,ωt

1,ωt
2, · · · ,ωt

K
) + Eµ,ν(γ

t ,ω∗1,ω∗2, · · · ,ω∗
K
). (3.11)

Bringing the energy functions to the right-hand side of (3.11), we derive that

Eµ,ν(γ
∗,ωt

1,ωt
2, · · · ,ωt

K) + Eµ,ν(γ
t ,ω∗1,ω∗2, · · · ,ω∗K)

=α

∫

Ω

|∇γ∗|2 + β
K
∑

i=1

∫

Ω

(ωt
i − γ∗)2 +

K
∑

i=1

∫

Ω

�

�∇(ωt
i + si)

�

�

2

+α

∫

Ω

|∇γt |2 + β
K
∑

i=1

∫

Ω

(ω∗i − γt)2 +

K
∑

i=1

∫

Ω

�

�∇(ω∗i + si)
�

�

2

+µ

K
∑

i=1

∫

Ω

2

ωt
i

+µ

K
∑

i=1

∫

Ω

2

ω∗
i

+ ν

∫

Ω

2

γ∗
+ ν

∫

Ω

2

γt
. (3.12)

Rewrite the sum

β

K
∑

i=1

∫

Ω

(ωt
i
− γ∗)2 + β

K
∑

i=1

∫

Ω

(ω∗
i
− γt)2

=β

K
∑

i=1

∫

Ω

(ωt
i
− γt)2 + β

K
∑

i=1

∫

Ω

(ω∗
i
− γ∗)2 + 2β

K
∑

i=1

∫

Ω

(ω∗
i
−ωt

i
)(γ∗ − γt),
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and bring it into (3.12), we have

Eµ,ν(γ
∗,ωt

1,ωt
2, · · · ,ωt

K) + Eµ,ν(γ
t ,ω∗1,ω∗2, · · · ,ω∗K)

=Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗

K
) + Eµ,ν(γ

t ,ωt
1,ωt

2, · · · ,ωt
K
)

+ 2β
K
∑

i=1

∫

Ω

(ω∗
i
−ωt

i
)(γ∗ − γt).

Thus, by (3.11), we obtain that

2Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K
)

≤Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K) + Eµ,ν(γ

t ,ωt
1,ωt

2, · · · ,ωt
K)

+ 2β
K
∑

i=1

∫

Ω

(ω∗i −ωt
i )(γ
∗ − γt). (3.13)

If t → +∞ in (3.13), we can derive that

2e ≤ Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K) + e,

which implies that Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K)≥ e. Thus, by (3.10), we get e = Eµ,ν(γ

∗,ω∗1,ω∗2,

· · · ,ω∗K). For any γ ∈W
1,2
0 (Ω),γ > 0, by the Algorithm 3.1, we have

Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K
)

≤Eµ,ν(γ
t+1,ωt

1,ωt
2, · · · ,ωt

K
) ≤ Eµ,ν(γ,ω

t
1,ωt

2, · · · ,ωt
K
), (3.14)

and

Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K )

≤Eµ,ν(γ
t ,ωt

1,ωt
2, · · · ,ωt

K) ≤ Eµ,ν(γ
t ,ω∗1,ω∗2, · · · ,ω∗K). (3.15)

Combining (3.14) and (3.15), we have

2Eµ,ν(γ
t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

K
)

≤Eµ,ν(γ
t ,ω∗1,ω∗2, · · · ,ω∗K) + Eµ,ν(γ,ω

t
1,ωt

2, · · · ,ωt
K)

+ 2β
K
∑

i=1

∫

Ω

(ω∗i −ωt
i )(γ− γt).

If t → +∞, we obtain

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K)≤ Eµ,ν(γ,ω

∗
1,ω∗2, · · · ,ω∗K).

Similarly, for i = 1, · · · , K ,ωi ∈W
1,2
0 (Ω) and ωi > 0, we have

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗

K
) ≤ Eµ,ν(γ

∗,ω1,ω∗2, · · · ,ω∗
K
),

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗

K
) ≤ Eµ,ν(γ

∗,ω∗1,ω2, · · · ,ω∗
K
),

...

Eµ,ν(γ
∗,ω∗1,ω∗2, · · · ,ω∗K) ≤ Eµ,ν(γ

∗,ω∗1,ω∗2, · · · ,ωK).
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4. Experimental Results

In this section, we present the experimental results to demonstrate the performance of
the proposed method. We compare the recovered reflectance results with those obtained
by the method proposed in [25]. Suppose there are K images of a same scene with different
exposures. In Algorithm 3.1, the initials are set asω0

i
= log(256)− si(i = 1, · · · , K), γ0 = 1.

We select the parameters α = 0.2 ∗ K , β = 2.8, µ = 1e− 5, ν = (1e− 5) ∗ K , τω = 0.006,
τγ = 0.006/K , the maximum outer iteration number N = 5 and inner iteration number
n = 100, the stop criteria εω = εγ = 1e − 3. Color channels (R, G, and B) are handled
separately. After γ is obtained by applying Algorithm 3.1 in the logarithmic domain, the
recovered reflectance is computed by R= exp(−γ).

In the first step and second step of Algorithm 3.1, based on the result of Theorem 3.1,
the only positive solution of the following cubic polynomial equation

x3 + bx2 + d = 0

with b 6= 0 and d < 0 need to be determined. Denoting

δ =
3

√

√

√

√

√

(
b3

27
+

d

2
)2 − b6

729
− d

2
− b3

27

=
3

√

√

√

√

√

d(
b3

27
+

d

4
)− d

2
− b3

27
. (4.1)

We note that all solutions of such cubic polynomial equation can be obtained from formulas

x1 =δ+
b2

9δ
− b

3
,

x2 =−
b

3
− δ

2
− b2

18δ
+

p
3i

2

�

δ− b2

9δ

�

,

x3 =−
b

3
− δ

2
− b2

18δ
−
p

3i

2

�

δ− b2

9δ

�

. (4.2)

See, for instance, [23]. We consider cubic equation (3.4), where the quadratic term coeffi-
cient bγ = Kτγβ(γ

j−ω)−γ j−τγα∆γ j. Since all parameters are greater than zero,ω> 0,
γ j > 0 and∆γ j ≥ −4γ j, we have bγ ≤ (Kτγβ−1+4τγα)γ

j . Bringing the parameters τγ,β
and α we use in the experiments into the above estimated bound of bγ, we estimate that
bγ ≤ (0.006× 2.8− 1+ 4× 0.006× 0.2)γ j = −0.9784γ j < 0. The constant term of (3.4)
is dγ = −τγν < 0. Therefore, it is obvious that δ is a real number and x1 in (4.2) is the
unique positive root of equation (3.4). Our numerical results also show that the solution
x1 of equation (3.4) is always positive, x2 and x3 are a pair of conjugate complex numbers.
Such results are consistent with our analyses shown above. For equation (3.5), we com-
pute all the solutions x1, x2 and x3 in (4.2), and we find that x1 is always the only positive
solution of cubic equation (3.5).
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(a) E1 (b) E2 (c) E3

Figure 1: The original three �house� images with di�erent exposures.

(a) (b) (c)

(d) (e) (f)

Figure 2: The re�etane images, by using images in Fig. 1, from left to right, �rst line: using E1, E2,

E3, respetively; seond line: using E1+ E2, E2+ E3, E1+ E2+ E3, respetively.

Two experiments are performed. Each experiment contains several images of a same
scene with different exposures. Base on retinex theory, all images in an image sequence
should have the same reflectance image, but in practice, some image details may be lost
in the saturated or over-dark regions due to the different exposure times. Therefore, the
reflectances recovered from images of a same scene with different exposures may be dif-
ferent. We employ the proposed model to get a reflectance image of the image sequence.
We expect that the obtained reflectance should be closer to the real reflectance by taking
advantage of the information got under different exposures.

Three “House” images with different exposures shown in Figs. 1 are used in the first
experiment. We name the first, second and third images as “E1”, “E2” and “E3”, respectively.
The recovered reflectances are shown in Fig. 2. Images (a)-(c) in the first line of Fig. 2 are
the results obtained by using single “E1”, single “E2” and single “E3”, respectively. That
is, the first line is the results got by using the method proposed in [25]. Images (d)-(f) in



168 X. Yang and Y.-M. Huang

the second line of Fig. 2 are the results obtained by applying the proposed method when
using “E1” and “E2”, “E2” and “E3”, “E1” and “E2” and “E3”, respectively. We simply denote
them as “E1+E2”, “E2+E3” and “E1+E2+E3”, respectively. From Fig. 2, we can find that the
recovered reflectance (f) is the best in terms of the visual quality and details recovery. The
illumination of reflectance (f) is more natural. Reflectance (a) is over-exposed. Reflectance
(b) is brighter, but details of walls and trees outside the window in (b) are weaker than
those in (f). The illumination of shelf, things on shelf and chairs in (f) are not brighter
than that in (b), but the details of these parts in both reflectances are almost the same. The
shelf part of reflectance (c) is over-dark. Reflectance (d) is a bit over-exposed, but (d) has
much more details than (a) does. The window and trees part of (e) is a bit better than
those of (f), but the details of the things on the shelf and chairs are not better than those in
(f). By summarizing the above comparison, (f) is the best when considering the reflectance
recovery effects of the whole image. The results of Fig. 2 show that the multiple exposed
reflectance recovery method is superior to the single exposed reflectance recovery method.

Five “Church” images with different exposures shown in Figs. 3 are used in the second
experiment. Same as in the first experiment, we name the images from left to right as “E1”,
“E2”, “E3”, “E4” and “E5”, respectively. The recovered reflectances are shown in Fig. 4.
Images (a)-(e) in the first line of Fig. 4 are the results obtained by using single “E1”, single
“E2”, single “E3”, single “E4” and single “E5”, respectively. Images (f)-(j) in the second line
of Fig. 4 are the results obtained by applying the proposed method when using “E1” and
“E2”, “E1” and “E2” and “E3”, “E1” and “E2” and “E3” and “E4”, “E2” and “E3” and “E4”
and “E5”, “E1” and “E2” and “E3” and “E4” and “E5”, respectively. We simply denote them
as “E1+E2”, “E1+E2+E3”, “E1+E2+E3+E4”, “E2+E3+E4+E5” and “E1+E2+E3+E4+E5”,
respectively. From Fig. 4, we can find that the recovered reflectance (j) is the best. The
illumination of reflectance (j) is more natural. Reflectance (a) and (b) are over-exposed.
Reflectance (c) is bright, but details of the painting on the window and the ceiling lamp in
(c) are weaker than those in (j). Both reflectances (d) and (e) are over-dark in the upper-
left part. Reflectances (f) and (g) are a bit over-exposed, but they both have much more
details than (a) does. Reflectance (h) is brighter, but details of the ceiling lamp and the
painting on the window in (j) are weaker than those in (h). Reflectance (i) is darker than
(j). The illumination of fresco on wall and pillar in (i) are brighter than those in (j), but the
details of these parts in both reflectances are almost the same. By summarizing the above
comparison, (j) is the best when considering the reflectance recovery effects of the whole
image. The multiple exposed reflectance recovery method is superior to the single exposed
reflectance recovery method.

5. Concluding Remarks

Retinex theory has a wide application areas. This theory explains color perception,
brightness perception, and constancies, theorizing that the color of an object is not de-
cided by the material property of the object. The main problem in retinex is to decompose
the reflectance function and illumination function. In this paper, a variational model for
retinex problem by utilizing multiple exposured images is constructed. The existence and
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(a) E1 (b) E2 (c) E3 (d) E4 (e) E5

Figure 3: The original �ve �Churh� images with di�erent exposures.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: The re�etane images, by using images in Fig. 3, from left to right, �rst line: using E1, E2,

E3, E4, E5, respetively; seond line: using E1+ E2, E1+ E2+ E3, E1+ E2+ E3 +E4, E2+ E3+ E4 +E5,
E1+ E2+ E3 +E4 +E5, respetively.

uniqueness of the solutions of the proposed model has been demonstrated. An alternat-
ing minimization method is designed to solve the proposed model and its convergence is
also demonstrated. Experimental results further show that the reflectance restored effects
by the proposed method are much better than single exposure retinex method in terms of
image detail preservation and visual quality.
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