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Abstract. Pinning effect on current-induced magnetic transverse domain wall dynamics

in nanostrip is studied for its potential application to new magnetic memory devices. In

this study, we carry out a series of calculations by solving generalized Landau-Lifshitz

equation involving a current spin transfer torque in one and two dimensional models.

The critical current for the transverse wall depinning in nanostrip depends on the size

of artificial rectangular defects on the edges of nanostrip. We show that there is intrinsic

pinning potential for a defect such that the transverse wall oscillates damply around

the pinning site with an intrinsic frequency if the applied current is below critical value.

The amplification of the transverse wall oscillation for both displacement and maximum

value of m3 is significant by applying AC current and current pulses with appropriate

frequency. We show that for given pinning potential, the oscillation amplitude as a

function of the frequency of the AC current behaves like a Gaussian distribution in our

numerical study, which is helpful to reduce strength of current to drive the transverse

wall motion.

AMS subject classifications: 35R05, 58J35, 35Q60.
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1. Introduction

Recent research activities in precise control and manipulation of magnetic domain struc-

tures have been focused on magnetization dynamics driven by current due to its possible

application on the new digital data storage [13, 14]. From the application point of view,

the current induced magnetization reversal opens a way to control and manipulate the

magnetization dynamics, and it is much better to control the spatial region and individual

magnetic elements compared with the conventional magnetic field induced reversal. For

technological applications, the domain walls must be moved on much shorter timescales

which is easier to be achieved by a current. High current densities used for the experiments

yield the local higher temperature, which induces many magnons. Therefore, high velocity
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of domain wall motion and low current density are important issues to optimize magnetic

device performance. To realize lower current density, further understanding of the driving

mechanism as well as extrinsic effects, such as pinning, are necessary.

Magnetic domain wall dynamics induced by current in magnetic nanostrip has received

great interest both experimentally and numerically [2,4,5,8,10,12,15,21,22,27] for appli-

cations in magnetoelctronic devices. In the perfect magnetic nanostrip without defects, the

domain wall can move along the strip when an external magnetic field or polarized current

is applied along the wire axis. In realistic nanostrips, domain walls are not completely free

to move. There are various pinning sources such as kinds of defects and roughness. Pin-

ning effect of defects on domain wall motion is important and interesting phenomena and

has attracted much attention in recent years [6,7,24]. The control of domain wall is very

important in the study of current induced domain wall motion. One of the most feasible

domain wall control methods is to place defects on the magnetic nanowire [11, 19]. The

dynamics of magnetization under the applied spin current is modeled by the generalized

Landau-Lifshitz equation with a spin transfer torque term [26]. Numerical methods have

been investigated to solve the generalized Landau-Lifshitz system [20,23].

In this paper, we study the pinning effect on the transverse domain wall motion induced

by current spin torque in one and two dimensional models numerically. In Section 3, we

construct the nanostrip with rectangular defects of various size on the edges and initial

steady transverse domain wall. The two dimensional numerical calculation is carried out

for the full generalized Landau-Lifshitz equation with current spin transfer torque, and we

provide insight on the pinning effect of the domain wall dynamics induced by current in

the numerical results. In Section 4, a pinning potential term is involved to model defect in

one dimensional system for more study on intrinsic pinning effect on the transverse wall

motion by applying different kinds of current. We show the domain wall dynamics induced

by DC current flows, nanosecond-long current pulses and AC current flows with different

periods. By using current pulses and AC current, whose frequency is tuned to the precession

one, the domain wall’s oscillations can be amplified, which makes it possible to reduce the

strength of current to drive the domain wall motion.

2. Model and Numerical Method

We consider domain wall propagation induced by current in a sufficiently long nanos-

trip. By assuming the current flow in the x direction along the long length of nanostrip,

the spin transfer torque Γst [10,27] is written as:

Γst = −
bJ

M2
s

M×
�

M×
∂M

∂ x

�

−
cJ

Ms

M×
∂M

∂ x
, (2.1)

where bJ = P jeµB/eMs and cJ = ξbJ , P is the spin polarization of the current, je is the

current density in the x direction, µB is Bohr magneton, and ξ is a dimensionless constant

which describes the degree of the nonadiabaticity between the spin of the nonequilibrium

conduction electrons and local magnetization.
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The generalized dynamic equation of the magnetization is described by Landau-Lifshitz-

Gilbert equation in addition to the spin transfer torque as:

∂M

∂ t
= −γM×He f f +

α

Ms

M×
∂M

∂ t
+ Γst , (2.2)

where M is the magnetization vector, Ms is the saturation magnetization, γ is the gyromag-

netic ratio, α is the damping parameter, He f f is the effective field written as:

He f f =
A

M2
s

∆M+
HkM1

Ms

ex +µ0He − 4πM3ez. (2.3)

In (2.3), A is the exchange constant, A
M2

s
∆M is the exchange field, Hk is the anisotropy

constant, µ0 is the permeability of vacuum (µ0 = 4π× 10−7N/A2 in the S.I.), µ0He is the

external applied magnetic field, and 4πM3 is the demagnetization field by considering the

simple construction of transverse wall in thin nanotrip.

Substitute Γst into Eq. (2.2), then the generalized Landau-Lifshitz equation which is

equivalent to the Landau-Lifshitz-Gilbert equation mathematically can be written as:

∂M

∂ t
= −γM×He f f +

α

Ms

M× (M×He f f ), (2.4)

where the generalized effective field including the spin transfer torque is

He f f = He f f +
bJ

M2
s

M×
∂M

∂ x
+

cJ

Ms

∂M

∂ x
. (2.5)

In this paper, pinning effect on transverse wall motion driven by current in thin nanos-

trip is investigated by two and one dimensional numerical calculations. Explicit fourth-

order Runge-Kutta and second-order finite difference scheme are used to discretize (2.4)

temporally and spatially with Newman boundary condition. The grid size is 2nm and

2nm× 2nm in one and two dimensional calculation respectively. A sufficiently small time

step d t = 0.1Ms(1+α
2)/γA is necessary for the consideration of the stability of the numer-

ical scheme due to the exchange term included in the effective field.

3. Current Driven Domain Wall Depinning

We consider long nanostrips with rectangular defects of various thickness and width on

the edge of nanostrips. The defected strip is constructed by removing a rectangular defect

from one edge of a perfect magnetic nano strip. The nano strip and the location of the defect

are shown in Fig. 1 (a). The depth (height) and width of the rectangular defect are defined

as dD and wD respectively. The strip is 400 nm long in the x direction and 50 nm wide

in the y direction with defect in various size. Two dimensional magnetic calculations are

carried out using the fourth-order Runge-Kutta method with Newman boundary conditions.

The grid size is taken as 2 × 2 nm2. The x axis is taken as the easy axis as well as the
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Figure 1: A geometri
al 
onstru
tion formed by removing a re
tangular defe
t at the edge of a magneti


nano strip with width 50 nm. (a) Initial stable transverse domain wall. The defe
t is at the 
enter of

the wall. (b) Domain stru
ture under 
urrent bJ = −700 at t = 0.015 ns.
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Figure 2: The domain wall displa
ement as a fun
tion of time under 
urrent bJ = −300 for a perfe
t

nanostrip in (a), and a nanostrip with a 12× 10 nm

2
defe
t on one edge in (b).

direction of the current. The stray field is taken as the shape anisotropy 4πMs due to the

thin strip model. The damping parameter α is fixed to be 0.02, and the material parameters

are: the saturation magnetization Ms = 14.46 × 105 A/m, the exchange constant A =

2.× 10−7 erg/cm, the anisotropy HK = 500 Oe, γ= 1.76× 107 Oe−1s−1.

The initial stable domain wall is at the center of the defect on one edge of the strip as

shown in Fig. 1 (a). Under a current, the geometrically confined domain wall structure

is shown in Fig. 1 (b). When a current is applied along the direction of the long axis of

the strip, the domain wall begins to move opposite to the direction of the current. If the

current is smaller than the critical values, the domain wall oscillates around the center of

the defect. The oscillation amplitude decreases with time due to the Gilbert damping, and

the wall eventually stops at the defect. The domain wall displacement as a function of

time is shown in Fig. 2 (b), for the 12× 10 nm2 defect and the applied current bJ = 300

antiparallel to the long axis of the strip. For comparison, the displacement for the perfect
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Figure 3: (a) The 
riti
al 
urrent for the depinning of the wall as a fun
tion of the width of the defe
t

on one edge with �xed defe
t depth dD = 10 nm. (b) The 
riti
al 
urrent for the depinning of the wall

as a fun
tion of the height of the defe
t with �xed width wD = 12 nm. The maximum displa
ement of

the wall under the 
riti
al 
urrent for di�erent defe
t as a fun
tion of the width or the height of the

defe
t are shown in (
) and (d).

strip with the same current is shown in Fig. 2 (a). The effect of the defect on the domain

wall motion is apparent. The maximal displacement is 48 nm without defect and only 8

nm for the strip with defect.

When the current is sufficiently large, the domain wall will be able to escape from

pinning by the defect. We define the critical electric current as the minimum values required

for the depinning of the wall. The critical values of the current depend on the size of the

defects. We compare the critical current and the effect region for various height dD and

width wD of the defects in Fig. 3. Fig. 3 (a) and (c) show the critical currents and their

effecting region for different widths wD with fixed depth dD = 10 nm. For different depths

dD with fixed width wD = 12 nm, the comparisons are shown in Fig. 3 (b) and (d). The

values of the critical current and the effected region illustrate that the height of the defect

has stronger effect on the wall dynamics. The pinning potential is stronger when the defect

is higher. It is interesting to take a look at the domain wall mobility in the vicinity of

the defect. To observe the domain wall propagation clearly, we consider two symmetrical

defects with the same size at both edges of the strip. The size of the defect is wD = 16
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Figure 4: (a) Geometry of the strip with two symmetri
al defe
ts at both edges of the strip, and the

initial transverse wall is away from the defe
ts. (b) The displa
ement of the domain wall as a fun
tion

of time under 
urrent bJ = −1800, and both defe
t size is 16× 12 nm
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Figure 5: The instantaneous velo
ity of the domain wall versus its lo
ation for the defe
ts with di�erent

size.

and dD = 12. The initial domain wall position is 60 nm away from the defect position as

shown in Fig. 4 (a). The applied current is bJ = 1800 which is large enough to overcome

the pinning potential of the defect. The displacement of the wall is shown in Fig. 4 (b).

When the domain wall arrives to the left side of the defect, it moves moves faster suddenly

as dropping into the defect, and moves slowly inside the defect. When it goes out of the

defect, the defect can accelerate the moving as pushing the wall away from it.

To illustrate the effect of the defect, in Fig. 5, we plot the velocity of the domain wall

as a function of x and for various size of defects and the applied current is bJ = −1600.

When the domain wall is sufficiently close to the defect, it experiences a strong attracting

force from the defect and starts to accelerate until it reaches the maximum velocity at the

defect center. The velocity then starts to decrease due to the same attracting force. The

maximum velocity increases with the size of the defect.

In conclusion, when the domain wall passes through a defect, it experiences an attrac-



Pinning Effect on Current-Induced Domain Wall Motion in Nanostrip 843

tion force so that it accelerates before it reaches the center of the defect and it slows down

after it passes the defect. This attraction force increases with the size of the defect. There

is a critical current bJ c above which the domain wall will be able to escape this attraction

force due to the defect and continue to move along the wire. On the other hand, below

the critical current, the domain wall oscillates around the defect and eventually stops. Our

results also indicate that the critical current bJ c is affected more by the height of the defect

than the width of the defect. A pinning potential can be constructed to model the effect of

defect which is explained in the next section.

4. Amplification of Domain Wall Motion

As is shown in Section 3, the injection of current below a threshold (critical value)

through a domain wall confined to a pinning potential results in its processional motion

within the potential well. From experimental results and numerical results in a simple

1D model, Luc. Thomas [16] shows that the motion of domain walls under nanosecond-

long current pulses is surprisingly sensitive to the pulse length. By using a short train of

current pulses, whose length and spacing are tuned to the precession frequency, the domain

wall’s oscillations can be resonantly amplified, which makes it possible to reduce the critical

current for driving the domain wall motion. The study of the domain wall dynamics driven

by AC current is a new consideration and is investigated in this paper.

In this section, we study the domain wall motion in a nanowire along x axis in a one

dimensional model with an artificial pinning potential to model the defect. The domain wall

motion is studied under different kind of current: DC current, nanosecond-long current

pulses and AC current flows. We focus on the amplification of the wall oscillation induced

by AC current compared with that driven by DC current, which is studied for the first time

mathematically.

The generalized dynamic equation of the magnetization is described by Landau-Lifshitz

equation with the spin transfer torque as in Eq. (2.4). In general, a pinning effect exists in

the micromagnetic experiments created by a defect in the nano particle as we have shown

in Section 3. In our one dimensional calculation, a simplified pinning potential Hp [16,17]

is adopted with the strength of the pinning potential Kp depending on the size of defect,

and the width of the pinning potential q0. The pinning potential is usually written in the

form:

Hp =







0 |d − d0| >= q0,

±2Kp

d − d0

q0

|d − d0| < q0.
(4.1)

where d is the position of the domain wall center, d0 is the defect position. The sign be-

fore Kp is positive for the tail-to-tail wall and negative for the head-to-head wall. In our

calculations, we focus on the tail-to-tail wall.
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The effective fieldHe f f is written explicitly as:

He f f =γ

�

HK M1

Ms

ex +
2A

M2
s

△M− 4πM3ez +Heex + Hpex

�

+
bJ

M2
s

M×
∂M

∂ x
+

cJ

Ms

∂M

∂ x
, (4.2)

where HK is the anisotropy constant, A is the exchange coefficient, and 4πM3 is the simpli-

fied demagnetization field as the shape anisotropy.

To solve the magnetization vector as a function of position x and time t, we use the

fourth-order Runge-Kutta method. Initially, the domain wall at d0 = 0 is a Neel wall in the

following form θ = π − 2 tan−1 exp(x/W0), ϕ = 0, where W0 =
p

2A/HkMs is the initial

domain wall width. In the following numerical calculations, we consider the parameters:

Ms = 8×105 A/m, A= 1.3×10−11J/m, HK = 500 Oe, γ= 1.76×107Oe−1s−1, q0 = 50 nm

and the damping parameter α = 0.008.

In polar coordinates, the magnetization vector M can be described by θ which repre-

sents the angle between the magnetization vector and the x axis, and ϕ which is the out of

plane angle of the magnetization vector projected in the yz plane. We focus on the domain

wall dynamics described by the domain wall displacement and the out of plane component

m3.

4.1. Domain wall motion induced by DC current with pinning effect

The effect of pinning potential on the dynamics of the domain wall motion is studied

in this section. The initial domain wall is at the position of the pinning.

As is shown in Section 3, for a perfect nanostrip without defect, when a current is

applied along the x axis, the domain wall moves away from the initial position opposite

to the current direction and the magnetization of the domain wall is no longer confined in

the wide plane of the nanostrip. The velocity of the domain wall decreases and eventually

the domain wall stops with a fixed nonzero m3 component. The maximal displacement of

domain wall depends on the amplitude of the current. There is a critical current, above

which the domain wall will be distorted.

In the first example, we set the strength of the pinning potential KP = 20000 and ξ = 0

and apply a current with bJ = −50. Initially, the domain wall is located at the center of the

defect. The dynamics of the domain wall is similar to that presented in Section 3. When the

current is applied, the domain wall starts to move. Since the current is not strong enough, it

oscillates around the defect and eventually stops at the defect center. In Fig. 6, the domain

wall position and maximum of m3 are plotted as a function of time. As we increase the

current density bJ , the maximum displacement increases as is shown in Fig. 7. Maximum

value of out of plane component m3 has the similar behavior.

We compare the maximal displacement of the domain wall by applying different cur-

rent with fixed pinning potential Kp = 20000 and ξ = 0. The maximal displacement and

maximum m3 are functions of increasing current as shown in Fig. 7. It is necessary to apply
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stronger current to move the domain wall in larger oscillation as the domain wall pinned

by the defect.

The critical current is defined as the minimum value required for the depinning of the

domain wall. If the current is stronger than the critical value, the domain wall will be able

to escape from the pinning and eventually move away from the defect. This critical current

depends on the strength and width of the pinning potential. In Fig. 8 (a), we show the

domain wall displacement for different bJ but with a fixed pinning potential. It is obvious

that given a defect, there is an intrinsic oscillation potential that is independent of the

current. On the other hand, the oscillation frequency increases with the strength of the

pinning potential as shown in Fig. 8(b).

Actually, the role of the nonadiabatic torque is very similar to the magnetic field [6].

The domain wall oscillates around a new equilibrium position under a DC current. Fig. 9

shows the maximal displacement and the new equilibrium position as functions of ξ which
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is linear in the left figure, and the maximal m3 increases with increasing ξ as shown in the

right figure. In the calculations, we also find that the frequency of the domain wall position

oscillation is lower for larger ξ.

4.2. Amplification of magnetic domain wall motion by pulses and AC current

In reality, the critical current for driving the domain wall is too high for application

purpose. One way to reduce the threshold value was presented by Luc. Thomas [16]

that the oscillations in the domain wall position can be resonantly amplified by using a

short sequence of current pulses, whose lengths and separations are tuned to its oscillation

frequency.

In our calculation, we show the domain wall position and maximal m3 (Fig. 10) as func-

tions of time under two current pulses of same amplitude with different pulse precession
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Figure 10: Two pulses of the same amplitude with di�erent periods vs the 
orresponding domain wall

displa
ement, and magnetization 
omponent m3 as fun
tions of time. Kp = 20000, ξ= 0.

periods, for fixed Kp = 20000 and ξ = 0.

The current pulses with different precession periods lead to different domain wall mo-

tion. When DC current is applied, the domain wall oscillation has an intrinsic frequency

which depends only on the defect. It is then possible to amplify this domain wall oscilla-

tion from the resonance effect by applying a pulse current with appropriate frequency. We

compare the maximal displacement and m3 for current pulses with different frequencies for

fixed pinning potential in Fig. 11. The amplification of domain wall position is the strongest

when the period of current pulse is 1.4ns with parameters Kp = 20000, ξ= 0.

It is obvious that AC current with a suitable frequency can amplify the domain wall posi-

tion oscillation more than the pulse current with the same amplitude. Here, we consider an

AC current b j = −50 cos(2πt/T ). The current amplitude is 50 and T is the current period

1/ f ( f is the frequency). The AC current is unsteady, thus the nonadiabatic spin torque has

to be involved in the calculation. The typical value of ξ who describes c j/b j is within the

range of 0.0025-0.04 [18]. We use the value ξ= 0.01 and the strength of pinning potential

Kp = 20000. Fig. 12 shows the current with T = 1.0 ns, the corresponding maximum value

of m3 and the domain wall displacement as functions of time. The trajectory of the domain

wall in the phase space (p, m3) is shown in Fig. 13.
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Figure 11: The maximum values of the domain wall displa
ement and m3 at the domain wall 
enter

under 
urrent pulses with di�erent frequen
ies. Kp = 20000, ξ= 0.
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Figure 12: With AC 
urrent bJ = −50 cos(2πt/T ) whose amplitude is 50 and period T = 1.0 ns, the 
or-

responding domain wall displa
ement and magnetization 
omponent m3 as fun
tions of time. Traje
tory

of domain wall in the phase spa
e (p, m3).

The maximal values of the domain wall displacement and m3 in the oscillations depend

on the amplitude and the frequency of the ac current. The domain wall will oscillate with

the same frequency as that of the AC current. We show in Fig. 14 the maximum displace-

ment (oscillation amplitude) and the maximum value of m3 as a function of the frequency

of the AC current. It is clear that the oscillation amplitude attains maximum with a fre-

quency which is close to the intrinsic frequency of the potential with strength Kp = 20000

under DC current. The oscillation amplitude as a function of the frequency of the ac current

behaves like a Gaussian distribution.

5. Conclusion

In conclusion, when the domain wall passes through a defect, it experiences an attrac-

tion force so that it accelerates before it reaches the center of the defect and it slows down
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Figure 14: The maximum domain wall displa
ement and maximum value of m3 at the domain wall


enter as fun
tions of the frequen
y of the AC 
urrent. Kp = 20000, ξ= 0.01.

after it passes the defect. On the other hand, below the critical current, the transverse

domain wall oscillates damply and finally stops at the defect site in nanostrip. The criti-

cal current for the transverse wall depinning depends on the size of the rectangular defect

and is affected more by the height of the defect. For a fixed defect, there is an intrinsic

oscillation potential which is independent of the strength of the applied current. The am-
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plification of the transverse wall oscillation for both displacement and maximum value of

m3 is significant by applying AC current and current pulses with appropriate frequency in

our numerical study. The oscillation amplitude as a function of the frequency of the AC

current behaves like a Gaussian distribution. This investigation would be useful to design

optimal parameters to control and manipulate domain wall motion in magnetic recording

devices.
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