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Abstract. Preconditioned modified Hermitian and skew-Hermitian splitting method

(PMHSS) is an unconditionally convergent iteration method for solving large sparse

complex symmetric systems of linear equations, and uses one parameter α. Adding

another parameter β , the generalized PMHSS method (GPMHSS) is essentially a two-

parameter iteration method. In order to accelerate the GPMHSS method, using an unex-

pected way, we propose an accelerated GPMHSS method (AGPMHSS) for large complex

symmetric linear systems. Numerical experiments show the numerical behavior of our

new method.
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1. Introduction

Many applications in scientific computing and engineering can be transformed into solv-

ing the following large sparse and complex symmetric linear equations

Ax = b, A∈ Cn×n, x , b ∈ Cn, (1.1)

where A = W + iT , W , T ∈ Rn×n are symmetric matrices, with W positive definite and

T positive semi-definite. Here and in the sequel, i denotes the imaginary unit. Such ap-

plications arise in quantum mechanics [23], diffuse optimal tomography [1], structural

dynamics [15], FFT-based solution of certain time-dependent PDEs [12], molecular scat-

tering [21], and lattice quantum chromodynamics [16], etc.

Generally, direct methods and iteration methods are two main classes of methods for

solving systems of linear equations. Direct solution methods, such as Gaussian elimination,
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LU-decomposition, are often preferred to iterative methods because of their robustness and

predictable behavior. However, when coefficient matrix A is very large and sparse, direct

solvers may cost too much time and storage. Iterative methods, such as Krylov subspace

methods, are easier to keep and exploit the sparsity of A, thereby require much less com-

puter storage than direct methods, and implement efficiently on high-performance comput-

ers than direct methods. Thus, iteration methods have been widely concerned by scholars

all the time, see [17,19,22] and references therein.

Based on the Hermitian and skew-Hermitian splittings, Bai, Golub and Ng [8] have

proposed the Hermitian and skew-Hermitian splitting (HSS) method for non-Hermitian

positive-definite linear systems. They have also proved that this method converges un-

conditionally to the exact solution of the system, and if it is used to solve the system of

linear equations with Hermitian positive-definite coefficient matrix, the convergence speed

is same as that of the conjugate gradient method. Owing to the effectiveness and robustness

of the HSS method, it has received attentions from many scholars, eg. see [5–7, 10, 11].

Even some scholars used HSS-type methods as the inner iterative solver, and Newton-type

methods as the outer iterative solver, proposed several effective methods for solving non-

linear equations, eg. [11,13,18,20,24,26,27].

Nevertheless, when A is complex, the convergence rate of each method referred above,

reduces significantly since the resolution of the linear system (1.1) needs a complex algo-

rithm. In order to overcome this deficiency, Bai et al. [2–4] proposed the modified HSS

(MHSS) iteration and preconditioned modified HSS (PMHSS) to solve complex symmetric

linear systems. Based on the PMHSS method, Xu [25] proposed its generalization for com-

plex symmetric indefinite linear systems, while Mehdi et al. [14] presented the generalized

preconditioned MHSS method (GPMHSS) for complex symmetric linear systems with two

parameters. When the parameters satisfy some ordinary conditions, the GPMHSS iteration

method can converge unconditionally with any initial vector.

In this paper, based on the GPMHSS method, we establish its successive-overrelaxation

scheme. This work is organized as follows. In Section 2, we introduce the GPMHSS method

due to Mehdi, Marzieh and Masoud [14]. In Section 3, we first give the corresponding fixed

point equations of the GPMHSS method, and illustrate the equivalence between the new

equations and (1.1). Then we propose an accelerated GPMHSS method (AGPMHSS) for

(1.1). The theoretical analysis is given in Section 4. Numerical experiments are made in

Section 5, which illustrate the numerical behavior of our new method.

2. The GPMHSS Method

In this section, we introduce the GPMHSS method [14] for solving large sparse and

complex symmetric linear system (1.1). The splitting iteration method can be described as

follows.

The GPMHSS iteration method [14]

Let x0 ∈ Cn be an arbitrary initial guess. Compute xk+1 for k = 0,1, · · · using the following
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iteration scheme until {xk}∞k=0
⊂ Cn converges,

(
(αV +W )xk+ 1

2
= (αV − iT )xk + b,

(βV + T )xk+1 = (βV + iW )xk+ 1
2
− i b,

where α,β are given positive constants, and V ∈ Rn×n is a prescribed symmetric positive

definite matrix.

In matrix-vector form, the above GPMHSS iteration method can be equivalently rewrit-

ten as

xk+1 = M(V ;α,β)xk + G(V ;α,β)b, k = 0,1,2, · · · , (2.1)

where
M(V ;α,β) = (βV + T )−1(βV + iW )(αV +W )−1(αV − iT ),

G(V ;α,β) = (βV + T )−1((βV + iW )(αV +W )−1 − i I).

Here, M(V ;α,β) is the iteration matrix of the GPMHSS method, and

ρ(M(V ;α,β)) ≤ max
eλ j∈sp(V−1W )

r
β2 + eλ2

j

α+ eλ j

· max
eµ j∈sp(V−1T)

Ç
α2 + eµ2

j

β + eµ j

= σ(α,β),

where eλ j, eµ j, j = 1,2, · · · , n, are the eigenvalues of V−1W and V−1T , respectively. sp(·)
represents the spectrum of the corresponding matrix.

Denote λ̃min and µ̃min the minimums of the eigenvalues of V−1W and V−1T , respec-

tively. If α ≥ 0, β > 0,
q
α2 + µ̃2

min
− µ̃min ≤ β <
Æ
α2 + 2αλ̃min, then σ(α,β) < 1, and the

GPMHSS iteration converges to the unique solution of the linear system (1.1), see [14].

3. The Accelerated GPMHSS Iteration Method

In this section, we present a successive-overrelaxation (SOR) acceleration scheme for

the GPMHSS iteration, and denote the new method as the AGPMHSS method.

From Algorithm 2, we can obtain the corresponding fixed point equations of the GPMHSS

iteration method �
(αV +W )x = (αV − iT )y + b,

(βV + T )y = (βV + iW )x − i b.
(3.1)

Then, we have the following theorem, which means equations (1.1) is equivalent to equa-

tions (3.1).

Theorem 3.1. If x∗ is the exact solution of equation (1.1), then it is also the exact solution of

equations (3.1), and vice versa.

Proof. Multiplying the first equation of (3.1) by i, then adding the result to the second

equation, we can get

(β −αi)V (x − y) = 0.
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Since both α and β are positive, matrix V is symmetric positive definite, then we can obtain

x = y.

Consequently, the fixed point equations (3.1) can be transformed to the following form

�
(W + iT )x = b,

(W + iT )x = b.

Hence, the exact solutions of (1.1) and (3.1) are same.

Equations (3.1) can be rewritten as

�
αV +W −(αV − iT )

−(βV + iW ) βV + T

��
x

y

�
=

�
b

−i b

�
. (3.2)

Denote

Â(α,β) =

�
αV +W −(αV − iT )

−(βV + iW ) βV + T

�
,

�
x

y

�
= z,

�
b

−i b

�
= f ,

then equation (3.2) becomes

Â(α,β)z = f .

Thus the process that uses the GPMHSS iteration to solve (1.1) is same as one that solves

(3.2) directly. And we will give a theorem to illustrate why the two processes are same.

Theorem 3.2. If matrices W, T are symmetric positive definite and symmetric positive semi-

definite, respectively, and α ≥ 0, β > 0,
q
α2 + µ̃2

min
− µ̃min ≤ β <

Æ
α2 + 2αλ̃min, then

matrix Â(α,β) is nonsingular.

Proof. From

Â(α,β) =

�
αV +W −(αV − iT )

−(βV + iW ) βV + T

�

=

�
I 0

−(βV + iW )(αV +W )−1 I

��
αV +W −(αV − iT )

0 S(V ;α,β)

�
,

where

S(V ;α,β) = (βV + T )− (βV + iW )(αV +W )−1(αV − iT )

= (βV + T )
�
I − (βV + T )−1(βV + iW )(αV +W )−1(αV − iT )

�

= (βV + T )
�
I −M(V ;α,β)
�
,

and matrices αV +W , βV + T are both positive definite, ρ(M(V ;α,β)) < 1, then Â(α,β)

is nonsingular.
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Remark 3.1. From Theorem 3.2, we can see, if α ≥ 0, β > 0,
q
α2 + µ̃2

min
− µ̃min ≤

β <
Æ
α2 + 2αλ̃min, then equation (3.2) must have a unique solution, which implies the

GPMHSS iteration converges unconditionally to the unique solution of the linear system

(1.1).

Using Jacobi iteration to solve equations (3.2), we can get the following iteration form

¨
xk+1 = (αV +W )−1(αV − iT )yk + b1,

yk+1 = (βV + T )−1(βV + iW )xk − i b2,
(3.3)

where

b1 = (αV +W )−1 b, b2 = (βV + T )−1 b.

The above form can be simplified as follows

zk+1 = J(V ;α,β)zk + g(V ;α,β),

where

zk =

�
xk

yk

�
, g(V ;α,β) =

�
b1

−i b2

�
,

J(V ;α,β) =

�
0 (αV +W )−1(αV − iT )

(βV + T )−1(βV + iW ) 0

�
.

For iteration (3.3), employing the successive-overrelaxation acceleration, thus we get

the following accelerated GPMHSS (AGPMHSS) iteration

¨
xk+1 = (1−δ)xk +δ(αV +W )−1

�
(αV − iT )yk + b

�
,

yk+1 = (1−δ)yk +δ(βV + T )−1
�
(βV + iW )xk+1− i b

�
,

(3.4)

here, δ is the relaxation factor. Similarly, the above form can be simplified as follow

zk+1 = N (V ;α,β ,δ)zk + g̃(V ;α,β ,δ),

where

N (V ;α,β ,δ) =

�
(1−δ)I δ(αV +W )−1(αV − iT )

(1−δ)δ(βV + T )−1(βV + iW ) (1−δ)I +δ2M(V ;α,β)

�
,

g̃(V ;α,β ,δ) =

�
δ(αV +W )−1 b

δ(βV + T )−1[δ(βV + iW )(αV +W )−1 − i I]b

�
,

M(V ;α,β) is the iteration matrix of the GPMHSS iteration method. Obviously, N (V ;α,β ,δ)

is the iteration matrix of the AGPMHSS iteration.

If δ = 1,

N1(V ;α,β ,δ) =

�
0 (αV +W )−1(αV − iT )

0 M(V ;α,β)

�
,
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is the iteration matrix of the GPMHSS method, and is also the iteration matrix of Gauss-

Seidel method for equations (3.1). If α= 0, iteration (3.4) is the SOR scheme of the biased

PMHSS iteration, and the iteration matrix is

N2(V ;α,β ,δ) =

�
(1−δ)I −iδW−1T

(1−δ)δ(βV + T )−1(βV + iW ) (1−δ) +δ2M(V ;α,β)

�
.

4. Convergence Analysis of the AGPMHSS Method

In this section, we will discuss the convergence properties of the AGPMHSS iteration.

First we give some lemmas that are useful to our main theorem.

Lemma 4.1. Under the assumptions of Theorem 3.2, then for equations (3.1), both Jacobi

method and Gauss-Seidel method converge with any initial guess, and

|λM | = |λN1
| = |λJ |2, (4.1)

where λM , λN1
, λJ are eigenvalues of matrices M(V ;α,β), N1(V ;α,β ,δ) and J(V ;α,β),

respectively.

Proof. If λN1
is a nonzero eigenvalue of N1(V ;α,β ,δ), from the definition of eigenvalue,

we can obtain ��λN1
I − N1(V ;α,β ,δ)

�� = 0.

Thus,

��λN1
I − N1(V ;α,β ,δ)

�� =
����
λN1

I −(αV +W )−1(αV − iT )

0 λN1
I −M(V ;α,β)

����

=λn
��λI −M(V ;α,β)

��
=0.

Similarly, if λJ is an eigenvalue of J(V ;α,β), we have

|λJ I − J(V ;α,β)| =
����

λJ I −(αV +W )−1(αV − iT )

−(βV + T )−1(βV + iW ) λJ I

����

=
��λ2

J I −M(V ;α,β)
��

=0.

Consequently, if λM is an eigenvalue of matrix M(V ;α,β), we can easily get |λM | = |λN1
|=

|λJ |2.

It is easy to know that the above two iteration are both convergent, since

ρ
�
M(V ;α,β)
�
= ρ
�
N1(V ;α,β ,δ)
�
=
�
ρ(J(V ;α,β))
�2
< 1.
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Lemma 4.2. Assume δ 6= 0, λ is the nonzero eigenvalue of N (V ;α,β ,δ), if µ satisfies

(λ+δ− 1)2 = λδ2µ2, (4.2)

then µ is the eigenvalue of J(V,α,β). Conversely, if µ is the eigenvalue of J(V,α,β), and

satisfies (4.2), then λ is the eigenvalue of N (V ;α,β ,δ).

Proof. If λ is the nonzero eigenvalue of N (V ;α,β ,δ), from the definition of eigenvalue,

we can obtain ��λI − N (V ;α,β ,δ)
�� = 0.

While

��λI − N (V ;α,β ,δ)
�� =
����

(λ+δ− 1)I −δ(αV +W )−1(αV − iT )

−(1−δ)δ(βV + T )−1(βV + iW ) (λ+δ− 1)I −δ2M(V ;α,β)

����

=
��(λ+δ− 1)((λ+δ− 1)I −δ2M(V ;α,β))−δ2(1−δ)M(V ;α,β)

��

=
��(λ+δ− 1)2 I −λδ2M(V ;α,β)

��. (4.3)

If λ and µ satisfy (4.2), thus, together with (4.3) and Lemma 4.1, then µ is the eigenvalue

of iteration matrix J(V,α,β). And vice versa.

The following theorem is the convergence theorem of the AGPMHSS iteration, we dis-

cuss two cases for the convergence.

Theorem 4.1. Assume A = W + iT , matrix W is real symmetric positive definite, T is real

symmetric semi-positive definite, and α, β satisfy α ≥ 0, β > 0,
q
α2 + µ̃2

min
− µ̃min ≤ β <Æ

α2 + 2αλ̃min, then

(I) when all eigenvalues of matrix J(V ;α,β) are real numbers or purely imaginary numbers,

then the AGPMHSS iteration converges if and only if

0< δ < 2.

(II) when matrix J(V ;α,β) has complex eigenvalues (i.e., the real part is not zero), then the

AGPMHSS iteration converges if and only if

0< δ < 2
p

2− 2 and τ < 1,

where τ is the module of λ.

Proof. Because we use successive over-relaxation acceleration for iteration (3.3), and

SOR iteration converges if relaxation factor 0 < δ < 2, thus we only consider the case of

0 < δ < 2. From the above discussion, we know when δ = 1, the AGPMHSS iteration is

the GPMHSS iteration, and converges under the assumption of the theorem [14]. Thus, we

consider two cases, i.e., 0< δ < 2 and δ 6= 1.

Denote µ the eigenvalue of matrix J , from Lemma 4.1, we have |µ|< 1.
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(I) When µ is a real number or pure imaginary number, simplifying equation (4.2), we

can get

λ2 +
�
2(δ− 1)−δ2µ2

�
λ+ (δ− 1)2 = 0. (4.4)

(i) If λ is complex, since the complex eigenvalues of matrix appear in pairs, thus

|λ|2 = λλ= (δ− 1)2,

but 0< δ < 2, hence |λ|2 < 1, and the AGPMHSS iteration converges.

(ii) If λ is real, (4.4) is a quadratic equation with real coefficients, thus, using the formula

for extracting roots, we have

λ=
δ2µ2 − 2(δ− 1)±p(2(δ− 1)−δ2µ2)2 − 4(δ− 1)2

2
,

here the discriminant part

∆ =
Æ
(2(δ− 1)−δ2µ2)2 − 4(δ− 1)2

=
Æ

4(δ− 1)2 − 4δ2µ2(δ− 1) +δ4µ4 − 4(δ− 1)2

=
Æ
δ2µ2(δ2µ2 − 4(δ− 1)).

Since |µ| < 1, and µ is a real or pure imaginary number, thus µ2 < 1. Together with

0< δ < 2, hence

∆ <
Æ
δ2(δ− 2)2 =
��δ(δ− 2)
�� = δ(2−δ),

consequently,

λ <
δ2 − 2(δ− 1) +δ(δ− 2)

2

= 1,

and the AGPMHSS iteration converges.

(II) When µ is a complex number with nonzero real part, i.e., µ = u1 + iu2,u1u2 6= 0,

then λ is complex, denote λ = τeiθ (τ ∈ R+,θ ∈ [0,2π]). In order to let the AGPMHSS

iteration converge, τ must satisfy τ < 1.

Substituting λ= τeiθ into (4.4), we have

(τeiθ +δ− 1)2 = τeiθδ2µ2,

i.e.,

µ2 =

�
τeiθ +δ− 1

τ
1
2 e

iθ
2 δ

�2
=

�
1

δ
τ

1
2 e

iθ
2 +
δ− 1

δ
τ−

1
2 e−

iθ
2

�2
.

Denote

τ1 =
1

δ
τ

1
2 , τ2 =

δ− 1

δ
τ−

1
2 .
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Figure 1: The intersetion part of the dis and ellipse.

Then

µ2 =
�
τ1e

iθ
2 +τ2e−

iθ
2

�2

=

�
(τ1 +τ2) cos

θ

2
+ i(τ1 −τ2) sin

θ

2

�2

= (u1 + iu2)
2.

Hence

u1 = (τ1 +τ2) cos
θ

2
, u2 = (τ1 −τ2) sin

θ

2
,

�
u1

τ1 +τ2

�2
+

�
u2

τ1 −τ2

�2
= 1.

Since |µ|< 1, then

u2
1
+ u2

2
< 1.

Consequently, δ must make the following equations have solutions






�
u1

τ1 +τ2

�2
+

�
u2

τ1 −τ2

�2
= 1,

u2
1 + u2

2 < 1,

(4.5)

i.e., the disc and the ellipse have points of intersection.

When 0 < δ < 1, τ1 − τ2 > τ1 + τ2, equations (4.5) can be transformed to the case

in Fig. 1. In order to make ellipse and disc intersect, the following inequalities must be

satisfied

τ1 −τ2 > 1 and τ1 +τ2 < 1.

From

τ1 −τ2 =
1

δ
τ

1
2 − δ− 1

δ
τ−

1
2 ≥ 2

√√1−δ
δ2

> 1,
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we have

δ < 2
p

2− 2.

Since

τ1 + τ2 =
1

δ
τ

1
2 +
δ− 1

δ
τ−

1
2 < 1,

computing square of each side in the above inequality and simplifying, then we obtain

τ+ (1−δ)2τ−1 < (δ− 1)2 + 1.

From

2(1−δ) ≤ τ+ (1−δ)2τ−1,

we get

(δ− 1)2 > 2(1−δ) ⇒ δ2 > 0.

Hence, the value range of δ is 0< δ < 2
p

2− 2.

When 1< δ < 2, τ1+τ2 > τ1−τ2, equations (4.5) can be transformed into the second

image in Figure 1. In order to make ellipse and disc intersect, the following inequalities

must be satisfied

τ1 +τ2 > 1 and τ1 −τ2 < 1.

Solving them, then we get δ ≥ 2, which contradicts with the value range of δ.

Hence the proof is complete.

5. Numerical Results

In this section, the validity and feasibility of numerical analysis for the AGPMHSS iter-

ation will be given. We compare our AGPMHSS method with the PMHSS method [3] and

GPMHSS method [14]. Consider the linear equations (W + iT )x = b [2], where

W = 10(I ⊗ Vc + Vc ⊗ I) + 9(e1eT
m
+ emeT

1
)⊗ I ,

T = I ⊗ V + V ⊗ I ,

here V = t r id iag(−1,2,−1) ∈ Rm×m, Vc = V − e1eT
m− emeT

1 ∈ Rm×m, e1 and em are the first

and last columns of identity matrix I , respectively. b is chosen as b = (1+ i)A1, where 1 is

a vector with all elements being 1.

In our computations, we choose x0 = 0 as the initial vector, the stopping criterion for

the iteration is set to be
‖ b− Ax (k) ‖2
‖ b ‖2

≤ 10−7.

Preconditioner V is an arbitrary symmetric definite matrix, for the convenience of op-

erations, we set V =W in the computation.

Denote (αexp,βexp) as the value of (α,β) that costs the minimum time of the GPMHSS

method. To be fair, we adopt the same (αexp,βexp) as the parameters of our AGPMHSS
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Table 1: The optimal parameters of the PMHSS, GPMHSS and AGPMHSS methods.

m PMHSS αexp GPMHSS (αexp ,βexp) AGPMHSS (α,β ,δ)

30 2.13 (0.43,1.87) (0.43,1.87,0.81)

40 2.01 (0.34,1.68) (0.34,1.68,0.75)

50 1.07 (0.36,1.59) (0.36,1.59,0.77)

Table 2: The numerial results of the PMHSS, GPMHSS and AGPMHSS methods.

m CPU time RES IT

PMHSS GPMHSS ADPMHSS PMHSS GPMHSS ADPMHSS PMHSS GPMHSS ADPMHSS

30 0.1914 0.1682 0.1458 8.33e-07 6.12e-07 5.76e-07 136 97 53

40 0.3385 0.2943 0.1758 7.91e-07 5.55e-07 5.56e-07 212 115 88

50 0.5267 0.4927 0.3721 8.91e-07 7.66e-07 7.19e-07 294 201 132

method, and experimentally optimal parameters δ. Similarly, for the PMHSS method, we

adopt experimentally optimal parameters α. Specific details can be obtained in Table 1.

In Table 2, numbers of iterations, which can reflect the rate of convergence, are denoted

with IT, and we denote by "CPU" the CPU time used in seconds, by "RES" the relative error

of the iterations.

It is obvious to see from Table 2 that the PMHSS method, GPMHSS method and AGPMHSS

method all can solve equation (W + iT )x = b efficiently. However, two parameters α and

β make the GPMHSS method converges faster and higher precision rate than the PMHSS

method. Furthermore, the relaxation factor δ makes the AGPMHSS method have the best

performing, which shows successive-overrelaxation acceleration is indeed effective.

6. Conclusions

In this paper we have introduced the AGPMHSS method, which is a successive over-

relaxation acceleration scheme of the GPMHSS method for solving linear complex sym-

metric equations. We first established the fixed point equations of the GPMHSS method,

then accelerate it, thus get our AGPMHSS method. And then we also have established the

convergence of the new iteration. Finally, the numerical experiments indicate its efficiency.

Since we just use the two optimal parameters in the GPMHSS method to implement the

AGPMHSS method, our acceleration scheme should be able to obtain better results. For

the normal/skew-Hermitian splitting (NSS) iteration method, Bai, Golub and Ng [9] ever

considered an successive-overrelaxation (SOR) acceleration scheme and gave an optimal

value of the SOR parameter. Theoretical analysis of optimal parameters for our AGPMHSS

method with two parameters will be on the way.

Acknowledgments

The authors are very much indebted to the referees for their valuable suggestions which

greatly improved the original version of this paper. The paper is partly supported by the



154 J. Wang, X.-P. Guo and H.-X. Zhong

National Natural Science Foundation of China (No. 11371145, No. 11471122), Science and

Technology Commission of Shanghai Municipality (No. 13dz2260400).

References

[1] S. R. ARRIDGE, Optical Tomography in Medical Imaging, Inverse Problems, 15 (1999), pp. 41–

93.

[2] Z. Z. BAI, M. BENZI, AND F. CHEN, Modified HSS iteration methods for a class of complex sym-

metric linear systems, Computing, 87 (2010), pp. 93–111.

[3] Z. Z. BAI, M. BENZI, AND F. CHEN, On preconditioned MHSS iteration methods for complex

symmetric linear systems, Numer. Algor., 56 (2011), pp. 297–317.

[4] Z. Z. BAI, M. BENZI, F. CHEN, AND Z. Q. WANG, Preconditioned MHSS iteration methods for a

class of block two-by-two linear systems with application to distributed control problems, IMA J.

Numer. Anal., 33 (2013), pp. 343–369.

[5] Z. Z. BAI AND G. H. GOLUB, Accelerated Hermitian and skew-Hermitian splitting iteration meth-

ods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), pp. 1–23.

[6] Z. Z. BAI, G. H. GOLUB, AND C. K. LI, Convergence properties of preconditioned Hermitian and

skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Com-

put., 76 (2007), pp. 287–298.

[7] Z. Z. BAI, G. H. GOLUB, L. Z. LU, AND J. F. YIN, Block triangular and skew-Hermitian splitting

methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), pp. 844–863.

[8] Z. Z. BAI, G. H. GOLUB, AND M. K. NG, Hermitian and skew-Hermitian splitting methods for non-

Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 603–626.

[9] Z. Z. BAI, G. H. GOLUB, AND M. K. NG, On successive-overrelaxation acceleration of the Hermitian

and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14 (2007), pp. 319–335.

[10] Z. Z. BAI, G. H. GOLUB, AND J. Y. PAN, Preconditioned Hermitian and skew-Hermitian splitting

methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), pp. 1–

32.

[11] Z. Z. BAI AND X. P. GUO, On Newton-HSS methods for systems of nonlinear equations with

positive-definite Jacobian matrices, J. Comput. Math., 28 (2010), pp. 235–260.

[12] D. BERTACCINI, Efficient preconditioning for sequences of parametric complex symmetric linear

systems, Electr. Trans. Numer. Anal., 18 (2004), pp. 49–64.

[13] M. H. CHEN, R. F. LIN, AND Q. B. WU, Convergence analysis of the modified Newton-HSS method
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