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Abstract. We investigate an h-p version of the continuous Petrov-Galerkin method for the
nonlinear Volterra functional integro-differential equations with vanishing delays. We derive h-p
version a priori error estimates in the L2-, H1- and L∞-norms, which are completely explicit

in the local discretization and regularity parameters. Numerical computations supporting the
theoretical results are also presented.
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1. Introduction

We study the numerical solutions for the nonlinear Volterra functional integro-
differential equation (VFIDE) with vanishing delays:

(1)

{
u′(t) = f(t, u(t), u(θ(t))) + (Vu)(t) + (Vθu)(t), t ∈ I := [0, T ],

u(0) = u0,

corresponding to the Volterra integral operators

(Vu)(t) :=
∫ t

0

K1(t, s)G1(s, u(s))ds, (Vθu)(t) :=

∫ θ(t)

0

K2(t, s)G2(s, u(s))ds,

where the delay function θ is subject to the following conditions:
(C1) θ(0) = 0 and θ(t) < t for t > 0,
(C2) θ′(t) ≥ q0 > 0 for all t ∈ I.

We assume that f and Gi with i = 1, 2 are given functions. Moreover, the kernels
K1(t, s) and K2(t, s) are continuous on D := {(t, s) : 0 ≤ s ≤ t, t ∈ I} and
Dθ := {(t, s) : 0 ≤ s ≤ θ(t), t ∈ I}, respectively.

During the past few decades, many numerical methods have been proposed and
analyzed for the VFIDEs. Among those a large number of methods are based on the
h-version approach, which means that the convergence is achieved by decreasing
the size of time steps at a fixed and typically low approximation order. For an
overview of the lower-order methods developed for the VFIDEs, the reader can
refer to monographs [3, 5] and the references therein. In contrast, the higher-
order methods, for example, the p- and h-p version methods employ (varying)
high order approximation polynomials. Particulary, the h-p version method allows
for locally varying time steps and approximation orders, which can significantly
enhance the numerical accuracy. The h-p version continuous and discontinuous
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Galerkin methods were introduced for initial-value problems in [9, 17, 19], for delay
differential equations in [6], for parabolic problems in [10], and for Volterra integro-
differential equations in [4, 8, 18, 20]. Moreover, some other high-order methods,
such as the spectral methods were developed for various Volterra integro-differential
equations with delays; see, e.g., [1, 13, 14, 15, 16, 21]. However, to the best of our
knowledge, there is no work that considers the h-p version Galerkin method for
nonlinear VFIDEs.

The purpose of the current work is to present and analyze an h-p version of
the continuous Petrov-Galerkin (CPG) discretization scheme for the numerical ap-
proximation of the VFIDE (1) with vanishing delays. The Petrov-Galerkin method
allows the trial and test spaces to be different, and it has become powerful tools for
solving many kinds of differential equations (see e.g., [7, 12]). The CPG method
presented in this paper is a hybrid of the continuous and discontinuous Galerkin
methods with respect to time. More precisely, one uses continuous and piecewise
polynomials for the trial spaces, but uses discontinuous and piecewise polynomials
for the test spaces. With such choice of the trial and test spaces, we show that
the CPG scheme defines a unique approximate solution, provided that a certain
condition on the time steps is satisfied (which is completely independent of the
approximation orders). We also describe in detail our implementation for the CPG
scheme according to certain relationship between the delay function θ(t) and nodal
points of the time partition. Moreover, we derive h-p version a priori error esti-
mates that are completely explicit with respect to the local time steps, the local
approximation orders, and the local regularity properties of the exact solution.

The remainder of this paper is organized as follows. In Section 2, we introduce
the h-p version of the CPG method for the VFIDE (1) and prove existence and
uniqueness of approximate solutions. We also give a detailed description of the
computational form of the CPG scheme. In Section 3, we carry out a complete h-p
version error analysis of the CPG method. In Section 4, we present some numerical
experiments to verify the theoretical results. We end the paper with a summary
and discussion in Section 5.

2. The h-p version of continuous Petrov-Galerkin method

In this section, we first introduce the h-p version of the CPG method for the
VFIDE (1). We then show the existence and uniqueness of the approximate solu-
tions. Finally, we discuss the numerical implementation of the CPG scheme.

2.1. Continuous Petrov-Galerkin discretization. Let Th be a partition of the
time interval I given by the points

0 = t0 < t1 < t2 < · · · < tN−1 < tN = T.

We set In = (tn−1, tn) and kn = tn − tn−1 for 1 ≤ n ≤ N . Let k = max
1≤n≤N

{kn}.
Moreover, we assign to each time interval In an approximation order rn ≥ 1 and
introduce the degree vector r = {rn}Nn=1. Then, the tuple (Th, r) is called an h-p
discretization of I. Next, we introduce the h-p version trial and test spaces

Sr,1(Th) = {u ∈ H1(I) : u|In ∈ Prn(In), 1 ≤ n ≤ N}
and

Sr−1,0(Th) = {u ∈ L2(I) : u|In ∈ Prn−1(In), 1 ≤ n ≤ N},
respectively, where Prn(In) denotes the space of polynomials of degree at most rn
on In.
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The h-p version CPG approximation of the VFIDE (1) is now defined as follows:
find U ∈ Sr,1(Th) such that U(0) = u0 and

(2)

N∑

n=1

∫

In

U ′(t)ϕ(t)dt

=
N∑

n=1

∫

In

(
f(t, U(t), U(θ(t))) + (VU)(t) + (VθU)(t)

)
ϕ(t)dt

for all ϕ ∈ Sr−1,0(Th).

Remark 2.1. Due to the discontinuous character of the test space Sr−1,0(Th), the
CPG method in (2) can be regarded as a time stepping scheme: if U is given on
the time intervals Im, 1 ≤ m ≤ n− 1, we find U |In ∈ Prn(In) on In by solving

(3)

∫

In

U ′(t)ϕ(t)dt =

∫

In

(
f(t, U(t), U(θ(t))) + (VU)(t) + (VθU)(t)

)
ϕ(t)dt,

U |In(tn−1) = U |In−1
(tn−1)

for all ϕ ∈ Prn−1(In). Here, U |I1(0) = u0.

2.2. Existence and uniqueness of discrete solutions. We start by showing
the following well-known Poincaré-Friedrichs inequality (see, e.g., [2]).

Lemma 2.1. Let u ∈ H1(J), J = (a, b) ⊂ R. Assume that u(a) = 0. Then, there
holds

‖u‖L2(J) ≤ h‖u′‖L2(J),

where h = b− a.

We next address the well-posedness of the discrete solutions. For our purpose,
let

K̄1 := max
(t,s)∈D

|K1(t, s)|, K̄2 := max
(t,s)∈Dq

|K2(t, s)|.(4)

Further, we assume that f(t, u, v), G1(t, u) andG2(t, u) fulfill the following Lipschitz
conditions:

(5) |f(t, u1, v)− f(t, u2, v)| ≤ L1|u1 − u2|,

(6) |f(t, u, v1)− f(t, u, v2)| ≤ L2|v1 − v2|,

(7) |G1(t, u1)−G1(t, u2)| ≤ L3|u1 − u2|,
and

(8) |G2(t, u1)−G2(t, u2)| ≤ L4|u1 − u2|
for all t ∈ I, |u| < ∞, |vi| < ∞ and |ui| < ∞ (i = 1, 2), where L1, L2, L3 and L4

are positive constants independent of t, u and v.

Theorem 2.1. Assume that the partition Th satisfies

(9) λn :=

(
L1 +

L2√
q0

+
K̄1L3√

2
kn +

K̄2L4√
2

kn

)
kn < 1, 1 ≤ n ≤ N.

Then the discrete problem (2) has a unique solution U ∈ Sr,1(Th).
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Proof. Owing to Remark 2.1, it suffices to prove that problem (3) admits a unique
solution U |In ∈ Prn(In), 1 ≤ n ≤ N . Since the CPG solution is constructed step by
step, it is enough to show the existence and uniqueness on the first time interval
I1, namely, we only have to consider n = 1 in (3) (for n ≥ 2 the proof is completely
analogous).

To this end, we shall show that on I1 there is a unique solution U ∈ Pr1(I1)
satisfying

(10)

∫

I1

U ′(t)ϕ(t)dt =

∫

I1

(
f(t, U(t), U(θ(t)) + (VU)(t) + (VθU)(t)

)
ϕ(t)dt,

U(0) = u0

for all ϕ ∈ Pr1−1(I1).
Select U0 ∈ Pr1(I1) with U0(0) = u0. For m ≥ 1, let Um ∈ Pr1(I1) be the

solution of the linear problem

(11)

∫

I1

U ′
m(t)ϕ(t)dt =

∫

I1

(
f(t, Um−1(t), Um−1(θ(t)) + (VUm−1)(t)

+(VθUm−1)(t)
)
ϕ(t)dt,

Um(0) = u0

for all ϕ ∈ Pr1−1(I1). Then, we have
∫

I1

(Um − Um−1)
′(t)ϕ(t)dt

=

∫

I1

(
f(t, Um−1(t), Um−1(θ(t)) + (VUm−1)(t) + (VθUm−1)(t)

)
ϕ(t)dt

−
∫

I1

(
f(t, Um−2(t), Um−2(θ(t)) + (VUm−2)(t) + (VθUm−2)(t)

)
ϕ(t)dt

for all ϕ ∈ Pr1−1(I1). Choosing ϕ = (Um − Um−1)
′ in the above equation, using

(4)-(8) and the Cauchy-Schwarz inequality yields

‖(Um − Um−1)
′‖2L2(I1)

≤ L1‖Um−1 − Um−2‖L2(I1)‖(Um − Um−1)
′‖L2(I1)

+L2‖(Um−1 − Um−2)(θ(t))‖L2(I1)‖(Um − Um−1)
′‖L2(I1)

+K̄1L3

∥∥∥∥
∫ t

0

|(Um−1 − Um−2)(s)|ds
∥∥∥∥
L2(I1)

‖(Um − Um−1)
′‖L2(I1)

+K̄2L4

∥∥∥∥∥

∫ θ(t)

0

|(Um−1 − Um−2)(s)|ds
∥∥∥∥∥
L2(I1)

‖(Um − Um−1)
′‖L2(I1),

which implies

(12)

‖(Um − Um−1)
′‖L2(I1)

≤ L1‖Um−1 − Um−2‖L2(I1) + L2‖(Um−1 − Um−2)(θ(t))‖L2(I1)

+K̄1L3

∥∥∥∥
∫ t

0

|(Um−1 − Um−2)(s)|ds
∥∥∥∥
L2(I1)

+K̄2L4

∥∥∥∥∥

∫ θ(t)

0

|(Um−1 − Um−2)(s)|ds
∥∥∥∥∥
L2(I1)

.
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In view of the conditions (C1) and (C2), we find that

‖(Um−1 − Um−2)(θ(t))‖2L2(I1)
≤ 1

q0

∫ θ(t1)

0

|(Um−1 − Um−2)(s)|2ds

≤ 1

q0
‖Um−1 − Um−2‖2L2(I1)

,

and by the Cauchy-Schwarz inequality we have
∥∥∥∥
∫ t

0

|(Um−1 − Um−2)(s)|ds
∥∥∥∥
2

L2(I1)

≤
∫

I1

t

(∫ t

0

|(Um−1 − Um−2)(s)|2ds
)
dt

≤ k21
2
‖Um−1 − Um−2‖2L2(I1)

,

∥∥∥∥∥

∫ θ(t)

0

|(Um−1 − Um−2)(s)|ds
∥∥∥∥∥

2

L2(I1)

≤
∥∥∥∥
∫ t

0

|(Um−1 − Um−2)(s)|ds
∥∥∥∥
2

L2(I1)

≤ k21
2
‖Um−1 − Um−2‖2L2(I1)

,

which together with (12) gives

‖(Um − Um−1)
′‖L2(I1)

≤
(
L1 +

L2√
q0

+
K̄1L3k1√

2
+

K̄2L4k1√
2

)
‖Um−1 − Um−2‖L2(I1).

Then, by Lemma 2.1 we get

(13)

‖(Um − Um−1)
′‖L2(I1)

≤
(
L1 +

L2√
q0

+
K̄1L3k1√

2
+

K̄2L4k1√
2

)
k1‖(Um−1 − Um−2)

′‖L2(I1)

= λ1‖(Um−1 − Um−2)
′‖L2(I1) ≤ λm−1

1 ‖(U1 − U0)
′‖L2(I1)

and

(14)

‖Um − Um−1‖L2(I1)

≤ k1‖(Um − Um−1)
′‖L2(I1) ≤ λ1‖Um−1 − Um−2‖L2(I1)

≤ λm−1
1 ‖U1 − U0‖L2(I1),

which implies

‖Um − Um−1‖Hℓ(I1) ≤ λm−1
1 ‖U1 − U0‖Hℓ(I1), ℓ = 0, 1.

For our purpose, we denote by [α] the smallest integer larger or equal to α. For any

ε > 0, there is an integerN =

[
ln

ε(1− λ1)

‖U1 − U0‖L2(I1)

/
lnλ1

]
such that for m > n > N

there holds

(15)

‖Um − Un‖H1(I1) ≤ ‖Um − Um−1‖H1(I1) + · · ·+ ‖Un+1 − Un‖H1(I1)

≤ (λm−1
1 + · · ·+ λn

1 )‖U1 − U0‖H1(I1)

=
λn
1 (1− λm−n

1 )

1− λ1
‖U1 − U0‖H1(I1)

≤ λN
1

1− λ1
‖U1 − U0‖H1(I1) < ε,
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which implies that {Um} is a Cauchy sequence in H1(I1). Hence, {Um} has a limit
U ∈ Pr1(I1) such that lim

m→∞
Um(t) = U(t) in H1(I1). Taking the limit on both

sides of (11), then U(t) satisfies the equation (11). Thus the existence is proved.
Similarly, using the above arguments can easily lead to the uniqueness. In fact,

suppose there are two solutions U and Ũ of the problem (11), then we have

‖U − Ũ‖L2(I1) ≤ λ1‖U − Ũ‖L2(I1)

for 0 < λ1 < 1, which implies that U = Ũ . This proves the uniqueness.
�

2.3. Computational form of the continuous Petrov-Galerkin method. Let
Ll(x), x ∈ [−1, 1] be the standard Legendre polynomial of degree l. The shifted
Legendre polynomials Ln,l(t) on the interval In are defined by

Ln,l(t) = Ll

(2t− tn−1 − tn
kn

)
, t ∈ In, l ≥ 0.

Let Un(t) = U |In be the solution of the discrete problem (3) on the interval In, 1 ≤
n ≤ N . We expand Un(t) as

Un(t) =

rn∑

l=0

ûn,lLn,l(t).

Inserting the above expression into (3) and choosing ϕ = Ln,j(t), 0 ≤ j ≤ rn − 1,
we can rewrite (3) as a system of nonlinear algebraic equations for the unknown
vector

Ûn := (ûn,0, ûn,1, . . . , ûn,rn)
T ∈ R

rn+1.

We emphasize that, the structure of the resulted nonlinear system depends strongly
on the delay terms in (3) and changes for each value of n as we pass from Phase I
to Phase III (described below).

For our purpose, we introduce the matrices

An = (ajl)0≤j≤rn,0≤l≤rn
∈ R

(rn+1)×(rn+1), 1 ≤ n ≤ N,

with the entries given by

ajl =

∫

In

L′
n,l(t)Ln,j(t)dt =

∫ 1

−1

L′
l(x)Lj(x)dx, 0 ≤ j ≤ rn − 1, 0 ≤ l ≤ rn,

and arnl = Ln,l(tn−1) = Ll(−1), 0 ≤ l ≤ rn. Further, for 0 ≤ j ≤ rn − 1, we set

(16)

b1n,j :=

∫

In

(VU)(t)Ln,j(t)dt

=

∫

In

(∫ t

0

K1(t, s)G1(s, U(s))ds

)
Ln,j(t)dt

=

n−1∑

m=1

∫

In

(∫

Im

K1(t, s)G1(s, Um(s))ds

)
Ln,j(t)dt

+

∫

In

(∫ t

tn−1

K1(t, s)G1(s, Un(s))ds

)
Ln,j(t)dt
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and

(17)

b2n,j :=

∫

In

(VθU)(t)Ln,j(t)dt

=

∫

In

(∫ θ(t)

0

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt

=

∫

In

(∫ θ(tn−1)

0

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt

+

∫

In

(∫ θ(t)

θ(tn−1)

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt

:= J1,j + J2,j .

Obviously, if n = 1, the summation term in (16) and the term J1,j in (17) will
vanish.

We now introduce the following three distinct phases inspired by [6].
• Phase I: n = 1. In this initial phase we have complete overlap, i.e., for any

t ∈ I1 the images θ(t) ∈ I1. For 0 ≤ j ≤ r1 − 1, we define

f I
1,j :=

∫

I1

f(t, U(t), U(θ(t)))L1,j(t)dt =

∫

I1

f(t, U1(t), U1(θ(t)))L1,j(t)dt.

Moreover, we have

b21,j =

∫

I1

(∫ θ(t)

0

K2(t, s)G2(s, U1(s))ds

)
L1,j(t)dt.

Let cI1,j = f I
1,j + b11,j + b21,j and

CI(Û1) :=
(
cI1,0, c

I
1,1, · · · , cI1,r1−1, u0

)T
.

Then we can rewrite (3) as the nonlinear system

A1Û1 = CI(Û1).(18)

• Phase II: If n > 1 and θ(tn) > tn−1, then we will encounter partial overlap,
i.e., for some t ∈ In the images θ(t) are still in In, while for some other (smaller)
t ∈ In we have θ(t) /∈ In. Clearly, there is an integer z ≥ 1 such that θ(tn−1) ∈ Iz .

Let t∗0 = tn−1, t
∗
n−z+1 = tn and t∗m = θ−1(tz+m−1) ∈ In for 1 ≤ m ≤ n− z. For

0 ≤ j ≤ rn − 1, we define

f II
n,j :=

∫

In

f(t, U(t), U(θ(t)))Ln,j(t)dt

=

n−z+1∑

m=1

∫ t∗m

t∗
m−1

f(t, Un(t), Uz+m−1(θ(t)))Ln,j(t)dt.
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In this phase, we have

J1,j =

∫

In

(∫ tz−1

0

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt

+

∫

In

(∫ θ(tn−1)

tz−1

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt

=

z−1∑

α=1

∫

In

(∫

Iα

K2(t, s)G2(s, Uα(s))ds

)
Ln,j(t)dt

+

∫

In

(∫ θ(tn−1)

tz−1

K2(t, s)G2(s, Uz(s))ds

)
Ln,j(t)dt

and

J2,j =

n−z+1∑

m=1

∫ t∗m

t∗
m−1

(∫ θ(t)

θ(tn−1)

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt :=

n−z+1∑

m=1

JII,m
2,j ,

with

JII,m
2,j =

m−1∑

β=1

∫ t∗m

t∗
m−1

(∫ θ(t∗β)

θ(t∗
β−1

)

K2(t, s)G2(s, Uz+β−1(s))ds

)
Ln,j(t)dt

+

∫ t∗m

t∗
m−1

(∫ θ(t)

θ(t∗
m−1

)

K2(t, s)G2(s, Uz+m−1(s))ds

)
Ln,j(t)dt.

Let cIIn,j = f II
n,j + b1n,j + b2n,j and

CII(Ûn) :=
(
cIIn,0, c

II
n,1, · · · , cIIn,rn−1, Un−1(tn−1)

)T
.

Then we can rewrite (3) as the nonlinear system

(19) AnÛn = CII(Ûn).

• Phase III: If n > 1 and θ(tn) ≤ tn−1, then we will encounter the pure delay
phase, i.e., there is no overlap between In and the images θ(t) for any t ∈ In. In
this phase, there are two integers z1 and z2 (z1 ≤ z2) such that θ(tn−1) ∈ Iz1 and
θ(tn) ∈ Iz2 .

Let t∗0 = tn−1, t
∗
z2−z1+1 = tn and t∗m = θ−1(tz1+m−1) ∈ In for 1 ≤ m ≤ z2 − z1

(if z1 < z2). For 0 ≤ j ≤ rn − 1, we define

f III
n,j :=

∫

In

f(t, U(t), U(θ(t)))Ln,j(t)dt

=

z2−z1+1∑

m=1

∫ t∗m

t∗m−1

f(t, Un(t), Uz1+m−1(θ(t)))Ln,j(t)dt.

In this phase, we have

J1,j =

∫

In

(∫ tz1−1

0

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt

+

∫

In

(∫ θ(tn−1)

tz1−1

K2(t, s)G2(s, U(s))ds

)
Ln,j(t)dt

=

z1−1∑

α=1

∫

In

(∫

Iα

K2(t, s)G2(s, Uα(s))ds

)
Ln,j(t)dt

+

∫

In

(∫ θ(tn−1)

tz1−1

K2(t, s)G2(s, Uz1(s))ds

)
Ln,j(t)dt
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and

J2,j =

z2−z1+1∑

m=1

∫ t∗m

t∗
m−1

(∫ θ(t)

θ(tn−1)

K2(t, s)U(s)ds

)
Ln,j(t)dt :=

z2−z1+1∑

m=1

JIII,m
2,j ,

with

(20)

JIII,m
2,j =

m−1∑

β=1

∫ t∗m

t∗m−1

(∫ θ(t∗β)

θ(t∗
β−1

)

K2(t, s)G2(s, Uz1+β−1(s))ds

)
Ln,j(t)dt

+

∫ t∗m

t∗
m−1

(∫ θ(t)

θ(t∗
m−1

)

K2(t, s)G2(s, Uz1+m−1(s))ds

)
Ln,j(t)dt.

Evidently, for m = 1 the summation term in the first line of (20) will vanish.
Let cIIIn,j = f III

n,j + b1n,j + b2n,j and

CIII(Ûn) :=
(
cIIIn,0 , c

III
n,1 , · · · , cIIIn,rn−1, Un−1(tn−1)

)T
.

Then we can rewrite (3) as the nonlinear system

(21) AnÛn = CIII(Ûn).

Remark 2.2. In actual computation, the nonlinear systems (18)-(21) can be solved
by an iterative process, for example, the Newton-Raphson iteration method or the
successive substitution method.

3. Error analysis

In this section, we carry our a priori error analysis of the h-p version of the CPG
method.

3.1. Preliminaries. Let Λ = (−1, 1). For a function u ∈ H1(Λ), we introduce a
projection operator Πr

Λ : H1(Λ) → Pr(Λ) with r ≥ 1 by

(22)





∫

Λ

(u −Πr
Λu)

′ϕdt = 0, ∀ ϕ ∈ Pr−1(Λ),

Πr
Λu(−1) = u(−1).

Setting ϕ = 1 in (22) and using integration by parts gives u(1)−Πr
Λu(1) = u(−1)−

Πr
Λu(−1) = 0, which implies Πr

Λu(1) = u(1). It is well-known that the projection
operator Πr

Λ is well defined (see, e.g., [19]) and there holds

Πr
Λu(x) =

∫ x

−1

( r−1∑

i=0

aiLi(ξ)
)
dξ + u(−1),

where ai =
2i+1
2

∫
Λ
u′Lidx is the Legendre expansion coefficients of u′.

For any interval J = (a, b) of length h = b − a, we define Πr
Ju = [Πr

Λ(u ◦M)] ◦
M−1, where M : Λ → J is the linear transformation x 7→ t = a+b+hx

2 . Then for the

exact solution u of (1) we can define an approximation polynomial Iu ∈ Sr,1(Th)
as

Iu|In = Πrn
In
u, 1 ≤ n ≤ N.

Thanks to the definition of Πr
Λ, it is straightforward to show that Iu(tn) = u(tn)

for 0 ≤ n ≤ N , and there holds

(23)

∫

In

(u− Iu)′ϕdt = 0, ∀ ϕ ∈ Prn−1(In).

The polynomial Iu constructed above has the following approximation properties
(cf. [11, 20]).
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Lemma 3.2. Let Th be any mesh in I and assume that u ∈ H1(I) satisfies u|In ∈
Hs0,n+1(In) for s0,n ≥ 0. Then

(24) ‖u− Iu‖2L2(I) ≤
N∑

n=1

(kn
2

)2sn+2 Γ(rn + 1− sn)

rn(rn + 1)Γ(rn + 1 + sn)
‖u‖2Hsn+1(In)

,

(25) |u− Iu|2H1(I) ≤
N∑

n=1

(kn
2

)2sn Γ(rn + 1− sn)

Γ(rn + 1 + sn)
‖u‖2Hsn+1(In)

for any real sn, 0 ≤ sn ≤ min{rn, s0,n}.
Moreover, if u ∈ H1(I) satisfies u|In ∈ W s0,n+1,∞(In) for s0,n ≥ 0. Then

‖u− Iu‖2L∞(In)
≤ C

(kn
2

)2sn+2Γ(rn + 1− sn)

Γ(rn + 1 + sn)
‖u‖2W sn+1,∞(In)

(26)

for any real sn, 0 ≤ sn ≤ min{rn, s0,n}.
We note that, the following discrete Gronwall inequality have been proved, for

instance, in [3].

Lemma 3.3. Let {an}Nn=1 and {bn}Nn=1 be two sequences of nonnegative real num-
bers with b1 ≤ b2 ≤ · · · ≤ bN . Assume that for C ≥ 0 and weights wi > 0, 1 ≤ i ≤
N − 1, there holds

a1 ≤ b1, an ≤ bn + C

n−1∑

i=1

wiai, 2 ≤ n ≤ N.

Then

an ≤ bn exp(C

n−1∑

i=1

wi), 1 ≤ n ≤ N.

3.2. Abstract error bounds. Let u be the exact solution of (1) and U be the
h-p version of the CPG approximation defined by (2). We proceed in a standard
way and decompose the error e = u− U into two parts:

(27) e = (u− Iu) + (Iu − U) := η + ξ.

Lemma 3.2 can be used to bound η, and we are left with the task of estimating the
term ξ.

In view of (1) and (3), there holds
∫

In

e′ϕdt =

∫

In

(f(t, u(t), u(θ(t))) − f(t, U(t), U(θ(t))))ϕdt

+

∫

In

(Vu− VU)ϕdt+

∫

In

(Vθu− VθU)ϕdt

for all ϕ ∈ Prn−1(In). Then, by (23) we have

(28)

∫

In

ξ′ϕdt =

∫

In

(f(t, u(t), u(θ(t))) − f(t, U(t), U(θ(t))))ϕdt

+

∫

In

(Vu− VU)ϕdt+

∫

In

(Vθu− VθU)ϕdt

for all ϕ ∈ Prn−1(In).
For any v ∈ L2(In), we define the L2 projection of v onto Prn−1(In) by Πrn−1v,

namely, ∫

In

(v −Πrn−1v)ϕdt = 0, ∀ ϕ ∈ Prn−1(In).
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First, we show the following bounds.

Lemma 3.4. Assume that k is sufficiently small, there holds

‖ξ‖L2(0,tn) ≤ C‖η‖L2(0,tn),(29)

|ξ|H1(0,tn) ≤ C‖η‖L2(0,tn),(30)

and

|ξ(tn)| ≤ C‖η‖L2(0,tn)(31)

for 1 ≤ n ≤ N , where the constant C > 0 solely depends on q0, L1, L2, L3, L4, K̄1, K̄2,
and tn.

Proof. By choosing ϕ = Πrn−1ξ in (28) and using (4)-(8) we get

∫

In

ξ′ξdt =

∫

In

(f(t, u(t), u(θ(t))) − f(t, U(t), U(θ(t))))Πrn−1ξdt

+

∫

In

(Vu− VU)Πrn−1ξdt+

∫

In

(Vθu− VθU)Πrn−1ξdt

≤ L1

∫

In

|e| · |Πrn−1ξ|dt+ L2

∫

In

|e(θ(t))| · |Πrn−1ξ|dt

+K̄1L3

∫

In

(∫ t

0

|e(s)|ds
)
|Πrn−1ξ|dt

+K̄2L4

∫

In

(∫ θ(t)

0

|e(s)|ds
)
|Πrn−1ξ|dt,

which together with the Cauchy-Schwarz inequality and the L2-stability of Πrn−1

yields

1

2
(|ξ(tn)|2 − |ξ(tn−1)|2)

≤ L1‖e‖L2(In)‖ξ‖L2(In) + L2‖e(θ(t))‖L2(In)‖ξ‖L2(In)

+K̄1L3

∫

In

(∫ t

tn−1

|e(s)|ds
)
|Πrn−1ξ|dt

+K̄1L3

∫

In

|Πrn−1ξ|dt
∫ tn−1

0

|e(s)|ds

+K̄2L4

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥
L2(In)

‖ξ‖L2(In)

≤ L1‖e‖L2(In)‖ξ‖L2(In) + L2‖e(θ(t))‖L2(In)‖ξ‖L2(In)

+
K̄1L3√

2
kn‖e‖L2(In)‖ξ‖L2(In)

+K̄1L3k
1
2
n ‖ξ‖L2(In)

n−1∑

i=1

k
1
2

i ‖e‖L2(Ii)

+K̄2L4

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥
L2(In)

‖ξ‖L2(In)
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≤ L1

2

(
‖e‖2L2(In)

+ ‖ξ‖2L2(In)

)
+

L2

2

(
‖e(θ(t))‖2L2(In)

+ ‖ξ‖2L2(In)

)

+
K̄1L3kn

2
√
2

(
‖e‖2L2(In)

+ ‖ξ‖2L2(In)

)

+
K̄1L3

2

(
‖ξ‖2L2(In)

+ kntn−1‖e‖2L2(0,tn−1)

)

+
K̄2L4

2

(∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

+ ‖ξ‖2L2(In)

)
.

Here, we have used the fact that

(32)

∥∥∥∥∥

∫ t

tn−1

|e(s)|ds
∥∥∥∥∥
L2(In)

≤
{∫ tn

tn−1

(t− tn−1)
(∫ t

tn−1

|e(s)|2ds
)
dt
} 1

2

≤ kn√
2
‖e‖L2(In).

Consequently,

|ξ(tn)|2 ≤ |ξ(tn−1)|2 +
(
L1 +

K̄1L3kn√
2

)
‖e‖2L2(In)

+
(
L1 + L2 +

K̄1L3kn√
2

+ K̄1L3 + K̄2L4

)
‖ξ‖2L2(In)

+L2‖e(θ(t))‖2L2(In)
+ K̄1L3kntn−1‖e‖2L2(0,tn−1)

+K̄2L4

∥∥∥
∫ θ(t)

0

|e(s)|ds
∥∥∥
2

L2(In)

≤ |ξ(tn−1)|2 + 2
(
L1 +

K̄1L3kn√
2

)
‖η‖2L2(In)

(33)

+
(
3L1 + L2 +

3K̄1L3kn√
2

+ K̄1L3 + K̄2L4

)
‖ξ‖2L2(In)

+L2‖e(θ(t))‖2L2(In)
+ K̄1L3kntn−1‖e‖2L2(0,tn−1)

+K̄2L4

∥∥∥
∫ θ(t)

0

|e(s)|ds
∥∥∥
2

L2(In)
.

Additionally, taking ϕ = Πrn−1((tn−1 − t)ξ) in (28), we find that
∫

In

(tn−1 − t)ξ′ξdt

=

∫

In

(f(t, u(t), u(θ(t))) − f(t, U(t), U(θ(t))))Πrn−1((tn−1 − t)ξ)dt

+

∫

In

(Vu− VU)Πrn−1((tn−1 − t)ξ)dt

+

∫

In

(Vθu− VθU)Πrn−1((tn−1 − t)ξ)dt,
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which together with (4)-(8) gives

(34)

1

2

(
− kn|ξ(tn)|2 + ‖ξ‖2L2(In)

)

≤ L1‖e‖L2(In)‖Πrn−1((tn−1 − t)ξ)‖L2(In)

+L2‖e(θ(t))‖L2(In)‖Πrn−1((tn−1 − t)ξ)‖L2(In)

+K̄1L3

∫

In

( ∫ t

tn−1

|e(s)|ds
)
|Πrn−1((tn−1 − t)ξ)|dt

+K̄1L3

∫

In

( ∫ tn−1

0

|e(s)|ds
)
|Πrn−1((tn−1 − t)ξ)|dt

+K̄2L4

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥
L2(In)

‖Πrn−1((tn−1 − t)ξ)‖L2(In).

We notice that

‖Πrn−1((tn−1 − t)ξ)‖L2(In) ≤ ‖(tn−1 − t)ξ‖L2(In) ≤ kn‖ξ‖L2(In).

Then, by (34) and (32) we readily find that

‖ξ‖2L2(In)

≤ kn|ξ(tn)|2 + 2L1kn‖e‖L2(In)‖ξ‖L2(In) + 2L2kn‖e(θ(t))‖L2(In)‖ξ‖L2(In)

+
2K̄1L3k

2
n√

2
‖e‖L2(In)‖ξ‖L2(In) + 2K̄1L3k

3
2
n ‖ξ‖L2(In)

( n−1∑

i=1

k
1
2

i ‖e‖L2(Ii)

)

+2K̄2L4kn

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥
L2(In)

‖ξ‖L2(In)

≤ kn|ξ(tn)|2 + L1kn

(
‖e‖2L2(In)

+ ‖ξ‖2L2(In)

)

+L2kn

(
‖e(θ(t))‖2L2(In)

+ ‖ξ‖2L2(In)

)

+
K̄1L3k

2
n√

2

(
‖e‖2L2(In)

+ ‖ξ‖2L2(In)

)

+K̄1L3kn

(
kntn−1‖e‖2L2(0,tn−1)

+ ‖ξ‖2L2(In)

)

+K̄2L4kn



∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

+ ‖ξ‖2L2(In)




≤ kn|ξ(tn)|2 + 2
(
L1 +

K̄1L3kn√
2

)
kn‖η‖2L2(In)

+
(
3L1 + L2 +

3K̄1L3kn√
2

+ K̄1L3 + K̄2L4

)
kn‖ξ‖2L2(In)

+L2kn‖e(θ(t))‖2L2(In)
+ K̄1L3k

2
ntn−1‖e‖2L2(0,tn−1)

+K̄2L4kn

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

.
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For convenience, we define

An =
(
3L1 + L2 +

3K̄1L3kn√
2

+ K̄1L3 + K̄2L4

)
kn.

We observe after elementary manipulation that

(35)

‖ξ‖2
L2(In)

≤ kn
1−An

|ξ(tn)|2 +
2
(
L1 +

K̄1L3kn√
2

)
kn

1−An

‖η‖2L2(In)

+
L2kn
1−An

‖e(θ(t))‖2L2(In)
+

K̄1L3k
2
ntn−1

1−An

‖e‖2L2(0,tn−1)

+
K̄2L4kn
1−An

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

.

By inserting (35) into (33), we obtain

|ξ(tn)|2 ≤ |ξ(tn−1)|2 + 2
(
L1 +

K̄1L3kn√
2

)
‖η‖2L2(In)

+
An

1−An

|ξ(tn)|2 +
2
(
L1 +

K̄1L3kn√
2

)
An

1−An

‖η‖2L2(In)

+
L2An

1−An

‖e(θ(t))‖2L2(In)
+

K̄1L3kntn−1An

1−An

‖e‖2L2(0,tn−1)

+
K̄2L4An

1−An

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

+ L2‖e(θ(t))‖2L2(In)

+K̄1L3kntn−1‖e‖2L2(0,tn−1)
+ K̄2L4

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

,

which can be rewritten as

(36)

|ξ(tn)|2 ≤
(
1 +

An

1− 2An

)
|ξ(tn−1)|2 +

2
(
L1 +

K̄1L3kn√
2

)

1− 2An

‖η‖2L2(In)

+
L2

1− 2An

‖e(θ(t))‖2L2(In)
+

K̄1L3kntn−1

1− 2An

‖e‖2L2(0,tn−1)

+
K̄2L4

1− 2An

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

.

Assume that kn is sufficiently small, then there exists a positive constant γ such
that

2An ≤ γ < 1, 1 ≤ n ≤ N.
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Summing up (36) over all element Ii, 1 ≤ i ≤ n, and using the facts that ξ(t0) = 0
and ξ|Ii(ti) = ξ|Ii+1

(ti), 1 ≤ i ≤ n− 1, we readily conclude that
(37)

|ξ(tn)|2 ≤
n−1∑

i=1

Ai+1

1− 2Ai+1
|ξ(ti)|2 +

n∑

i=1

2
(
L1 +

K̄1L3ki√
2

)

1− 2Ai

‖η‖2L2(Ii)

+

n∑

i=1

L2

1− 2Ai

‖e(θ(t))‖2L2(Ii)
+

n−1∑

i=1

K̄1L3ki+1ti
1− 2Ai+1

‖e‖2L2(0,ti)

+
n∑

i=1

K̄2L4

1− 2Ai

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(Ii)

≤
3L1 + L2 +

3K̄1L3k√
2

+ K̄1L3 + K̄2L4

1− γ

n−1∑

i=1

ki+1|ξ(ti)|2

+

2
(
L1 +

K̄1L3k√
2

)

1− γ
‖η‖2L2(0,tn)

+
L2

1− γ
‖e(θ(t))‖2L2(0,tn)

+
K̄1L3

1 − γ

n−1∑

i=1

ki+1ti‖e‖2L2(0,ti)
+

K̄2L4

1 − γ

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(0,tn)

.

Combining the facts that

n−1∑

i=1

ki+1ti‖e‖2L2(0,ti)
≤ tn−1‖e‖2L2(0,tn−1)

n−1∑

i=1

ki+1 ≤ t2n‖e‖2L2(0,tn−1)
,

(38) ‖e(θ(t))‖2L2(0,tn)
≤ 1

q0

∫ θ(tn)

0

|e(s)|2ds ≤ 1

q0
‖e‖2L2(0,tn)

,

(39)

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(0,tn)

≤
∫ tn

0

θ(t)
( ∫ θ(t)

0

|e(s)|2ds
)
dt

≤
∫ tn

0

t
( ∫ θ(t)

0

|e(s)|2ds
)
dt

≤ t2n
2

∫ θ(tn)

0

|e(s)|2ds ≤ t2n
2
‖e‖2L2(0,tn)

,

and applying Lemma 3.3 to (37) yields

(40)

|ξ(tn)|2 ≤ exp

(3L1 + L2 +
3K̄1L3k√

2
+ K̄1L3 + K̄2L4

1− γ

n−1∑

i=1

ki+1

)

·
(2
(
L1 +

K̄1L3k√
2

)

1− γ
‖η‖2L2(0,tn)

+
L3

q0(1 − γ)
‖e‖2L2(0,tn)

+
K̄1L3t

2
n

1− γ
‖e‖2L2(0,tn−1)

+
K̄2L4t

2
n

2(1− γ)
‖e‖2L2(0,tn)

)

≤ CeCtn

(
‖η‖2

L2(0,tn)
+ ‖e‖2

L2(0,tn)

)
,
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where the constant C > 0 depends on q0, K̄1, K̄2, L1, L2, L3, L4, γ and tn. Inserting
(40) into (35), and then using the estimates (38) and (39), we obtain

(41)

‖ξ‖2
L2(In) ≤ CeCtnkn

(
‖η‖2

L2(0,tn)
+ ‖e‖2

L2(0,tn)

)

+Ckn‖η‖2L2(In)
+ Ckn‖e(θ(t))‖2L2(In)

+Ck2ntn−1‖e‖2L2(0,tn−1)
+ Ckn

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(In)

≤ Ckn‖η‖2L2(0,tn)
+ Ckn‖ξ‖2L2(0,tn)

.

Assume that kn is sufficiently small, then (41) can be rewritten as

‖ξ‖2
L2(In)

≤ Ckn‖η‖2L2(0,tn)
+ Ckn‖ξ‖2L2(0,tn−1)

,

or equivalently,

(42)
‖ξ‖2

L2(In)

kn
≤ C‖η‖2L2(0,tn)

+ C

n−1∑

i=1

ki
‖ξ‖2

L2(Ii)

ki
.

Then, we apply Lemma 3.3 to (42) get

‖ξ‖2
L2(In)

kn
≤ C‖η‖2L2(0,tn)

exp
(
C

n−1∑

i=1

ki

)
≤ CeCtn−1‖η‖2L2(0,tn)

,

which leads to

‖ξ‖2L2(In)
≤ Ckn‖η‖2L2(0,tn)

.(43)

Summing up (43) over all element Ii, 1 ≤ i ≤ n, gives

‖ξ‖2L2(0,tn)
≤ C

n∑

i=1

ki‖η‖2L2(0,ti)
≤ C‖η‖2L2(0,tn)

n∑

i=1

ki ≤ Ctn‖η‖2L2(0,tn)
.

This completes the proof of (29).
By choosing ϕ = ξ′ in (28) we find that

‖ξ′‖2
L2(In)

≤ L1‖e‖L2(In)‖ξ′‖L2(In) + L2‖e(θ(t))‖L2(In)‖ξ′‖L2(In)

+K̄1L3

∥∥∥
∫ t

0

|e(s)|ds
∥∥∥
L2(In)

‖ξ′‖L2(In)

+K̄2L4

∥∥∥
∫ θ(t)

0

|e(s)|ds
∥∥∥
L2(In)

‖ξ′‖L2(In),

which implies

|ξ|H1(In) ≤ L1‖e‖L2(In) + L2‖e(θ(t))‖L2(In) + K̄1L3

∥∥∥
∫ t

0

|e(s)|ds
∥∥∥
L2(In)

+K̄2L4

∥∥∥
∫ θ(t)

0

|e(s)|ds
∥∥∥
L2(In)

.
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Iterating this estimate, then using (38), (39), and (29) we conclude that

|ξ|2
H1(0,tn)

≤ C

(
‖e‖2

L2(0,tn)
+ ‖e(θ(t))‖2

L2(0,tn)
+

∥∥∥∥
∫ t

0

|e(s)|ds
∥∥∥∥
2

L2(0,tn)

+

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥

2

L2(0,tn)

)

≤ C‖e‖2
L2(0,tn)

≤ C‖ξ‖2
L2(0,tn)

+ C‖η‖2
L2(0,tn)

≤ C‖η‖2
L2(0,tn)

,

which implies (30). Here, we have used the fact that

(44)

∥∥∥∥
∫ t

0

|e(s)|ds
∥∥∥∥
2

L2(0,tn)

≤
∫ tn

0

t
(∫ t

0

|e(s)|2ds
)
dt ≤ t2n

2
‖e‖2L2(0,tn)

.

Finally, combining (40) and (29) we obtain

|ξ(tn)|2 ≤ CeCtn
(
‖η‖2L2(0,tn)

+ ‖ξ‖2L2(0,tn)

)
≤ C‖η‖2L2(0,tn)

.

This ends the proof of (31). �

We next bound the derivative of ξ as follows.

Lemma 3.5. For 1 ≤ n ≤ N , there holds

(45)

∫

In

|ξ′|2(t− tn−1)dt ≤ Ckn‖η‖2L2(0,tn)
,

where the constant C > 0 solely depends on q0, L1, L2, L3, L4, K̄1, K̄2, and tn.

Proof. By selecting ϕ = Πrn−1((t− tn−1)ξ
′) in (28), we deduce that

(46)

∫

In

(t− tn−1)|ξ′|2dt

=

∫

In

(f(t, u(t), u(θ(t)))− f(t, U(t), U(θ(t))))Πrn−1((t− tn−1)ξ
′)dt

+

∫

In

(Vu− VU)Πrn−1((t− tn−1)ξ
′)dt

+

∫

In

(Vθu− VθU)Πrn−1((t− tn−1)ξ
′)dt

≤ L1

∫

In

|e| · |Πrn−1((t− tn−1)ξ
′)|dt

+L2

∫

In

|e(θ(t))| · |Πrn−1((t− tn−1)ξ
′)|dt

+K̄1L3

∫

In

( ∫ t

0

|e(s)|ds
)
|Πrn−1((t− tn−1)ξ

′)|dt

+K̄2L4

∫

In

( ∫ θ(t)

0

|e(s)|ds
)
|Πrn−1((t− tn−1)ξ

′)|dt

:= A1 +A2 +A3 +A4.

Thanks to the Cauchy-Schwarz inequality and the L2-stability of Πrn−1, we have

(47)

A1 ≤ L1‖e‖L2(In)‖(t− tn−1)ξ
′‖L2(In)

≤ L1k
1
2
n ‖e‖L2(In)

{∫

In

(t− tn−1)|ξ′|2dt
} 1

2

.
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Similarly, by (38), (44) and (39) , we readily find that

(48)

A2 ≤ L2‖e(θ(t))‖L2(In)‖(t− tn−1)ξ
′‖L2(In)

≤ L2√
q0

k
1
2
n ‖e‖L2(0,tn)

{∫

In

(t− tn−1)|ξ′|2dt
} 1

2

,

(49)

A3 ≤ K̄1L3

∥∥∥∥
∫ t

0

|e(s)|ds
∥∥∥∥
L2(In)

‖(t− tn−1)ξ
′‖L2(In)

≤ K̄1L3tn√
2

k
1
2
n ‖e‖L2(0,tn)

{∫

In

(t− tn−1)|ξ′|2dt
} 1

2

,

and

(50)

A4 ≤ K̄2L4

∥∥∥∥∥

∫ θ(t)

0

|e(s)|ds
∥∥∥∥∥
L2(In)

‖(t− tn−1)ξ
′‖L2(In)

≤ K̄2L4tn√
2

k
1
2
n ‖e‖L2(0,tn)

{∫

In

(t− tn−1)|ξ′|2dt
} 1

2

.

Hence, combing (46)-(50) and (29) yields
{∫

In

|ξ′|2(t− tn−1)dt
} 1

2 ≤ Ck
1
2
n ‖e‖L2(0,tn) ≤ Ck

1
2
n (‖η‖L2(0,tn) + ‖ξ‖L2(0,tn))

≤ Ck
1
2
n ‖η‖L2(0,tn).

This implies the assertion. �

We also need the following inverse inequality (cf. [9]).

Lemma 3.6. On each interval In there holds

‖ϕ‖2L∞(In)
≤ C

(
log(rn + 1)

∫

In

|ϕ′(t)|2(t− tn−1)dt+ |ϕ(tn)|2
)

for any ϕ ∈ Prn(In), where the constant C > 0 is independent of kn and rn.
Moreover, the estimate cannot be improved asymptotically as rn → ∞.

The following results state abstract error bounds of the CPG method.

Theorem 3.2. Let u be the exact solution of (1) and U be the h-p CPG approxi-
mation defined by (2). For k sufficiently small, there holds

(51) ‖u− U‖L2(I) ≤ C‖u− Iu‖L2(I),

(52) |u− U |H1(I) ≤ C‖u− Iu‖H1(I),

and

(53) ‖u− U‖L∞(I) ≤ C (1 + k log(r + 1))
1
2 ‖u− Iu‖L∞(I),

where r = max{rn}Nn=1 and the constants C > 0 solely depend on q0, L1, L2, L3, L4, K̄1, K̄2,
and T .

Proof. With the aid of (29) we get

‖u− U‖L2(I) ≤ ‖η‖L2(I) + ‖ξ‖L2(I) ≤ C‖η‖L2(I),

which completes the proof of (51).
Similarly, by (30) we obtain

|u− U |H1(I) ≤ |η|H1(I) + |ξ|H1(I) ≤ |η|H1(I) + C‖η‖L2(I) ≤ C‖η‖H1(I),

which implies (52).
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By using (31) and employing Lemmas 3.5 and 3.6, we deduce that

‖u− U‖2
L∞(I)

≤ 2‖η‖2L∞(I) + 2 max
1≤n≤N

‖ξ‖2L∞(In)

≤ 2‖η‖2
L∞(I) + C max

1≤n≤N

{
log(rn + 1)

∫

I

|ξ′(t)|2(t− tn−1)dt+ |ξ(tn)|2
}

≤ 2‖η‖2L∞(I) + C max
1≤n≤N

{
kn log(rn + 1)‖η‖2L2(0,tn)

+ ‖η‖2L2(0,tn)

}

≤ 2‖η‖2
L∞(I) + Ck log(r + 1)‖η‖2

L2(I) + C‖η‖2
L2(I)

≤ C
(
1 + k log(r + 1)

)
‖η‖2

L∞(I).

Here, we have used the fact that ‖η‖2
L2(I) ≤ T ‖η‖2

L∞(I). This completes the proof

of (53). �

3.3. Global L2, H1, and L∞-error estimates. We are now in a position to
present our main result.

Theorem 3.3. Let Th be any mesh in I, u be the exact solution of (1) and U be
the h-p CPG approximation defined by (2). We assume that u ∈ H1(I) satisfies
u|In ∈ Hs0,n+1(In) for s0,n ≥ 0. Then, for k sufficiently small, there holds

‖u− U‖2L2(I) ≤ C

N∑

n=1

(kn
2

)2sn+2 Γ(rn + 1− sn)

rn(rn + 1)Γ(rn + 1 + sn)
‖u‖2Hsn+1(In)

,

|u− U |2H1(I) ≤ C

N∑

n=1

(kn
2

)2sn Γ(rn + 1− sn)

Γ(rn + 1 + sn)
‖u‖2Hsn+1(In)

for any real sn, 0 ≤ sn ≤ min{rn, s0,n}.
Moreover, if u ∈ H1(I) satisfies u|In ∈ W s0,n+1,∞(In) for s0,n ≥ 0, there holds

‖u− U‖2
L∞(I)

≤ C (1 + k log(r + 1)) max
1≤n≤N

{(
kn

2

)2sn+2Γ(rn + 1− sn)

Γ(rn + 1 + sn)
‖u‖2W sn+1,∞(In)

}

for any real sn, 0 ≤ sn ≤ min{rn, s0,n}.

Proof. The assertions follow readily from Theorem 3.2 and Lemma 3.2. �

Remark 3.1. These estimates show that the error bounds are explicit with respect
to the time steps kn, the approximation order rn, and the regularity of the exact
solution sn.

From the error bounds in Theorem 3.3, the following convergence rates can be
obtained for the h- and p-version of the CPG method.

Corollary 3.1. Let rn = r, 1 ≤ n ≤ N and Th be a quasi-uniform mesh in I. If
u ∈ Hs+1(I) for s ≥ 0, then

‖u− U‖L2(I) ≤ C
kmin{s,r}+1

rs+1
‖u‖Hs+1(I),

|u− U |H1(I) ≤ C
kmin{s,r}

rs
‖u‖Hs+1(I).



THE h-p CPG METHOD FOR NONLINEAR VFIDES 45

Moreover, if u ∈ W s+1,∞(I), there holds

‖u− U‖L∞(I) ≤ C (1 + k log(r + 1))
1
2
kmin{s,r}+1

rs
‖u‖W s+1,∞(I).

Proof. The assertions follows from Theorem 3.3 and Stirling’s formula. �

Remark 3.2. These estimates show that the h-p version CPG method converges
either as the time step k is decreased or as the polynomial degrees r is increased.
Moreover, the p-version (with fixed time partition) can yields arbitrarily high-order
algebraic convergence rates (i.e., spectral convergence) if the solution u is smooth
enough. Moreover, it can be proved that the p-version converges exponentially if u
is analytic on [0, T ] (see, for instance, [11]).

4. Numerical experiments

In this section, we illustrate the performance of the h-p version of the CPG
method for the following VFIDE:





u′(t) = g(t) + e−u(t) + e−te−u(θ(t)) +

∫ t

0

es−t(u(s) + e−u(s))ds

+

∫ θ(t)

0

es−t(u(s) + e−u(s))ds, t ∈ [0, 1],

u(0) = 1,

(54)

with g(t) = − ln(t + e) + 2e−t − eθ(t)−t ln(θ(t) + e) − e−t

θ(t) + e
and θ(t) = 4

5 sin(t)

such that the exact solution u(t) = ln(t+ e).
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Figure 1. L∞-errors of the h-version.

We begin by considering the behaviour of the h-version of the CPG method
on uniform time partitions for problem (54). The L∞-errors are shown in Fig. 1.
Obviously, the straight error curves correspond to algebraic convergence in the step-
size k, for each polynomial degree r. Moreover, we list the L2-, H1-(seminorm), and
L∞-errors of the h-version CPG method in Table 1, the convergence rates confirm
the sharpness prediction in Corollary 3.1.

In Fig. 2, we present the L∞-errors of the p-version of the CPG method. The
results show that exponential rates of convergence are achieved for each fixed uni-
form time partitions. In addition, we note that the global L∞-error of 10−15 can
be obtained with less than 15 degrees of freedom for the p-version. However, this
is not the case for the h-version as shown in Fig. 1. This implies that, for smooth
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Figure 2. L∞-errors of the p-version.

Table 1. Numerical errors and convergence rates of the h-version.

degree r step-size k L2-errors order H1-errors order L∞-errors order
1/128 5.00 E-07 2.00 2.27 E-04 1.00 9.70 E-07 1.99

1 1/256 1.25 E-07 2.00 1.13 E-04 1.00 2.43 E-07 2.00
1/512 3.12 E-08 2.00 5.67 E-05 1.00 6.08 E-08 2.00
1/64 1.43 E-09 3.00 5.94 E-07 2.00 2.67 E-9 2.99

2 1/128 1.79 E-10 3.00 1.49 E-07 2.00 3.35 E-10 3.00
1/256 2.24 E-11 3.00 3.71 E-08 2.00 4.19 E-11 3.00
1/32 2.04 E-11 4.00 6.20 E-09 3.00 4.31 E-11 3.97

3 1/64 1.28 E-12 4.00 7.76 E-10 3.00 2.72 E-12 3.99
1/128 7.98 E-14 4.00 9.69 E-11 3.00 1.70 E-13 4.00

solution it is advantageous to increase r and keep k fixed (p-version of the CPG
method) rather than to reduce k for r fixed (h-version of the CPG method).

5. Concluding Remarks

In this paper, we have presented an h-p version of the CPG method for the
nonlinear VFIDEs with vanishing delays. We have proved that the CPG scheme
is well-defined as long as the time steps are sufficiently small. Moreover, we have
obtained a priori error bounds in the L2-, H1- and L∞-norms that are explicit
with respect to the local time steps, the local approximation orders, and the local
regularity of the exact solutions. Extensions of the analysis presented herein to the
h-p version of the CPG method might be possible for VFIDEs with weakly singular
kernels by following along the lines of this paper, in conjunction with our recent
work [20] for Volterra integro-differential equations with weakly singular kernels.
This will be a topic for our future research.
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