Numer. Math. Theor. Meth. Appl. Vol. 11, No. 1, pp. 187-210
doi: 10.4208/nmtma.2018.m1621 February 2018

Adaptive Parallel Primal-Dual Method for Saddle
Point Problems

Xiayang Zhang*
Department of Mathematics, Nanjing University, Nanjing210093, China
Received 22 June 2016; Accepted (in revised version) 24 March 2017

Abstract. The primal-dual hybrid gradient method is a classic way to tackle saddle-
point problems. However, its convergence is not guaranteed in general. Some restric-
tions on the step size parameters, e.g., o < 1/||ATA||, are imposed to guarantee the
convergence. In this paper, a new convergent method with no restriction on parame-
ters is proposed. Hence the expensive calculation of ||ATA|| is avoided. This method
produces a predictor like other primal-dual methods but in a parallel fashion, which
has the potential to speed up the method. This new iterate is then updated by a sim-
ple correction to guarantee the convergence. Moreover, the parameters are adjusted
dynamically to enhance the efficiency as well as the robustness of the method. The
generated sequence monotonically converges to the solution set. A worst-case 0(1/t)
convergence rate in ergodic sense is also established under mild assumptions. The nu-
merical efficiency of the proposed method is verified by applications in LASSO problem
and Steiner tree problem.

AMS subject classifications: 49K35, 49M27, 90C25, 65K10

Key words: Adaptive, Parallel, Primal-dual method, Saddle-point problem, LASSO.

1. Introduction
This paper is concerned about solving the following saddle-point problem:

minmax g(x)+y Ax — f*(y), (1.1)
xeX yey

where A € ™" X C R", Y C ®R™ are closed convex sets, g, f* are convex functions
and f* is the conjugate function of a convex function f, f*(x) = sup,cgoms (yTx—f(x)).
Note that this saddle-point problem is a primal-dual formulation of the nonlinear primal
problem

min g(x) + f (Ax). (1.2)

*Corresponding author. Email address: 369318324@qq. com (X. Y. Zhang)

http://www.global-sci.org/nmtma 187 (©)2018 Global-Science Press

188 X. Y. Zhang

The formulation (1.1) has a wide range of applications including image denoising [6,24],
statistical learning [21], compressive sensing [9] etc.

In many problems of practical interest, g and f* do not share common properties,
making it difficult to derive numerical schemes for (1.1) that address both terms simul-
taneously. Fortunately, it frequently occurs in practice that efficient algorithms exist for
minimizing g and f* separately. The primal-dual hybrid gradient (PDHG) method was
first mentioned in [24] to tackle total variation (TV) minimization problems. This method
removes the coupling between g and f*, enabling each term to be addressed separately.
Because it decouples g and f*, the steps of PDHG can often be written explicitly, as op-
posed to other splitting methods that require expensive minimization sub-problems. As a
result PDHG shows high numerical efficiency when applied to total variation (TV) mini-
mization problems. However the convergence of PDHG is highly dependent on the choice
of parameters. In [4], Chambolle and Pock’s (CP) method improved PDHG method by a
change on dual variable update. Their method is convergent and numerically competitive.
CP method was further studied by He and Yuan in [12] . They explained the method from
the aspect of Proximal Point Algorithm (PPA) and a relaxation factor was also introduced to
PPA scheme to accelerate the convergence. More recently, Goldstein et al. introduced the
Adaptive Primal-Dual Splitting (APD)method in [9] which tunes the step size parameters
automatically for the CP method. The primal-dual decomposition method was proposed by
O’Connor and Vandenberghe in [18] which applied the Douglas-Rachford splitting method
to various splitting of the primal-dual optimality conditions.

More specifically, a general framework of some existing primal-dual methods solve the
saddle-point problems (1.1) by the following procedures:

k+

x**1 = argmin, x {g(x)+xTAT yk + illx — x|},

k= yk+1 4 9(Xk+1 _ Xk), (1.3)

y* = argminyey {f*(y) — yTA* + 5= lly — ¥R
In (1.3), 6 is called the combination parameter, o > 0 and 7T > 0 are proximal parameters
of the regularization terms, also referred as step size parameters in e.g. [9]. In [4], it
was shown that the primal-dual procedure (1.3) is closely related to the extrapolational
gradient methods in [15, 20], the Douglas-Rachford splitting method in [8,16] and the
alternating direction method of multipliers (ADMM) in [5]. With specific choice of pa-
rameters in (1.3), some existing primal-dual algorithms for (1.1) are recovered, and their

convergence can be guaranteed when certain restriction are imposed on these parameters.
Below are some examples.

e When 0 = 0, the primal-dual procedure in (1.3) reduces to the PDHG scheme in [24]
which is indeed the Arrow-Hurwicz algorithm in [1]. This scheme has shown numer-
ical efficiencies in [24] for TV image restoration problems. In [6], the convergence
of the PDHG method has been studied insightfully by imposing additional restric-
tions ensuring that the parameters ¢ > 0 and 7 > 0 are small. However, a counter
example has been given in [11] to show that PDHG method could be divergent even
if 0 > 0 and T > 0 are fixed at very small values.

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 189

e When 6 € [0, 1], the CP algorithm proposed in [4] is recovered. Note that it could
be numerically beneficial to tune the parameters o and 7 as shown in, e.g., [12,23];
and it is still possible to investigate the convergence of the primal-dual scheme (1.3)
with adaptively-adjusting proximal parameters, see, e.g., [2,6,9].

e When 6 = 1, by the analysis in [4], the convergence of (1.3) can be guaranteed
under the condition

to <1/||ATA]|. (1.4)

In [12], a primal-dual scheme (1.3) with 6 =1 is proved to be an application of the
the proximal point algorithm (PPA) in [17], and thus the acceleration scheme in [10]
can be immediately used to accelerate the primal-dual procedure (see Algorithm 4
in [12]). Its numerical efficiency has also been verified therein. This PPA revisit has
been further studied in [19], in which a preconditioning version of the primal-dual
procedure (1.3) was proposed.

e When 6 € [—1,1], it is shown in [12] (see also Lemma 3.1) that the matrix associ-
ated with the proximal regularization terms in (1.3) is not symmetric and thus the
scheme (1.3) cannot be categorized as an application of the PPA. Nevertheless, the
convergence can be guaranteed if the output of the primal-dual subroutine (1.3) is
further corrected by some correction steps (see Algorithms 1 and 2 in [12]).

At the Discussion part of [4], some remaining challenges for the existing primal-dual
methods are posed. The first challenge is how to deal with the linear operator A with a
large (or unknown) norm. Since most primal-dual methods e.g. PDHG method in [24], CP
method in [4] and RPPA in [12], require (1.4) be satisfied to guarantee the convergence,
the calculation of the norm must take place before initializing the parameters. This com-
putational load can be huge as the dimension of A grows. Another challenge mentioned is
how to automatically determine the smoothness parameters or to locally adapt to the reg-
ularity of the objective. It is thus natural to ask whether we can make some improvements
on the primal-dual procedure (1.3) so that there are no restrictions on parameter o and 7?
In addition, can the parameters be adjusted automatically during the iteration progress?

It is worth mentioning that the primal and dual variables are updated in turns when
6 € (—1,1] in (1.3); On the other hand the primal and dual variables are updated in
parallel when 6 = —1. So one more question is whether we can find a method based on
the parallel version of the primal-dual subroutine (1.3).

The Parallel Primal-Dual(PPD) Algorithm studied in this paper provides an affirmative
answer to the above questions. Our method comprises of two stages: a parallel version of
primal-dual subroutine (1.3) as prediction stage and a simple correction stage. At correc-
tion stage, step size a; is calculated to guarantee the convergence of PPD method. At the
end of each iteration, parameters 7, and o} are adjusted by the calculation of residuals
(see also [3,9,14]). Both size and ratio of 7, and o} are tuned quantitatively. Parameter
adjustment by calculation during the iteration makes the method less sensitive to initial
parameter choices. In practice it is quite helpful since the optimal parameters are difficult

190 X. Y. Zhang

to determine. The PPD method adjust the parameters differently from the APD method.
In PPD method the aggressiveness of adjustment is based on the ratio of residuals while
in APD method, the aggressiveness decreases geometrically with iteration increases. The
initial value 7,0 in PPD method can take any value while they are set to be very large in
APD method. The quantitative approach of parameter adjustment in our method is more
efficient than APD in [9] by the experiments in later sections.

The major contributions of this paper are listed below.

e The proposed methods compute the primal and dual variables in a parallel fashion,
while the other primal-dual methods update the primal and dual variables alterna-
tively. This approach can reduce the computational time greatly if parallel computing
is performed.

e The proposed algorithm does not require any prior information about the linear
operator A. The parameter o and T can take any positive values. In fact, as the
dimension of the problem grows, it becomes much more expensive to evaluate the
spectral norm of A which is essential for the implementation of most primal-dual
methods.

e The parameters o and 7 are adjusted dynamically during the iteration progress.
This not only speed up the convergence but also make the method more robust to
different problem settings. Unlike the non-adaptive primal-dual methods e.g. PDHG
method, CP method and RPPA whose convergence speed rely heavily on the precise
choice of parameters o and 7, our method performs consistently well for different
initial parameters.

The contents of this paper are arranged as follows. The new algorithm is proposed in
Section 2 and its convergence and computational complexity are analyzed in Sections 3
and 4 respectively. In Section 5 the new algorithm is tested in some applications and the
numerical results are reported. Finally the conclusion of this paper and future works are
discussed in Section 6.

2. The parallel primal-dual algorithm
For simplicity primal and dual variables are grouped together and defined as follows:
T
u=(3) bw=g+f 0 Fw=(4Y), a=xxv.
The following notations are also used:
T, AT I, —-1.AT T, 0
Qk = -1) Mk =) Hk = -1)
A o I oA I, 0 o I

where 14,0} > 0 are positive. It is clear that

M, =H; 'Q, Qp + Qi = 2Hy.

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 191

Algorithm 2.1 Parallel Primal-Dual Algorithm.

1. Initialize T >0, 07 >0,7T>0,5 >0, n<(0,1), xX°eX, y’ev.
2. While py, d; > tolerance do:

(a) Prediction

k

=

= argmin,ey {g()+xTATy* + 5L|lx - ¥},

) ' @.1)
{ g =argminyey {f*(y) -y Ax + 5 -lly - y¥IP)

(b) Compute residual norms

5

{ Pk = T;:1|)(Xk — 3k - AT(y* - 575
di = o M| (6% = 75 + orAGek - 25))|.

(c) Calculate step size
ar = (Ilx* = 2*1?/ o+ 11y* = 75017 /00) / (vap} + 0rd) -

(d) Correction

(2.2)

xk+1=xk_ak xk_)'z.k_TkAT(xk_)'z.k)),
+1 _ k
Yo=Y T

¢ yE=g*+ oAk - 79).

(e) Update Parameters (If p; > 2d; or p; < %dk)

T = min (max(y/api/ (1 — addy, 1= ()74 7)),

(2.3)
011 = min(max (/@ di /(1 — api, 1 - ()0, 7).

3. End while.

Moreover,
Qz +Q; is positive definite.

The Parallel Primal-Dual(PPD) Algorithm is presented in Algorithm 2.1. The loop in
Algorithm 2.1 begins by performing the general framework of primal-dual methods (1.3)
with 8 = —1 in step 3.

In step 4 we compute the primal and dual residuals and store their norms in p; and
dy respectively. Since the convergence of the primal-dual methods can be measured by the
norm of the residuals (see also [3,9,14]), we can use them as the stopping criteria.

Most primal-dual methods require the parameter 7o < 1/ ||A||§ to guarantee the con-

192 X. Y. Zhang

vergence. In this paper we try to deal with issue of not knowing the spectral norm of A.
When the condition 7o < 1/ ||A||§ is not met, a variate step-size is chosen in step 5 to
guarantee the convergence. This step size is used in step 6 for correction.

Step 1 to 6 alone is still sensitive to the initial parameter values according to some
preliminary numerical experiments. There has to be a way to tune the parameters auto-
matically so that the algorithm fit different type of problems. In addition the tuning should
not be intuitive but rather be quantitative. In fact, a simple modification allows the method
to be applied when the optimal value of parameters is unavailable.

Without any prior knowledge of the linear operator A, assume 7,0, =c "1/ ||A||§ for an
unknown constant ¢. Lemma 3.2 indicate that a; is a rough approximation of ¢/(1+ c¢)
and a; > c¢/(1+c), hence ¢! > (1 — a;)/ay. In practice we let

Ay

Tk+10k+1 = 1 TkOk>

—ay
the value of 7104, will be a bit larger than 1/||A||2, the optimal value for most primal-
dual methods.

Moreover, the primal and dual residuals should be of the same scale so that the con-
vergence of primal and dual variables are balanced. The purpose of balancing parameters
is also explained in [9] and [3]. In our approach, we set the aggressiveness of balancing
direct proportional to the residual ratio, i.e., Tj41/0 k41 = Pr/dk-

Combining the two goals above, our quantitative parameter upstate scheme is

Tk+1 = Max (\/akpk/(l —ap)dg, 1— (T))k) Tks
Oj41 = Max (\/akdk/(l — a)pr> 1 — (Tl)k) O-

Take note of that 1 measures the aggressiveness bound for parameter adjustment. In
practice 1) can be close to 1 so that it does not affect the parameter tuning yet could
guarantee the convergence In addition, we set ceilings T and o for the parameters for the
convergence purposes. In practice, the value of T and o approach to their optimal value
fast and vibrate around that value. Therefore we can set the ceilings to be very large so
that it hardly has any effect on parameter tuning.

The PPD method and APD method adjust the parameters different in the following
ways. In PPD method the aggressiveness of adjustment is based on the ratio of residuals,
the large value of p;/dy, the more aggressive 7,0 changes. In APD method, the aggres-
siveness decreases geometrically with iteration increases. The initial value 740y in PPD
method can take any value while they are set to be very large in APD method. The quanti-
tative approach of parameter adjustment in our method is more efficient than APD in [9]
by the experiments in later sections.

3. Convergence analysis

The following assumptions are imposed to guarantee the convergence of the PPD algo-
rithm.

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 193

1. The sequences {7;} and {0} are positive and bounded.

Tk—Tk+1 Tk—Ok+1
5 ’O}'

2. The sequences {¢,} is summable, where ¢; = max{ = -

Apparently Algorithm 2.1 satisfies Assumption 1 because of the ceilings 7 and o. The
geometric series {n*} = {(n)*} in Algorithm 2.1 makes Assumption 2 satisfied as n < 1. If
the ceilings 7 and o are not reached, (2.3) is equivalent to

T = max (/api /(= adi, 1 - () 74,
k41 = Max (\/akdk/(l —a)pr, 1 — (n)k) 0.

Thus Tiiq/7k = 1 — (0)* and (7 — Tr1)/Tk < (n)X. For the same reason, (o) —
Or+1)/0k < (MK hence ¢, < (n)k. If the ceiling is reached, T;.; = T > Ty, ¢r = O.
Therefore the sequences {¢;} is summable.

We first present the following VI reformulation of (1.1): Find u* = (x*, y*) such that

VI(LF0): u'eQ 6w)-0w)+w—u)'Fu)>0 VYueQ=XxY.

Obviously, the mapping F(u) is affine with a skew-symmetric matrix, and it is thus mono-
tone. We denote the solution set of VI (€, F, 8) by 2*, and assume it is nonempty.

k
Lemma 3.1. For given uk = (;k), let ii* be defined by (2.1). Then

i*eq, 0w -06(i)+ u-i*) F@@) > u-i*) Quf-i*), Vueq.
Proof. Using the optimal condition of (2.1), we obtain
g(x) = g(Z)+(x = xTATY + 7 (7F - xFp 20, VxeX,
FO - O+ -7 Ak + o ' -y =0, Vyer.

Combining the above two inequalities yields ii* = (¥*, 7%)T € Q, and
. ek \T
(o0 se) (it
(D) =F(3") y-i*
AT 7k T AT gk _ ik g
A caxe)T 4 oo ey =0
k y -y
for all u € Q. The assertion is proved using the notations in previous section. O

Lemma 3.2. There exists a constant ¢ > 0 such that

lelalzl >cllAll?2, Vk>o,

and the corresponding step size a; > ﬁ forall k > 0.

194 X. Y. Zhang

Proof. Such c can be easily found since 7 and o are bounded above. Steps 5 and 6 in
Algorithm 2.1 are equivalent to

ag = Ilu = a3, /M~ a9, (3.1a)
uF = ok — a M (uk -). (3.1b)
On the other hand, we have
e = @),
=t [t = P+ ol = 4+ ol = 29 + eillaTo - 7Y
S el R PR o e e Al

=) (e =2 o ot -)

<

=l =,
c Hi
Substituting it in (3.1a), the assertion is proved. O

k
Lemma 3.3. For given u* = (;k), let @i* and u**! be defined by (2.1) and (2.2). If

T,:10'1:1 > c||Al|2, then

2 c

He 1+4c¢
Proof. Substituting u = u* in (3.1), it follows that

(@ —u*) " Q(uk — %) > 0 (i) — o(u*) + (@ —u*) " F(d¥), Vu*eq'
Note that
(@ —u)"F(@@) = @ -u")" F*), 0(d) - o)+ (@ —u*) Fu*)>o0.
Combining the above inequalities yields
T - kT - AT

(uk —u) Qk(uk - uk) > (uk - uk) Qx (uk - uk) = ||uk - ukHHk'
Using (3.1a) and (3.1b), the inequality below is established.
2 2
He Hu H,
2 ‘ 2
e (GO R bl

%||2 * ~ 2

=l =y, = [l =) — o @,
200 (uF —) T Qu(uk — 0¥) — () (u* — B M HM (uf —)

ZZakHuk — ﬁk”ilk —ay (ak (u* — ak)MkTHkMk (u* - ﬂk))

||uk+1 —u*

2

S Huk - &k”ilk, Yu* e QF. (3.2)

* k+1 _ %

u

[uf —u

-

— k _ ~k”2
—akHu u H'

Using Lemma 3.2, the assertion follows immediately. O

Adaptive Parallel Primal-Dual Method for Saddle Point Problems

Lemma 3.4. For all initial uy € £, let the sequence {u;} be defined by (2.1). Then

= 2 2
a7,)
u —u — U —u
Z (” Hy, Hyq

2
<2C4 Cyllu — u*||* + 2C4 Cy ||u® — u* Hy

where Cy =[:2,(1 —)%, Cp = Dopp Pk and Cy is a constant such that
llu— U*”}zqk < Cyllu—u*|?, Vk>o0.

Proof. We observe that
Hyq = Hy (Tk/ng ka/(C)ka) <H(1-¢u)7",
Therefore
it =, < = (= @07 < = (- 007
k 00

w] Ja=e0 " s —uw [Ja-e0™

i=1 i=1

S

Since {¢;} is summable, the product Cy; = l—[?il(l — ¢;)" ! is finite, then
et — 12, < Cyllu® — I

We use (3.6) to derive the following inequality.

‘ H2 ” ‘ ”2)
u —u —lju —u
(” Hy Hy—4

(e = wlf, =l = ull5, 0 = #-0))

<

s T TDVe TDVe T

k 2
Pia [—

IA

2 k *
H, +2||u —-u

2
Hy
2
Hy

$r-1 (ZHU —u*

IA

2¢_1 (CHHu — u*”2 + CUHuO —u*
-1

~

<2C, Cy[Ju—uwt||* +2¢, ¢y |u - |}

HO.

The proof is completed.

195

(3.3)

(3.4)

(3.5)

(3.6)

196 X. Y. Zhang

Theorem 3.1. The sequence {uX} generated by Algorithm 2.1 converges to a solution of
VI(Q,F, 0) (3).

Proof. Summing (3.2) for 1 < k < n leads to

n

c k112
Z 1 ”uk _uk”Hk
Py +c

n
SN(Te
k=1

Letting n — oo and applying (3.3), we obtain

= 2

2l =]l < +oo.
k

k=1

2
Hy

2
H,®

n+l _ u*

2
) +Hu0—u* —||u

2 k *
— U —u
H ” Hyy

It follows that limy._, Huk — ”k”ik = 0. Since

k 00
T2 Tiq1 = To l_[(TiH/Ti) Z To l_[(l —¢i) Vk,
i=0 i=0

the sequences {7,} is bounded. So is {o;}. Therefore |Hy|| and ||Q|| are also bounded.
Hence

lim |[u* — || = 0. (3.7)
k—o00
Since {u*} is bounded by (3.6), {ii*} is also bounded.
Let u® be a cluster point of {ii} and {ih}is a subsequence which converges to u™. Let
{u*} and {u"i} be the induced sequences by {i*} and {ii*/}, respectively. It follows from
lemma 3.1 that

ieq, 0w -0+ w—i) F@@h) > (u-u") Qb —i%), Vueq.
Since ||Qg|| is bounded, it follows from the continuity of 6(u) and F(u) that
u® e, O —-0w™®)+u—-—u®)'Fw®)>0, YueQ.

The above variational inequality indicates that u® is a solution of VI (€2, F). By using (3.7)
and lim;_, uk = u®™, the subsequence {u*} converges to u®.
Similar to (3.5), we have

||un+1 _ oo|

u

n
< fJu —uely, [Ja =007
Hy1 — us u ij. k(]‘ qbl) 5
l:j

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 197

where k; <n <k; + 1. Let n approaches infinity, ||H,|| converges to a positive value,

lim ||u"Jr1 —u°°| < lim Hu OOH -1=0.
n—o00 Hn+1]—>oo ij
Consequently,
lim Hu"+1 — uOOH =0,
n—o0
i.e., {uk} converges to u®. The proof is completed. O

4. Computational complexity

Theorem 4.1. The solution set of VI (2, F, 0) is convex and it can be characterized as
=(ieQ: (6w - 6() + (u— i) F(u) > 0}.
ue)

Proof. The proof is an incremental extension of Theorem 2.3.5 in [7], or see the proof
of Theorem 2.1 in [13]. O

Theorem 4.1 implies that i € Q is an approximate solution of VI (2, F, 8) with the
accuracy € > 0 if it satisfies

O(w)— 0@+ uw—-a)'F(u)>—e, YueQna(i), 4.1)
where 2(i1) = {u| ||lu — || < 1} is a neighborhood of ii.

Theorem 4.2. The Algorithm 2.1 converges at rate of €0(1/t) in ergodic sense. More specifi-
cally let the sequence {u*} be generated by Algorithm 2.1 with arbitrary initial input u,, for
the sequence {ii,} defined by

1
i, = Z ik,
Py
the convergence bound below is satisfied:

0(w) — 0(i,) + (u— i) F(u)
2(1 +c)/2c
t
Proof. It follows from (3.1a) and (3.1b) that
O(w) — 0(i) + (u—a) ' F(w)
> (u—)" Qu(uf — @)

1
~ar (u—)" Hy (uf — ")

(=l —woll3, —2C4Cullug — w13, — 2C4 Cullu—u*[1?). (4.2)

1
= (=, = =+ It = I+ -) @)
k

198 X. Y. Zhang

where the last equality uses the polar identity for normed vector spaces, i.e.,

1 1
(a=b)"H(e—d) =5 {lla—dlZ ~ lla - clE} + 5 {llc = bIi% Il — bII3 }.
Consider the last term of (4.3) and take note that Q{ + Q. = 2H;.. We obtain
st =,

=[| k=) - aedr(* —)|,

_ k_~k2_ k _ k|2 2 k _ ~ky||2
= = [, — e = | +]|l = @[,

= - a5, — 200t = a5, + ol — a7,
= = [, — el — 2, (44)
Substitute (4.4) into (4.3) leads to
O(u) — 0(i) + (u—i) F(u)
1 1 »
e L Tl TRt P B P
Due to the monotonicity of F(-), we have
ay [6(w) — 6(@) + (u— i) F(u)]
>ay [0(w) — 6(@) + (u—)" F(iD)]
1
22 (flu =2, = =) - (4.5)
Summing (4.5) for 0 <k <t — 1 and using Lemma 3.3, we obtain
t=1
D ey [0(w) - 0(@) + (u— D) F(u)]
k=0
1 ¢ k+1]|2 k|2
5 22 (=, =)
1 2 . =
25 (”u—u H,_,)u—u HHO) - Ek_l (|u _uHH,<)u _u”Hk 1)
1
> (he=wt i, = e =l15,) - ; (4.6)

Let Zk:o a; = a. Itis easy to verify that a > 1L+C t. By the definition of i, and the convexity
of 6(u), we can get

t—1

ab(i,) < Y af(ik).

k=0

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 199

Consequently,

t—1
a[0(w)—6(i) + (u—) F(u)] > ;ak [0 - 0@ +w-1)Fw)]. @7

Combining (4.6) and (4.7) yields the bound

0(u) — 0(ii,) + (u—ii) Fu)
1
> (llu=w'lly, , = e =wll5, = 2C, Cullu | 264 Colu® = w7,)
>(1 +c)/2c

2= (= wollf, 264 Coluo —u*[[7, = 264 CulJu—w'|*)

By (4.1), Algorithm 2.1 produce an ¢(1/t) approximate solution after ¢ iterations. O

5. Numerical experiments

In the literature, the PDHG method in [24] as well as the other primal-dual methods,
see, e.g., [4,9,12] have exhibited good numerical performance. The aim of this section is
to verify the acceleration of the proposed parallel primal-dual algorithm over other primal-
dual methods. Moreover different parameters and problem settings are chosen to prove
the robustness of the new methods.

Algorithm 2.1 is applied to LASSO model and Steiner tree problem to show its nu-
merical advantage over other primal-dual methods. We compares its performances with
other four primal-dual methods mentioned in this paper, namely the primal-dual hybrid
gradient method (PDHG) in [24], the first-order primal-dual method (CP) in [4], the re-
laxed proximal-point method (RPPA) in [12] and the adaptive primal-dual splitting method
(APD) in [9]. The relaxation factor in RPPA is set to be 1.5 which is an estimation of op-
timal value because the true optimal value varies from case to case. As stated in the
conclusion in [9], the backtracking APD method shows no consistently better performance
over the non-backtracking version if the ideal step size parameters are known, we omit the
backtracking step in the algorithmic comparisons. The APD method is thus simplified by
taking the ideal parameter magnitude ty0, =1/ ||A||§.

All codes were written and implemented in Matlab 2014a, and all experiments were
carried out on a computer with a 2.21 GHz AMD Athlon Dual Core processor and 2 GB of
memory.

5.1. LASSO

In this subsection, the parallel primal-dual algorithm are applied to solve the LASSO
model. The LASSO model was first mentioned in [21] to solve variable selection regression
problems. Given a sample matrix A and the response b, the LASSO model learns the linear
regression coefficient x by solving

1
i —||Ax — b]|? 5.1
min Bllx|ly + 2|| 115 (5.1)

200 X. Y. Zhang

for some scaling parameter 3. By the definition of conjugate function, (5.1) can be refor-
mulated as the following minmax problem:

minmax xll +"Ax = 21y + bl 5.2
The data for our test is generated in the same fashion as that in Section 11.1 in [3]. Each
element of the sample matrix A is drawn from an N(0, 1) distribution. A true value x‘™¢
is generated with a certain number of non-zero entries, each sampled from an N(0,1)
distribution. The label b are computed as b = Ax""™"¢ + v where v is a gaussian noise.
The columns of sample matrices A are not normalized as in [3]. This modification is
reasonable because in some applications, such as portfolio optimization, the magnitude of
each column stands for the stock prize hence should not be normalized. The default setting
of LASSO problem in this subsection use 7, = o, = 1/||Al|y(except for PPD method),
sample size is 1000, feature number is 10000, 8 = 0.1f,,,,,, humber of non-zero element
in x"“¢ is 100. Here Bq = IIAT b||, is the minimum value of 3 that any value leads to a
trifle solution zero.

It is important to point out that 7,0 is not known for PPD method. We draw a random
number from interval (0,10/||Al|,) for both T, and o in PPD for all the LASSO problem
unless the initial value is specified otherwise.

To show the numerical results of LASSO problems in this subsection, we run all the
methods for 500 iterations and use both figure and table to illustrate the error against
iteration number and runtime. Here we define error in the following way: We run both
CP method and RPPA method for 2000 iterations to ensure the objective value of both
methods differs by less than 1071, We use this value as the approximate optimal val-
ue of the objective function value objval*. Then the error is calculated by |objvalk —
objval*||/|lobjval*||, where objvalX is the current objective function value. This error is
plotted against both iteration number and runtime in all figures and is listed in all tables
in this subsection. In the tables, we use NA to show a result if the value of error is not
reached within 500 iterations. The runtime is presented in the parenthesis with unit in
second.

The PDHG, CP and RPPA methods all require prior knowledge of ||A||, which is difficult
to calculate. In the test, the function "normest” in Matlab is used to estimate ||Al|. It is the
reason that the plot of the above methods does not start from 0 second.

Fig. 1 and Table 5.1 illustrate the performances of all five methods with equal parame-
ters. However the value of 7,0 takes various magnitude. Apparently CP and RPPA do not
guarantee the convergence when the magnitude of 7,0 exceed its upper bound 1/ ||A||%
(see also (1.4)). The same occurs to PDHG if the magnitude of 7,0 further increases. On
the other hand all methods suffer from the magnitude decrease of parameters except PPD
and APD. This phenomenon was also mentioned and verified in [9].

Fig. 2 and Table 5.1 show the performance of the tested methods with parameter 7 and
o of optimal magnitude but different ratio. Two examples are chosen as the ratio between
parameters are 0.25 and 4. The impact of different ratio on the algorithmic performance is
obvious. This is possibly because the optimal choice of ratio is indeed close to 7/c = 0.25.

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 201

5
OA
5

(=}

objval*||/||objval®|
8{3

objval*||/||objval®|
8{3

-—PDHG
10" 10"%l-cP
e 2 —-—RPPA
S l—peD
=10% =10%
0 300 400 0 100 200 300 400 500
Iteration No. Iteration No.
@ to=00=4/lAll,. () T =09 =1/l|All,.
—10" —10"
% 5 —~PDHG
2 2 —-—CP
g g = —-—RPPA
=10 =1 ~—APD
5 S —PPD
S ~-PDHG =
3, 10 ——CP 3
10 1
" —-—RPPA « \
£ --APD g
£, 420 PP] ‘ ‘ ‘ £, ‘ ‘ ‘ ‘
0 100 200 300 400 500 0 5 10 15 20 25
Iteration No. CPU time.
(© To=0,=0.9/||Al,. (d) 7o =00=4/lIAll,-
1010 1010
% —~PDHG % —~PDHG
5 Reea 5 Reea
=, 0 2
=100 Ko ~-APD >~ ~—APD
& e e —PPD 5 —PPD
>) >
L g
110 I
3 3
2 2
;:10'2“ ‘ : : : ;:10'2“ : : :
0 5 10 15 20 25 0 5 10 15 20
CPU time. CPU time.
(&) To=00=1/|lAll,. ® 19=00=0.9/|All,.

Figure 1: LASSO problem with different 7,0 size.

Table 1: Iteration counts and runtime for LASSO problem with different 7,0, size.

7"”1““1:;1’”““1 PDHG CP RPPA APD PPD

<1077 43(6.36) NA NA 77(3.59) | 31(1.16)

Ty= 0= 2 <103 156(8.71) NA NA 178(7.93) | 88(4.01)
Al <100 311(12.0) NA NA 349(15.3) | 150(6.21)

<101 180(8.32) | 77(6.50) | 63(6.37) | 77(2.95) | 31(0.92)

Ty= 0= <103 NA 178(8.29) | 160(8.10) | 178(6.56) | 89(2.58)
lall, <100 NA 349(11.3) | 264(10.2) | 349(12.8) | 152(4.72)

<10 ! 20009.98) | 87(7.85) | 71(7.54) | 77(2.88) | 31(0.84)

To= o= 2 <103 NA 210(10.0) | 188(10.0) | 178(6.35) | 88(2.26)
lAll <1070 NA 389(13.5) | 306(12.2) | 349(12.5) | 151(3.89)

When the ratio between parameters are closer to optimal, PDHG, CP and RPPA methods
are much more efficient. However when the ratio is far away from optimal setting, APD
and PPD work better since the ratio is balanced during iteration progress. This result is not

202 X. Y. Zhang

o,
=]
o,
=]

objval*||/||objval®|
=)
objval*||/||objval®|

—PDHG
10|~ CP
o ——RPPA o
s —APD E
510'20 | —PPD | 510.
oo 100 200 300 400 500 — oo 100 200 300 400 500
Iteration No. Iteration No.
(@ 79 =0.5/|lAll,, 00 = 2/[|All,. (b) 7o =2/llAll, 00 = 0.5/[All,.

—10" —10"

5 —PDHG 5 —PDHG
= —CP 2, —~CP

3 —RPPA g —RPPA
= -APD = -APD

*E —PPD E | —PPD

5 g

| |

], .20))))], .20)))

=105 5 10 15 20 25 =10 5 10 15 20

CPU time. CPU time.
(@ 79 =0.5/||All,, 00 = 2/[All,. (@) 7o =2/llAlly, 00 = 0.5/]|All.

Figure 2: LASSO problem with different 1,0, ratio.

Table 2: Iteration counts and runtime for LASSO problem with different 7,0, ratio.

"’”““f% PDHG cp RPPA APD PPD

<1077 120(7.58)| 48(6.28) | 41(6.21) | 77(2.80) | 31(1.7D)

To= L oy= 2 <10° 369(11.8)] 119(7.4D| 111(7.36)] 178(6.25)| 89(3.18)
2ljAll Al <10° NA 205(8.84)| 183(8.54)| 349(11.9)] 158(4.89)
<107 312(9.90)| 128(6.91)[96(6.40) | 77(2.79) | 31(0.908)

o= 2 o= 1 <103 NA 324(10.4)| 233(8.79)| 178(6.70)] 88(2.7D
07 Al 0T 2)al, <107 NA NA 459(12.8)| 349(12.5)| 151(4.46)

surprising since PDHG, CP and RPPA have been proved to be very sensitive to parameters
(see [9]).

Fig. 3 and Table 3 illustrate the performances of all five methods with different problem
scales, i.e., all other parameters take the default setting except the scale of A. We can
see that our method is the fastest for all problem scales especially the large ones. The
advantage of PPD method become more and more obvious as the problem scale increases,
since the computation of ||Al|, is getting too expensive.

Fig. 4 and Table 4 demonstrate the performance of the test methods with different type
of data input. As the ratio between feature number and sample size grows, PPD method
and AP method remains the best ones but the other three methods become more and more
efficient. The performance of methods are similar to that Fig. 2 and Table 5.1. This could
be explained as different data leads to different optimal parameter o7 ratio. When the
ratio between feature number and sample size grows, the optimal 7,0 ratio approaches
1 in this case.

Adaptive Parallel Primal-Dual Method for Saddle Point Problems

OA
3

203

OA
G

objval*||/||objval®|
8{3

o‘
5]

~PDHG
|~cP

objval*||/||objval®|
8{3

o‘

=]

oy —RPPA \\\\’w\ﬁ 2,
g ~APD g ~—APD
i: 20/ [ZPPD | i: 20 [_PPD
=107 100 200 300 400 500 =107 100 200 300 400 500
Iteration No. Iteration No.
(a) dimension of A is 200x2000. (b) dimension of A is 500x5000.
—10° —10"°
5 = —~PDHG
S 5 s
3 g, ~—RPPA
— =10 —APD
§10.5 ~PBHG] 'é —PPD
"% —~—CP S 107
-10| —RPPA
% 107 aPD %
= —PPD =
;1045 ——) . S0)))
0 100 200 300 400 500 0 0.2 0.4 06 0.8
Iteration No. CPU time.
(c) dimension of A is 2000x20000. (d) dimension of A is 200x2000.
—10" —10°
3 ~PDHG 5 ~—PDHG
2 —CP 2 -—CP
g, —~RPPA 3 —RPPA
=10 —APD = —APD
5 —PPD 5 PPD
?10"07 \\\\\\\ Q?
i:m'” i:w' : ‘
0 1 2 3 4 5 0 20 40 60 80
CPU time. CPU time.
(e) dimension of A is 500x5000. (f) dimension of A is 2000x20000.
Figure 3: LASSO problem with different size.
Table 3: Iteration counts and runtime for LASSO problem with different size.
%}1’” PDHG CP RPPA APD PPD
<1071 118(0.173) 38(0.113) 26(0.105) 38(0.0525) [28(0.0503)
A <10°° 308(0.309) | 105(0.158) | 106(0.164) | 105(0.139) 80(0.107)
2002000 <10° NA 197(0.221) | 178(0.218) | 197(0.259) | 137(0.179)
<1077 128(1.76) 54(1.39) 47(1.36) 54(0.469) 29(0.332)
A <1073 458(2.66) 137(1.76) 125(1.72) 137(1.20) 81(0.685)
300x5000 <10° NA 215(2.12) | 210(2.09) | 215(1.89) | 140(1.12)
< 107! 238(49.1) 90(41.5) 74(39.3) 90(10.8) 33(3.21)
A <10°° NA 245(49.9) 185(46.0) 245(29.4) 99(9.20)
2000%20000 <10~° NA 489(64.5) | 328(54.6) | 489(58.5) | 172(15.9)

All the above experiments proved that our PPD method works the best for various
problem settings. To further show the robustness of our method, we conduct the LASSO

experiment for different balancing parameter 8 and sparsity level of x

true The result are

204

OA
3

0

S
=
<
&1 0
K
S
=2
<

||objval®

0 100 200 300 400 500
Iteration No.

(a) dimension of A is 2000x10000.

~PDHG
-—CP

—RPPA
—APD
—PPD

|lobjval® — objval*||/||objval*||
2 3

0 100 200 300 400 500
Iteration No.

(¢) dimension of A is 500x20000.

= —~PDHG
H ~CP

5 ~~RPPA
= —APD
%5 —PPD
= i T

2

i3

'\

3

g

:§ -15]

=107 2 3 10

4 6
CPU time.

(e) dimension of A is 500x10000.

X. Y. Zhang
5
—10
£10°
= \
§1° —~PDHG
S —CP
< 10" +RPPA
E —APD
;é: 15 —PPD_|

o.

o

100 200 300 400 500
Iteration No.

(b) dimension of A is 500x10000.

10

o

= —~—PDHG
2 ~CP
g, —RPPA
=10 -—APD

5 —PPD

’.;\

10
3

i:1 0-20

0 10 20 30 40

CPU time.

(d) dimension of A is 2000x10000.

o
™

§ —~PDHG
2 ol —CP
<10 —~RPPA
= —-APD
T . —PPD
$10”

H

i3

| o

« 107

I~

=

g s

=105 5 10 15 20

CPU time.

(f) dimension of A is 500x20000.

Figure 4: LASSO problem with different sample size to feature number ratio.

Table 4: Iteration counts and runtime for LASSO problem with different sample size to feature number

ratio.
"’”““f% PDHG CP RPPA APD PPD
<107 192(22.4) | 72(18.6) | 54(18.1) | 72(4.55) 30(1.46)
A <10° NA 162(21.6) | 123(20.3) | 162(10.4) | 75(3.57)
200010000 <10° NA 430(30.1) | 287(25.6) | 430(27.2) | 124(5.90)
<107 133(2.69) | 80(2.29) [66(2.16) | 80(1.38) | 28(0.372)
A <10 ° 432(5.16) | 219(3.58) | 176(3.10) | 219(3.69) | 118(1.58)
500x10000 <10 ° NA 439(5.60) | 436(4.69) | 439(7.35) | 197(2.61)
<107 131(5.74) | 95(5.14) 74(4.74) | 95(3.11) | 21(0.535)
A <10°° 458(2.66) | 305(8.65) | 239(7.52) | 305(10.0) | 206(5.26)
50020000 <10 ° NA NA NA NA NA

shown in the following figures. PPD method is robust to various problem settings.

To show the important role of tuning parameters, we use PPDn to denote the PPD

method without tuning parameters. We compare the APD, PPDn and PPD methods for

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 205

objval*||/||objval®|
=)

|lobjval® — objval*||/||objval®||

—~PDHG
1()'10 —-~—CP
=, —-—RPPA
§ --—-APD
R ‘ g, 20| —PPD ‘
10 0 100 200 300 400 500 =10 0 100 200 300 400 500
Iteration No. Iteration No.
(@) B =0.05B4- (b) B =0.584x-
10°
10° ™~

e

~PDHG
~CP
10 —RPPA L

|lobjval® — objval*||/||objval*||
S
&

~-APD
10.15 LFQ) ‘\/\'\P\A\,\
0 100 200 300 400 500

Iteration No.
(© B =0.9Bmqx-
Figure 5: LASSO problem with different balancing parameter f3.

Aspoxs000, the initial proximal parameter value are 7o = 0.5/||Al|5, 09 = 2/||Al|, and 7o =
2/||All5, 0o = 0.5/||Al|, respectively. Fig. 7 illustrate the trend of proximal parameter t*
and o*. Fig. 8 shows the convergence of the objective function value and x* for APD, PPDn
and PPD method. We observe that x* converges to the solution x™¢ as objvalk converge
to objval*, and their speed is positively related. The role of parameter tuning is significant
as PPD method is much faster than PPDn method in Fig. 8. In addition our quantitative
way of tuning parameters performs better than the empirical way of APD method from the
results of all the experiments above.

5.2. Steiner tree

The primal-dual methods are further tested on Steiner tree problem. The Steiner tree
problem requires to find the shortest interconnection for a given set of objects. A typical
example is

. cllxy=Dbyllz + [lx1 = balla + [Ixg = bslla + [lx3 — byll,
min (5.3)
xj€X; +lxs = bslly +[lx7 — xalla + [lx2 — x3]l2-
Apparently (5.3) is equivalent to
, y1 (xy=by) +y, (x1 = by) + y; (x5 — b3) + y, (x3 — by)
min max T T T (5.4
Xj€X; ¥j€B, +¥5 (x3 = bs) + ¥y (1 — x2) + ¥ (X2 — Xx3),

206

o

X. Y. Zhang

(=]

&

=]

~PDHG
—CP
~RPPA
APD
—PPD

\

o

(b)

300 400
Iteration No.

100 200 500

11—0 non-zero elements in x.

—in APD
——c in APD
——tin PPDn
——a in PPDn
-==tin PPD
s in PPD

*:10 *:10
3 3
3,0 2
=10 =10
T 1 g
L1070t 10
5 5
2 g
g, .20 ‘ ‘ ‘ i
=10 100 200 300 400 500 10
Iteration No.
(a) 2—(1)0 non-zero elements in x4,
—10°
5 —~PDHG
2 —CP
£10° —~RPPA
= APD
-
IS
| -
<. 10"
=
2
e : : :
0 100 200 300 400 500
Iteration No.
() % non-zero elements in x"™“.
Figure 6: LASSO problem with different true sparsity.
10° ; 10°
—tin APD
——o in APD
& ~s—tin PPDn o
o ——c in PPDn =
S10'h ---tin PPD 107
[cin PPD =
5 z |
EI! g
510725 ; Em’z
£ f &
10’“0’ - - 100l

. I L L
80 100 120 140 160 180

lteration No.

(@ 7o =0.5/|Ally, 00 = 2/l|All,-

20 40 60 200

20

(b)

. r
80 100 120
Iteration No.

40 60 140 160 180 200

To = 2/||Allz, 09 = 0.5/[All,.

Figure 7: Trend of parameters in LASSO problem.

which is indeed a saddle-point problem of form (1.1).

The tested problem is from example 1 of [22]. The coordinates of 10 regular points and
their tree topology can be found in Tables 7.1 and 7.2 in [22]. The approximate optimal
location was obtained by running the CP method and PPD method until both the primal
and the dual variable are differed by less than 10710 in all elements. This approximation

is used as x* The error in our experiment is calculated by ||x* — x*|| and plotted against
the iteration number.

Fig. 9 illustrates the performances of primal-dual methods when 7, and o take equal
value but different magnitude. Fig. 10 shows the performance of all methods when 7, and

Adaptive Parallel Primal-Dual Method for Saddle Point Problems

S
[l | -
10*}[—APD o 10*-[—APD ey
AP obival tor & e " ARD il arr i
——PPDn true error - ——PPDn true error T
10} |~—PPDn objval error| S 10°F | ——PPDn objval error, N
-==PPD true error -==PPD true error e "
o PPD objval error o PPD objval error
o 0 20 40 60 B‘O 160 1&0 ‘V‘)D 1é0 1é0 200 10 0 Zb 40 Gb 8‘0 100 12‘0 1“10 160 1é0
Iteration No. lteration No.
(@ 79 =0.5/[|Ally, 06 = 2/l|All,. (®) 7o =2/llAlly, 00 = 0.5/[All,.
Figure 8: Convergence of objecvtive value and x* in LASSO problem.
10° 10°
0 "%
10y Ry PR
S, 5 :
5% [[~PpHe 1
—CP
10" |-—-RPPA
~APD
| [=PPD | —PPD
10 10
0 50 100 150 200 0 50 100 150
Iteration No. Iteration No.
(@ 7o =0y =2/llAll,- (®) 7o =00 =1/[|All,-
10°

207

200

200

—APD

15 —PPD_|
10 0 50 100 150 200

Iteration No.
(©) 7o =00 =0.5/|IAll,.
Figure 9: Steiner tree with different 1,0, size.
Table 5: Iteration counts and runtime for Steiner tree problem.
error PDHG CP RPPA APD PPD
<107° NA 98(0.0426) | 120(0.0538) | 125(0.0411) | 97(0.0302)

o take optimal magnitude but different ratio. In order to present the numerical result
clearly, the error is bounded by the ceiling of 10 hence a greater error is not shown in

figures.

The trend of proximal parameters t% and o* is similar with that in last subsection. We
only show one of the results for T = 1/||A||,,0 = 1/||A||, in Fig. 11. The iteration count
and runtime for T = 1/||A||,, 0 = 1/||A||5 is listed in Table 5.

208 X. Y. Zhang

~APD

o™ PP ‘ ‘
0 50 100 150 200 0 100
Iteration No. Iteration No.
(@ 7o =4/llAlly, 00 = 0.25/|1All (b) 7o =2/llAllz, 00 = 0.5/[1All,

~-APD

—PPD

0 50 100 150 200
Iteration No.

(© 79 =0.5/||Ally, 00 = 2/]All,

Figure 10: Steiner tree with different 7,0, ratio.

10
b %\
el
a0 Ul
S10° 1| |
= [1
g —<in APD
£10 —~cin APD/]
£ —1in PPD
) —in PPD
10, 50 100 150 200

Iteration No.
Figure 11: Trend of parameters in Stein tree problem.

The results are consistent with that in the previous subsection. PPD method is fastest
and most robust among all five methods. Take note that the performance of PPD and APD
can be matched by other three methods if the parameters are close to optimal value.

In general, APD and PPD are more robust than the other three methods. The average
convergence speed is ranked as PPD > APD > RPPA > CP > PDHG with various problem
settings. Two factors contribute the most for the high speed of PPD method. First, it
avoid the calculation of ||A||, which is compulsory for all primal-dual methods expect APD
and PPD methods. Second, it tune the parameters dynamically and quantitatively. The
parallel property of PPD method makes it potential to be even more efficient, especially in
multi-core environment. It remains a topic to be further studied.

Adaptive Parallel Primal-Dual Method for Saddle Point Problems 209

6. Conclusions

In this paper, the parallel primal-dual (PPD) algorithm are proposed to solve the saddle-
point problem. This method update the primal and dual variable at the same time to
speed up the convergence. Unlike most other primal-dual methods, it does not require the
estimate of ||A|| to determine the parameters. In addition the parameters and step size are
adjusted during each iteration.

In the numerical experiments, the new method is compared with primal-dual hybrid
gradient method (PDHG), chambolle and Pock’s primal-dual method (CP), relaxed proxi-
mal point algorithm (RPPA) and adaptive primal-dual method (APD). Our methods perfor-
m consistently the best in all applications. One advantage of PPD method over the other
methods is that it does not calculate the norm ||A||. This is particularly important in large-
scale applications where the norm of the linear operators is hard to estimate. Moreover, the
automatic tuning of parameters and step size also make the parallel primal-dual method
not only faster but also more robust than other primal-dual methods.

It should be mentioned that the calculation to tune the parameters and step size can
be non-negligible if the subproblems are relatively easy to solve. In the future it is possible
to reduce the frequency of tuning yet keep the method convergent.

Acknowledgments The author would like to express sincere gratitude to Professor Bing-
sheng He, Dr. Caihua Chen, Dr. Yuan Shen and Dr. Wenxing Zhang for their valuable ad-
vices. The author thanks the editor and referees for constructive comments that led to
this improved version of the paper. This research is supported by National Natural Science
Foundation of China (Nos. 71201080, 71571096), Social Science Foundation of Jiang-
su Province (No. 14GLCO001), Fundamental Research Funds for the Central Universities
(No. 020314380016).

References

[1] K. J. ArRrow, L. Hurwicz aND H. Uzawa, Studies in Linear and Non-Linear Programming,
Stanford University Press, 1958.

[2] S. BoNETTINI AND V. RUGGIERO, On the convergence of primal-dual hybrid gradient algorithms
for total variation image restoration, J. Math. Imaging Vision, 44 (2012), pp. 236-253.

[3] S.Bovp, N. PARIKH, E. CHU, B. PELEATO AND J. ECKSTEIN, Distributed optimization and statistical
learning via admm, Foundations and Trends in Machine Learning, 3 (2010), pp. 1-122.

[4] A. CuamBoLLE aND T. Pock, A first-order primal-dual algorithm for convex problems with appli-
cations to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120-145.

[5] J. DoucLas aAND H. H. RACHFORD, On the numerical solution of the heat conduction problem in
2 and 3 space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421-439.

[6] E. Esser, X. ZHANG AND T. E CHAN, A general framework for a class of first order primal-
dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010),
pp- 1015-1046.

[7] E FAaccHINEI AND J. S. PANG, Finite-dimensional variational inequalities and complementarity
problems, Springer Series in Operations Research, Springer-Verlag, 2003, pp. 625-1234.

210
(8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

X. Y. Zhang

R. GLOWINSKI AND A. MARROCCO, Approximation par éléments finis d’ordre un et résolution par
pénalisation-dualité d’une classe de problemes non linéaires, R.A.LLR.O., R2 (1975), pp. 41-76.
T. GoLDSTEIN, M. L1, X. YUAN, E. ESSER AND R. BArRaNIUK, Adaptive Primal-Dual Hybrid Gradi-
ent Methods for Saddle-Point Problems, arXiv:1305.0546v2 [math.NA], 2013.

E. G. Gov’sHTEI N AND N. V. TRET’YAKOV, Modified Lagrangians in convex programming and their
generalizations, Math. Programming Stud., 1979, pp. 86-97.

B. HE, Y. You, aND X. YUAN, On the convergence of primal-dual hybrid gradient algorithm, SIAM
J. Imaging Sci., 7 (2014), pp. 2526-2537.

B. HE AND X. YUAN, Convergence analysis of primal-dual algorithms for a saddle-point problem:
from contraction perspective, SIAM J. Imaging Sci., 5 (2012), pp. 119-149.

B. HE AND X. YUAN, On the o(1/n) convergence rate of the douglas-rachford alternating direction
method, SIAM J. Numer. Anal., 50 (2012), pp. 700-709.

B. HE, X. Yuan, anD J. J. Z. ZHANG, Comparison of two kinds of prediction-correction methods
for monotone variational inequalities, Comput. Optim. Appl., 27 (2004), pp. 247-267.

G. M. KorPELEVIC, An extragradient method for finding saddle points and for other problems,
Ekonom. i Mat. Metody, 12 (1976), pp. 747-756.

P L. LioNs AND B. MERCIER, Splitting algorithms for the sum of two nonlinear operators, SIAM
J. Numer. Anal., 16 (1979), pp. 964-979.

B. MARTINE, Regularization d’inequations variationelles par approximations successives, Revue
Francaise d’Informatique et de Recherche Opérationelle, 4 (1970), pp. 154-159.

D. O’CONNOR AND L. VANDENBERGHE, Primal-dual decomposition by operator splitting and ap-
plications to image deblurring, SIAM J. Imaging Sci., 7 (2014), pp. 1724-1754.

T. Pock AND A. CHAMBOLLE, Diagonal preconditioning for first order primal-dual algorithms in
convex optimization, IEEE 1. Conf. Comp. Vis., (2011), pp. 1762-1769.

L. D. Porov, A modification of the Arrow-Hurwitz method of search for saddle points, Mat.
Zametki, 28 (1980), pp. 777-784, 803.

R. TIBSHIRANI, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58(1)
(1996), pp. 267-288.

G. XUE AND Y. YE, An efficient algorithm for minimizing a sum of Euclidean norms with applica-
tions, SIAM J. Optim., 7 (1997), pp. 1017-1036.

X. ZHANG, M. BURGER AND S. OSHER, A unified primal-dual algorithm framework based on
Bregman iteration, J. Sci. Comput., 46 (2011), pp. 20-46.

M. Zuu anDp T. E CHAN, An efficient primal-dual hybrid gradient algorithm for total variation
image restoration, UCLA CAM Report, 2008.

