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Abstract. The static response of two-dimensional horizontal layered piezoelectric
bounded domain with side face load was investigated. In this paper, the modified
scaled boundary finite element method (SBFEM) is provided as an effective semi an-
alytical methodology. The method is used to solve the static problem for the layered
piezoelectric bounded domain. The scaling line definition extends the SBFEM to be
more suitable for analyzing the multilayered piezoelectric bounded domain. It avoids
the limitations of original SBFEM in modeling the horizontal layered bounded do-
main. The modified SBFEM governing equation with piezoelectric medium is derived
by introducing Duality variable in the Hamilton system. This derivation technology
makes the progress be concise. The novel displacement and electric governing equa-
tions of the modified SBFEM is given together by the first time. The node forces can
be expressed as power exponent function with radial coordinate by introducing the
auxiliary variable and using the eigenvalue decomposition. The novel modified S-
BFEM solution of layered bounded domain with piezoelectric medium is solved. The
new power expansion function of layered piezoelectric medium with side face load
is proposed. This technology significantly extends the application range of modified
SBFEM. The novel treatment of side face load for the layered piezoelectric bounded
domain is proposed. Numerical studies are conducted to demonstrate the accuracy of
proposed technique in handling with the static problem of layered bounded domain
with piezoelectric medium for side face load. The influence of the side face load type
and depth are discussed in detail.
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1 Introduction

The static analysis of the layered bounded domain with piezoelectric medium is an at-
tractive problem, such as the layered piezoelectric plate analysis, sensors application,
aerospace panels, structural analysis and fracture mechanics. Because of the excellent
piezoelectric material properties, the piezoelectric material was used to the smart struc-
tures and small order magnitude model. The widely applications and mathematical chal-
lenges characteristics of piezoelectric material has attracted many researchers to study
the static analysis of layered piezoelectric model [2, 27]. Therefore, it is worthily to pay
attention to the static analysis of layered bounded domain with piezoelectric medium, e-
specially for the horizontal layered piezoelectric model. The piezoelectric material owns
excellent ability in elector-mechanical convertibility field. Thus, the piezoelectric anal-
ysis becomes a favorite topic in engineering application. However, there are very few
analytical solutions and numerical solutions for the horizontal layered bounded domain
with piezoelectric medium. Therefore, it has more practical significance to propose a new
solution for the static responses of the horizontal layered piezoelectric medium.

The piezoelectric material has excellent material properties. Thus, the electroelastic
problem for layered medium has been investigated by many researchers. The piezoelec-
tric material has many advantages, such as the high accuracy, miniaturization and sensi-
tive characteristics. It can be applied to many different fields, such as the electroacoustic
transducers, microrobot, atomic force microscope cantilevers and structural fracture me-
chanics [24, 55]. The piezoelectric material also was extended to model the half space
domain problem [3] and the unbounded domain problem [36]. The layered piezoelec-
tric medium widely exists in the nature. The piezoelectric composite structures, such as
the layered piezoelectric plates and beams, require the efficient and accurate electrome-
chanical model which has electric and mechanical behaviors. The piezoelectric structures
can solve by the coupled equations with electric and mechanical interlaminar continuity
conditions and boundary conditions [26]. Exact solutions of the flat panels and rectan-
gular plates with the piezoelectric medium have been obtained [44, 45, 54]. Based on the
three dimensional theory of elasticity, the static and free vibration of a cross-ply lami-
nated composite plate in piezoelectric layers has been analyzed [22]. The analytical so-
lutions can be easily solved for the simple model shapes with specified boundary con-
ditions. Therefore, the finite element technology becomes a top priority to analyze the
general piezoelectric structures. The finite element piezoelectric model which employs
the Hamilton’s variational principle has been analyzed [31]. According to the coupled
refined high-order global-local theory, a finite element model for the sandwich beams
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with piezoelectric layers was built [32]. Several 2D FE piezoelectric models with dif-
ferent assumptions on the mechanical displacement field have been reported [21, 26].
The piezoelectric material which its characteristics vary with the coordinate is defined
as the functionally graded piezoelectric material (FGPM), and a large number of stud-
ies were focused on this topic. The wave propagation in layered FGPM structure was
investigated [8]. The acoustic wave propagation on the shear horizontal surface with
layered FGPM was studied [18]. The initial stress causing by the surface wave propa-
gation behavior for the three-layered composite FGPM structure has been reported [48].
The multiple scattering of electro-elastic wave and the dynamic response of FGPM lay-
ered structure are discussed in literature [20]. The piezoelectric material can also be ap-
plied in thermodynamics field. The fracture problem with piezoelectric layer was in-
vestigated [56]. The thermo-elastic analysis for the FGPM spherical layered model was
analyzed [4]. The Green’s function of anisotropic piezoelectric unbounded domain was
investigated [35, 40–42]. By considering the eminent properties of piezoelectric materi-
al, the piezoelectric medium is suitable to solve the magnetoelectroelastic problem. The
layered half-space with planar transversely isotropic magnetoelectroelastic medium was
discussed [38]. The dynamic electromagneto-mechanical response of the clamped-free
terfenol laminates was analyzed [39].

For the bounded domain with piezoelectric medium, a large number of literatures
have been reported. The electromechanical response of the piezoelectric laminated micro
plate which subjects the ultrasonic wave excitation has been discussed [28]. The vibra-
tion phenomenon in piezoelectric flexible cantilever plate was studied [43]. The static
analysis of functionally graded, anisotropic and linear magneto-electro-elastic plates was
investigated by the semi analytical element method [6]. The SH wave propagation de-
positing on the piezoelectric bounded plates was investigated [14]. The linear piezoelec-
tric plate vibrations were studied [53]. A lot of numerical methods are used to model
the layered piezoelectric bounded domain. The equivalent single layer and layerwise
approximations have been considered for the piezoelectric layered model. By dividing
the layers into many sublayers, the results can satisfy convergence speed and the com-
putational cost is low. A single piezoelectric layer approximation solution can be given
by the first-order shear theory [46]. The wave propagation in the periodic piezoelectric
layered medium can be found [37]. The anti-plane transverse wave propagation in lay-
ered piezoelectric structures was analyzed [10]. The finite element method (FEM) is one
of the famous technologies in modeling the static and dynamic analysis of layered piezo-
electric problems. The static response of beams with functionally graded piezoelectric
medium was analyzed by using the finite element method [19]. The temporal stability of
node-based smoothed finite element method (NS-FEM) was used to solve the static and
frequency analyses of the piezoelectric medium [12]. The stress singularity analysis of 3D
transversely isotropic piezoelectric bonded joints was solved by the Eigen decomposition
in FEM [25]. The Rayleigh wave propagation in piezoelectric substrate was analyzed by
FEM [1]. One dimensional FEM was employed to solve the static characteristic of the
piezoelectric composite beams [30]. However, the disadvantages of FEM also exist. In
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order to obtain the accurate solution, the problem domain needs to be dispersed into
numbers of elements. Therefore, it leads to the poor computation efficiency for the large
scale system. Subsequently, an attracting method which named as the boundary element
method (BEM) was proposed to avoid the disadvantages of FEM. In the BEM, only the
problem domain boundary needs to be discretized, the dimension is reduced by one,
and the mesh generation is greatly simplified. The fundamental solution of BEM bases
on the Green’s function. The BEM has been applied in many fields, such as the fracture
problem, heat conduction problem, wave propagation problem. The fracture analysis of
thin piezoelectric structure was studied by developing a 2D time-domain BEM [62]. The
three dimensional transient heat conduction in heterogeneity unbounded soil was mod-
elled by BEM [52]. The wave propagation in continuously inhomogeneous half-plane
was solved by BEM with closed-form Green’s function [23]. By solving the Green’s func-
tion in frequency-wave number domain, the SH wave propagation for layered elastic
half-space was proposed by BEM [47]. However, the fundamental solution is difficult
to obtain for the complex problems. In order to analyze the horizontal layered model,
the thin layer method (TLM) was investigated [29, 49]. The horizontal layer is divided
into many small sublayers in TLM, and then the sublayers are assembled together. The
enough accuracy can be achieved in this approximate way. The wave propagation in
inhomogeneous piezocomposite layered media which subjected to the mechanical load
and electrical excitation was analyzed by TLM [9]. Combining the equations of BEM and
TLM, the equations of motion can be formulated in the wavenumber-frequency domain
(2.5D domain) [15]. However, the TLM is only suitable for the homogeneous medium
with small layer thickness.

A novel semi-analytical numerical technique which named as the scaled boundary
finite method (SBFEM) was proposed [50]. This method combines the advantages of
BEM and FEM, and the SBFEM has its own special features as well. The problem do-
main boundary needs to be discretized in the SBFEM, and the spatial dimension is re-
duced by one. The SBFEM can couple with FEM seamlessly by using the same shape
functions, and it is analytical in radial direction, therefore, no fundamental solution and
artificial boundary conditions are required. For anisotropic medium, piezoelectric medi-
um and the complex geometry model, the SBFEM can deal with these models without
any difficulty. The SBFEM can be applied to model lots of problems successfully, such
as the wave propagation in unbounded domain, the singular analysis for bounded do-
main, non-homogeneous medium and fracture analysis. The nonlinear solution of the
SBFEM was applied to the geotechnical structures [11]. The liquid sloshing in horizontal
elliptical tanks were solved by the SBFEM [57–59]. The SBFEM also can be used to deal
with the dams [60]. The elastic wave propagation in layered medium was studied by
SBFEM [13]. The soil-structure interaction problems which involving the semi-infinite
layers can be classified into scalar and vector wave propagations. The transient response
of non-homogeneous unbounded domain with varying elasticity modulus and mass den-
sity was analyzed by SBFEM [5]. The SBFEM was employed to two-dimensional fracture
analysis with piezoelectric medium [33]. The displacement and electric potential, stress
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and electric displacement of any point in the domain can be obtained analytically. The
SBFEM is used to solve the static and dynamic stress intensity factors (SIFs) [61]. The
fully-automatic modeling technology for static problem and the series-increasing solu-
tion for dynamic problem were developed. The three-dimensional seismic SSI analysis
which bases on the substructure method was investigated by coupling the FEM and S-
BFEM [51]. The mixed SBFEM formulation for the nearly incompressible linear multi-
materials was proposed [34].

The scaling center definition is required in original SBFEM, and the radial lines ra-
diated from scaling center to boundary. For modelling the horizontal layered domain,
the scaling center has to be sited in the infinite. And, this leads to the included angle
between the adjacent radial lines is equal to zero approximately. To overcome the lim-
itation of original SBFEM in analyzing the horizontal layered model, a modified scaled
boundary finite element method was proposed to solve the three-dimensional elasto-
dynamic unbounded domain problem [7]. In the modified SBFEM, the original scaled
center is replaced by a scaling line which is vertical to the horizontal layers. Thus, the
modified SBFEM can successfully simulate the horizontal layered unbounded domain
without any difficulty. In original SBFEM, the bounded domain has to be divided in-
to several subdomains which are suitable for analyzing the complex multilayered model.
The disadvantage of original SBFEM is avoided by introducing the scaling line definition.
The multilayered model can be directly computed. In this paper, the modified SBFEM is
proposed to analyze the horizontal layered bounded domain with piezoelectric medium.
Firstly, the two-dimensional static governing equation of piezoelectric medium is given.
Then, the generalized stress strain relationship of piezoelectric material is expressed. Ac-
cording to the above preparation work, the Duality theory is used in Hamilton system
for deriving the modified SBFEM governing equation. The modified SBFEM state equa-
tion which contains the displacement and electric responses of piezoelectric medium is
obtained. The Hamilton derivation technology makes the progress more concisely. Sec-
ondly, the modified SBFEM equation for piezoelectric medium is solved by eigenvalue
decomposition. By introducing the auxiliary variable, the generalized displacement and
node forces can be expressed as power exponent function with radial coordinate. As so
far, the modified SBFEM static solution for layered piezoelectric bounded domain is ob-
tained. The displacement and electric charge for the arbitrary internal nodes can compute
through the shape function in circumferential scaled boundary coordinate η. When the
external force subjects on the radial lines, the SBFEM equation needs to be treated spe-
cially. For the SBFEM model, the radial boundaries of problem domain are known as side
faces. A technique was given in SBFEM allowing displacements to be prescribed along
side faces [16]. This technique significantly extends the application range of SBFEM in
elastostatic filed. In this paper, the modified SBFEM is extended to solve the piezoelectric
layered bounded domain subjecting side face load. The side face load and displacements
mode were expressed by power function of radial coordinate [17]. A novel side face load
formulation for the modified SBFEM is proposed in this paper. The side face load can
be expressed as the power exponent function with the radial coordinate. And this new
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technology makes the horizontal layered bounded domain can be analyzed directly. The
generalized displacement and node forces can be assembled by the general solution for
boundary load case and the special solution for side face load case.

The two-dimensional modified SBFEM for the piezoelectric material is built in Sec-
tion 2. The elastic-electric governing equation for piezoelectric medium is given firstly.
Then, the geometry coordinates transformation of the modified SBFEM in piezoelectric
medium is proposed. Because there is electric freedom for piezoelectric medium, the ge-
ometry coordinates transformation for the proposed method is novel and different from
those of the original SBFEM and modified SBFEM. Based on the Hamiltonian derivation
technology, the modified SBFEM state equation for displacement and electric is formulat-
ed in Section 3. In Section 4, the static solution for layered piezoelectric bounded domain
is computed. In Section 5, the side face load case is considered. A novel side face load
form is proposed in modified SBFEM. In Section 6, numerical examples are revealed to
demonstrate the accuracy of proposed method. In the Section 7, the conclusions are re-
marked.

2 The modified scaled boundary finite method for piezoelectric
medium

The static analysis for horizontal layered bounded domain with piezoelectric medium
is an interesting topic. The modified SBFEM is proposed to deal with the horizontal
layered piezoelectric problem. The scaling center of original SBFEM is replaced by scaling
line, and the horizontal layers can be directly model with no problem. Firstly, the two-
dimension static governing equations for piezoelectric medium are described. Then, the
SBFEM coordinate transform is introduced.

2.1 Two-dimensional static governing equations for the piezoelectric material

The two-dimensional governing equations for piezoelectric medium are listed as follows,
and the body load and free electric charge are ignored

{σ}=[c]{ε}−[e]T{E}, (2.1a)
{D}=[e]{ε}+[p]{E}, (2.1b)

where, {σ}, {ε} and {D} are the stress vector, strain vector and electric displacement
vector, respectively. {E} is electric field, [c] are elastic constants, [e] are piezoelectric
constants, and [p] are permittivities. By assembling Eqs. (2.1a) and (2.1b), the governing
equation for piezoelectric medium can be expressed as following:

{σ̄}=[H]{ε̄}, (2.2)
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in which, the stress and electric displacement are combined as {σ̄}=[σxx,σyy,σxy,Dx,Dy]
T,

the corresponding strain and electric are combined as as {ε̄}= [εxx,εyy,γxy,−Ex,−Ey]
T.

The material constant matrix [H] can be given as

[H]=


c11 c13 0 0 e31
c13 c33 0 0 e33
0 0 c44 e15 0
0 0 e15 −p11 0

e31 e33 0 0 −p33

. (2.3)

The plane-strain problem is considered in this paper. Then, the expression of generalized
strain {ε̄} can be denoted as following

{ε̄}=[L]{ū}=[L]{ux,uy,ϕ}T, (2.4)

where, ux,uy are the x-direction and y-direction displacement components, ϕ denoted as
electric potential, and [L] is the linear partial differential operator

[L]=


∂

∂x̂
0

∂

∂ŷ
0 0

0
∂

∂ŷ
∂

∂x̂
0 0

0 0 0
∂

∂x̂
∂

∂ŷ



T

. (2.5)

According to the interaction force principle, the governing equation for the elastostatic
and electrostatic problem is given as follow

[L]T{σ̄}+{ f̄ }=0, (2.6)

where, the generalized node force is denoted as { f̄ }= [ fbx, fby,qb]
T. fbx and fby are me-

chanical body forces, qb is electric body force.

2.2 The modified scaled boundary geometry coordinate transformation

As shown in Fig. 1, a horizontal layered bounded domain is described in this example.
The boundaries are denoted as L. The interfaces of two adjacent layers are assumed
horizontal. The displacements and tractions are continuous on interfaces. Two scaled
boundary coordinates η and ξ are introduced to describe the surface circumferential di-
rection and radial direction. As shown in Fig. 1(b), the boundary node coordinate and
inside node coordinate are denoted as (x̂,ŷ) and (x,y) in the two-dimensional Cartesian
coordinate system. In the modified SBFEM, a vertical line-the scaling line replaces tradi-
tional scaling centre, and the scaling line coincides with ŷ axis in Fig. 1(b). The modified
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Figure 1. Modified scaled boundary finite element method for 2D layered medium. (a) 2D layered Figure 1. Modified scaled boundary finite element method for 2D layered medium. (b) 

(a) (b)

Figure 1: Modified scaled boundary finite element method for 2D layered medium. (a) 2D layered medium (b)
Coordinate transformation of the bounded domain model.

SBFEM inherits the advantages of SBFEM. Thus, the boundary needs to be discretized
and the dimension of problem domain is reduced by one. For bounded domain, the
radial coordinate which is parallels to x-axis runs from scaling line to boundary. The
radial coordinate ranges are given as follows: ξ = 1 on the domain boundary, 0≤ ξ ≤ 1
for bounded domain and ξ ≥ 1 for unbounded domain. The shape functions [N(η)] are
used to interpolate a series of parallel lines in the dimensionless coordinate direction. As
shown in Fig. 1(b), the bounded domain is composed by the lines which are parallel to
x̂ axis and pass through scaling line. By scaling the factor ξ, bounded domain S can be
described. It is interesting to note that the vertical coordinates are retained.

For fixed radial coordinate ξ, the arbitrary Cartesian node coordinate (x̂,ŷ) can be
obtained by interpolating the space node coordinate ({x},{y}) by using shape function
[N(η)]. As shown in Fig. 1(b), the arbitrary line FG (ξ = const) is parallel to the scaling
line OO’ and boundary line AB. Thus, the node coordinates can be obtained according to
the similarity. The modified scaled boundary coordinate transformation is expressed as
following: {

x̂(ξ,η)= [N(η)]x̂(ξ)= ξ[N(η){x},
ŷ(ξ,η)= [N(η)]ŷ(ξ)= [N(η)]{y}.

(2.7)

The generalized displacement and stress components are unchanged in Cartesian coor-
dinate system. The partial derivatives with respect to scaled boundary coordinates are
formulated as following: {

∂/∂ξ
∂/∂η

}
=[ Ĵ(ξ,η)]

{
∂/∂x̂
∂/∂ŷ

}
, (2.8)

where [ Ĵ(ε,η)] denoted as Jacobian matrix

[ Ĵ(ξ,η)]=
[

x̂,ξ ŷ,ξ
x̂,η ŷ,η

]
=

[
x 0
0 y,η

]
=[J], (2.9)
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in which [J] is the boundary Jacobian matrix. By using the partial derivative in Eq. (2.8),
the partial derivatives with respect to Cartesian coordinates can be expressed to the par-
tial derivatives with modified scaled boundary coordinates, as given in Eq. (2.10){

∂/∂x̂
∂/∂ŷ

}
=[ Ĵ(ξ,η)]−1

{
∂/∂ξ
∂/∂η

}
=

1
|J|

{
y,η
0

}
∂

∂ξ
+

1
|J|

{
0
x

}
∂

∂η
, (2.10)

with |J| is the value of determinant.
To analyze the plane problem, the normal stress vectors {tξ} and {tη} on line Sε and

Sη are formulated as following:

{tξ}= |J|
gξ

[b1]
T{σ}, {tη}= |J|

gη
[b2]

T{σ}, (2.11)

where gξ =y, gη = x. For ξ= const, the length of infinitesimal arc is expressed as

dΓe =
√
(x,η)

2+(y,η)
2dξ=

∣∣y,η
∣∣dξ. (2.12)

The linear partial differential operator [L] with the scaled boundary coordinates ξ and η
is rewritten as following

[L]= [b1]
∂

∂ξ
+[b2]

∂

∂η
(2.13)

with

[b1]=
1
|J|


y,η 0 0
0 0 0
0 y,η 0
0 0 y,η
0 0 0

, (2.14a)

[b2]=
1
|J|


0 0 0
0 x 0
x 0 0
0 0 0
0 0 x

. (2.14b)

By taking account for the electric potential contribution, the matrixes [b1] and [b2] with
the dimensions 5×3 are different from those of the original SBFEM. Similarly the form
of Eq. (2.7), the generalized displacement {ū(ξ,η)}, which contains displacement and
electric potential can be discretized by using shape function [N(η)] and weight function
{w}

{ū(ξ,η)}=[N(η)]{ū(ξ)}, {w(ξ,η)}=[N(η)]{w(ξ)}. (2.15)
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According to Eqs. (2.4), (2.13) and (2.15), the generalized strains {ε̄} is formulated as
described in Eq. (2.16) with respect to the generalized displacement {ū}

{ε̄}=[B1]{ū},ξ+[B2]{ū} (2.16)

with

[B1]= [b1][N(η)], [B2]= [b2][N(η)],η . (2.17)

It is worthy to note that, the matrixes [B1] and [B2] only depend on the bounded do-
main boundary condition. Substituting Eq. (2.15) into the generalized stress and strain
governing Eq. (2.2), the generalized stresses {σ̄} is denoted as

{σ̄}=[H][B1]{ū},ξ+[H][B2]{ū}. (2.18)

3 Hamiltonian derivation of the displacement and electric
modified SBFEM equation

In this paper, the displacement and electric potential governing equation of modified S-
BFEM is presented. Based on Duality system theory, the Hamiltonian variational princi-
ple is applied to be compatible with n order Hamilton system. This technology is applied
to derivate the modified SBFEM governing equation. Then, the Lagrangian density func-
tion L({u},{u̇}), which is the summation of strain energy density function and work
of external force, is introduced to Hamiltonian variational principle. By using Legendre
transformation, the dual variable {q} of generalized stress is formulated as following

{q}=∂L/∂u̇. (3.1)

The Hamiltonian function H can be formulated as follow

H({u},{q})={q}T{u̇}−L({u},{u̇}). (3.2)

According to the Hamiltonian variational principle, yielded that

δ
∫ z1

z0

[{q}T{u}−H({u},{q})]dz=0. (3.3)

The partial derivatives are obtained are given in the following forms

{u̇}=∂H/∂q, {q̇}=−∂H/∂u. (3.4)

According to the above introduction for Hamiltonian method, the Lagrangian density
function L({ū},{ ˙̄u}) for piezoelectric medium can be constituted firstly. The generalized



S. Lu et al. / Adv. Appl. Math. Mech., 10 (2018), pp. 209-241 219

strain energy density function U is formulated as following

U=
∫

S

1
2
{σ̄}T{ε̄}dS=

∫
S

1
2
{ε̄}T[H]{ε̄}dxdy

=
∫ ξ1

ξ0

∫ η1

η0

1
2
([B1]{ū},ξ+[B2]{ū})T

[H]([B1]{ū},ξ+[B2]{ū})|J|dηdξ

=
∫ ξ1

ξ0

∫ η1

η0

1
2
({ū}T

,ξ [B
1]

T
[H][B1]{ū},ξ+{ū}T

,ξ [B
1]

T
[H][B2]{ū}

+{ū}T[B2]
T
[H][B1]{ū},ξ+{ū}T[B2]

T
[H][B2]{ū})|J|dηdξ

=
∫ ξ1

ξ0

1
2
({ū},ξ

T[E0]u,ξ+{ū},ξ
T[E1]

T{ū}+{ū}T[E1]{ū},ξ+{ū}T[E2]{ū})dξ. (3.5)

For convenient, the coefficient matrices [E0], [E1] and [E2] are introduced, they only relate
to boundary elements

[E0]=
∫ +1

−1
[B1]

T
[H][B1]|J|dη, (3.6a)

[E1]=
∫ +1

−1
[B2]

T
[H][B1]|J|dη, (3.6b)

[E2]=
∫ +1

−1
[B2]

T
[H][B2]|J|dη. (3.6c)

Because the surface tractions and body forces are ignored in this study, the work causing
by external force is equal to zero

W=0. (3.7)

For the static electromechanical system, the radial direction coordinate ξ is selected as
time-axis. Therefore, { ˙̄u} can be represented as { ˙̄u}=∂ū/∂ξ. According to the definition
of Lagrangian density function, L({ū},{ ˙̄u}) for piezoelectric medium can be expressed
as

L({ū},{ū},ξ)=U−W

=
1
2

(
{ū},ξ

T[E0]{ū},ξ+{ū},ξ
T[E1]

T{ū}+{ū}T[E1]{ū},ξ+{ū}T[E2]{ū}
)

. (3.8)

Applying the Legendre transformation, the dual vector {q̄} can be given as follow

{q̄}= ∂L
∂ū,ξ

=[E0]{ū},ξ+[E1]
T{ū}. (3.9)

Because of matrix [E0] is symmetry and positive definite, and above equation can be
rewritten as

{ū},ξ =[E0]
−1
({q̄}−([E1])

T{ū})= [E0]
−1{q̄}−[E0]

−1
[E1]

T{ū}. (3.10)



220 S. Lu et al. / Adv. Appl. Math. Mech., 10 (2018), pp. 209-241

Based on the expressions for dual vectors ({ū},{q̄}) and Lagrangian density function in
Eq. (3.6), the Hamiltonian function can be devoted as

H({ū},{q̄})
={q̄}T{ū},ξ−L({ū},{ū},ξ)

={q̄}T{ū},ξ−
1
2
({ū}T

,ξ [E
0]{ū},ξ+{ū},ξ

T[E1]
T{ū}+{ū}T[E1]{ū},ξ+{ū}T[E2]{ū})

=
1
2
({ū}T

,ξ [E
0]{ū},ξ−{ū}T[E2]{ū}). (3.11)

Substituting the partial derivative Eq. (3.10) into the Hamiltonian function Eq. (3.11)
yielded that

H({ū},{q̄})

=
1
2

(
[E0]

−1{q̄}−[E0]
−1
[E0]

T{ū}
)T

[E0]
(
[E0]

−1{q̄}−[E0]
−1
[E1]

T{ū}
)
− 1

2
{ū}T[E2]{ū}

=
1
2
({q̄}T[E0]

−T{q̄}−{ū}T[E1][E0]
−T{q̄}−{q̄}T[E0]

−T
[E1]

T{ū}

+{ū}T[E1][E0]
−T

[E1]
T{ū})− 1

2
{ū}T[E2]{ū}

=
1
2
{q̄}T[E0]

−T{q̄}−{q̄}T[E0]
−T

[E1]
T{ū}+ 1

2
{ū}T([E1][E0][E1]

T−[E2]){ū}. (3.12)

By applying the Hamiltonian variational principle, the Hamilton canonical equations for
piezoelectric medium can be given as following

{q̄},ξ =−∂H/∂ ū=[E1][E0]
−1{q̄}−([E1][E0]

−T
[E1]

T−[E2]){ū}, (3.13a)

{ū},ξ =∂H/∂q =[E0]
−T{q̄}−[E0]

−T
[E1]

T{ū}. (3.13b)

Substituting the dual vector expression formulation in Eq. (3.9) to the partial derivation
Eqs. (3.13a) and (3.13b), the state governing equation of modified SBFEM for piezoelectric
medium can be given as following:{

{ū},ξ
{q̄},ξ

}
=

[
−[E0]

−T
[E1]

T
[E0]

−T

−([E1][E0]
−T

[E1]
T−[E2]) [E1][E0]

−1

]{
{ū}
{q̄}

}
. (3.14)

The state Eq. (3.12) can be abbreviated as

{X(ξ)},ξ =[Z]{X(ξ)} (3.15)

with

[X(ξ)]=

[
{u(ξ)}
{q(ξ)}

]
, [Z]=

[
−[E0]

−T
[E1]

T
[E0]

−T

−([E1][E0]
−T

[E1]
T−[E2]) [E1][E0]

−1

]
. (3.16)

The coefficient matrix [Z] is Hamiltonian matrix, and Eq. (3.14) is the governing equa-
tion of modified SBFEM for piezoelectric medium. The detailed solving progress can be
exhibited in the following section.
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4 The static solution of the modified SBFEM governing equation
for piezoelectric medium

The matrix function method is applied in solving progress. The advantage of this method
is that it can obtain the displacement and stress solutions once time. Firstly, the Hamilto-
nian matrix [Z] can be eigenvalue decomposed as follow

[Z][V]= [V][Λ], (4.1)

in which the matrices [V], [Λ] are the eigenvector and eigenvalue of Hamiltonian matrix
[Z], respectively. And the diagonal matrix [Λ] can be presented as following:

[Λ]=

[
[−λj]

[λj]

]
, j=1,2,··· ,n, (4.2)

with Re(λj)< 0, and the eigenvalue is rearranged in descending order. The eigenvector
matrix [V] can be blocked arrangement as described in Eq. (4.3) according to eigenvalue
form

[V]=

[
[V11] [V12]
[V21] [V22]

]
. (4.3)

The eigenvector matrix can be composed by n column modal displacement vectors. The
constant vector {c} is introduced to represent the contribution of each mode. The con-
stant vector only depends on boundary conditions. Therefore, the solution of first order
ordinary differential Eq. (3.15) can be formulated as following:

{X(ξ)}=[X(ξ)]{c}. (4.4)

Defining the auxiliary variable [Y(ξ)] yielded

[Y(ξ)]= [V]−1[X(ξ)]. (4.5)

Rearranging Eq. (4.5), yielded

[X(ξ)]= [V][Y(ξ)]. (4.6)

Substituting Eq. (4.5) into Hamiltonian governing Eq. (3.15), one can obtain

[Y(ξ)],ξ =[Λ][Y(ξ)]. (4.7)

The solution of the first order differential Eq. (4.7) can be given as follow

[Y(ξ)]= e[Λ]ξ . (4.8)
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Combining the solution forms in Eqs. (4.6), (4.8) and (4.4), the double variables solution
can be solved as

{X(ξ)}=[V]e[Λ]ξ{c}. (4.9)

For concise, Eq. (4.9) is written in bock matrix form, as following

{X(ξ)}=
[
[V11] [V12]
[V21] [V22]

][
e[−λj]ξ

e[λj]ξ

]{
{c1}
{c2}

}
. (4.10)

Expanding the solution expressed in Eq. (4.10), the generalized modal displacements and
the equivalent model node forces can be formulated as following

{ū(ξ)}=[V11]e
[−λj]ξ{c1}+[V12]e

[λj]ξ{c2}, (4.11a)

{q̄(ξ)}=[V21]e
[−λj]ξ{c1}+[V22]e

[λj]ξ{c2}. (4.11b)

The generalized displacement for bounded domain is a finite value. Thus, when the
eigenvalue λj →∞, the displacement {u(ξ)}→∞. Therefore, the integral constant vec-
tor is equal to {c2}= 0. The generalized displacements and equivalent node forces in
Eqs. (4.11a) and (4.11b) can be formulated as following:

{ū(ξ)}=[V11]e
[−λj]ξ{c1}, (4.12a)

{q̄(ξ)}=[V21]e
[−λj]ξ{c1}. (4.12b)

For arbitrary generalized displacement {ū(ξ)}, the integration constant vector {c1} is re-
quired to satisfy Eq. (4.12a). The solution forms in Eq. (4.12) is novel and firstly proposed
in modified SBFEM. Therefore, the integration constant vector {c1} can be obtained by
boundary generalized displacement and its formulation is expressed as follow

{c1}=([V11]e
[−λj])

−1
{ū(ξ=1)}. (4.13)

Substituting Eq. (4.13) into Eq. (4.12b), the generalized equivalent forces {q̄(ξ)} on bound-
ary can be written as following

{q̄}=[V21][V11]
−1{ū(ξ=1)}. (4.14)

Combining Eqs. (4.12a) and (4.12b), and then canceling the integration constant vector
{c1}, the boundary static stiffness matrix of bounded domain can be obtained as follow-
ing

[K]= [V21][V11]
−1. (4.15)

Substituting the generalized displacement (Eq. (4.12a)) into generalized stresses formu-
lation (Eq. (2.18)) yields the stress expression as following:

{σ̄(ξ,η)}=[H]
n

∑
i=1

cie−λiξ([B2]−λi[B1]){ϕi}. (4.16)
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5 The side face loads solution of the piezoelectric bounded
domain

The body loads and side face loads are not discussed in above sections. Therefore, E-
q. (3.15) is a homogeneous first order ordinary differential equation without considering
side face loads. And, this equation is the static governing equation for piezoelectric lay-
ered bounded domain. As innovation, the non-zero side face loads are considered for
layered medium. As described in Fig. 2, only the boundary ξ = 1 is descreted, and the
side faces don’t need to descrete. Therefore, the nodes only exist on boundary. When the
external force acts on boundary, the solutions can be easily obtained as above sections.
Here, the side face is defined as the line passes from scaling line to boundary along radial
line (as shown in Fig. 2). When the external force acts on side face, the solutions need to
be special treated. The additional external virtual work term will appear when there is
a non-zero side face load subjecting on side face. For modeling side face loads, the load
amplitude should be the function of scaled boundary coordinate ξ. For bounded domain
0≤ ξ ≤1. Due to the existence of side face load, the non homogeneous term is added to
the state governing equation of modified SBFEM (Eq. (3.15)), yielded

{X(ξ)},ξ =[Z]{X(ξ)}+{F(ξ)} (5.1)

with the {F(ξ)}={Fb(ξ)}+{Ft(ξ)}, superscripts ”b” and ”t” denoted as body loads and
side face loads, respectively. The side face loads {Ft(ξ)}=[Ft(ξ),0]

T, and body loads are
absent in this paper.

The solution of non homogeneous differential equation can be sought as the two parts
combinations, the general solution of homogeneous Eq. (3.15) and the particular solution
of non-homogeneous Eq. (5.1). The general solution (Eqs. (4.12a) and (4.12b)) has been
obtained in Section 4. In this section, the key point is to solve additional solution. Many
practical loads can be simplified as a series of power function with radial coordinate ξ.
As usual, the constant loads or linearly varying loads are considered. In this paper, the
side face loads are proposed by the form Eq. (5.2). Comparing the original side face load
form {Ft(ξ)}= ξt{Ft} in original SBFEM [55], the proposed side face load form is quite

Figure 2. Bounded domain with side face load. 

Figure 2: Bounded domain with side face load.
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different and novel, as following:

{Ft(ξ)}= eξt{Ft}, (5.2)

where, t is a arbitrary constant, {Ft} is the constant amplitude of side face loads.
The displacement modes for the side face loads case can be expressed as the following

form

{ut(ξ)}= eξt{ϕt}. (5.3)

Substituting the displacement modes formulation Eq. (5.3) into the first line of governing
Eq. (5.1), yielded

[t2[E0]+([E1]
T−[E1])t−[E2]]{ϕt}+{Ft}=0. (5.4)

Then, the mode of side face loads can be obtained by rearrangement as follow

{ϕt}=−[t2[E0]+([E1]
T−[E1])t−[E2]]

−1
{Ft}. (5.5)

Substituting Eq. (5.3) into the second line of Eq. (5.1), the generalized equivalent nodal
forces can be obtained as follow

{q̄t}=([E0]tet+[E1]
T

et){ϕt}. (5.6)

Therefore, the complete solution of non homogeneous differential Eq. (5.1) can be given,
the solution can be formulated by the following form

{ū(ξ,η)}=[N(η)]
(

etξ{ϕt}+
n

∑
i=1

cie−λiξ{ϕi}
)

, (5.7)

where, {ϕi} is the column vector of matrix [Φ] ([Φ]=[V11]). For a given set of integration
constant vector {c}, the boundary displacement in Eq. (5.7) can be rewritten in matrix
form

{ū}= et{ϕt}+[Φ][e−λi ]{c}. (5.8)

The integration constant vector can be computed by rearranging Eq. (5.8), yielded

{c}=([Φ][e−λi ])
−1
({ū}−et{ϕt}). (5.9)

The generalized equivalent forces also can be expressed in matrix form

{q̄}={q̄t}+[Q][e−λi ]{c} (5.10)

with [Q]= [V21].
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Substituting Eq. (5.9) into Eq. (5.10) and rewritten the formulation, yields that

[Q][e−λi ]([Φ][e−λi ])
−1
({u}−et{ϕt})={q}−{qt} (5.11)

or

[K]{ū}={q̄}−{q̄t}+[K]et{ϕt}, (5.12)

where

[K]= [Q][Φ]−1. (5.13)

The equation forms for Eq. (5.13) and Eq. (4.15) are same. It illustrates that the homoge-
neous equation solution is a part of non homogeneous equation solution. According to
boundary conditions of discretized boundaries, the constraint conditions are applied to
the column vector of generalized displacement {ū} and nodal forces {q̄}. The solution
process is similar to the usual manner. As so far, the complete boundary displacements
for side face load case are obtained. Then, the integration constant vector is acquired by
applying Eq. (5.9).

Substituting Eq. (5.7) into Eq. (2.18), the generalized stress for side face load case can
be formulated as follow

{σ̄(ξ,η)}=[H](etξ(t[B1]+[B2]){ϕt}+
n

∑
i=1

cie−λiξ([B2]−λi[B1]){ϕi}). (5.14)

6 Numerical examples

The primary goal of this paper is to provide a new static solution for the horizontal lay-
ered piezoelectric bounded domain. To illustrate the accuracy and wide applicability of
the modified SBFEM for static problem, four numerical examples are investigated. In
Section 6.1, the accuracy of proposed method is verified by a two layered model with
boundary force and side face load. By comparing with the finite element solutions, the
newly developed method is valid for the piezoelectric medium with complex load con-
dition. It illustrates the modified SBFEM can successfully solve the static analysis of
bounded domain with boundary force and side face load. In Section 6.2, the influence
of side face load acting direction and depth on multilayered piezoelectric model is con-
sidered. In Section 6.3, the effect of side face load form on three layered piezoelectric
model is analyzed. The varying side face load is firstly introduced in modified SBFEM.
Finally, the complex load combinations are addressed for bounded domain. A single lay-
er piezoelectric model with the combined action of elastostatic force and electric force is
analyzed. The influence of electric force acting depth is investigated.
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6.1 Two layers piezoelectric model with boundary load and side face load

In order to prove the accuracy of proposed method in modeling layered bounded do-
main, a two layered bounded domain with rigid bottom is investigated. The total model
thickness is b=1m, each layer thickness is h1=h2=0.5b, and model width is 2r=6b. The
material coefficients are given as: layer 1: PZT-4 and layer 2: PZT-5H1 as described in
Table 1. cij, eij and pij are the elastic constants, piezoelectric constants and permittivity,
respectively. The unit of cij, eij and pij are 109Nm−2, 1.0Cm−2 and 10−9Fm−1, respective-
ly. Six three-node line elements are used for the right and left boundaries, respectively.
The plane strain state is considered in this paper. As shown in Figs. 3(a), (b) and (c), the
horizontal uniform force and side face load subject on right boundary, left boundary and
top side face, respectively. The amplitude of boundary load and side face load are given
as P1 =P2 =P3 =1. The finite element solutions are computed as the reference solutions.
For the two layered piezoelectric model in Fig. 3(a), the node and element numbers for
the proposed method and finite element method are listed in Table 2. The finite element
model mesh is described in Fig. 4. Only the right/left boundaries of model need to dis-
perse, as shown in Fig. 1. Comparing the finite element mesh (Fig. 4) with the SBFEM
mesh (Fig. 1), the obvious advantages of proposed method in meshing can be found. For
the boundary load model in Fig. 3(a), the vertical displacement and electric potential re-
sults of the points on x=−3 axis and y=0 axis are compared in Fig. 5, respectively. For
further explain the accuracy of proposed method, the results of side face load model in
Fig. 3(b) are shown in Fig. 6, respectively. Meanwhile, the vertical displacements of typ-
ical points are listed in Table 2. The CPU computation times for two methods (an Intel
i7-Core 4 Duo-platform at 3.4GHz with 8-GB RAM) are also given in Table 2. According
to Table 2 and Figs. 5-6, it is noted that the proposed method can achieve excellent accu-
racy. The proposed method has higher efficiency and convergence with fewer nodes and

Figure 3. Two layers piezoelectric layer bounded domain. (a) case 1 Figure 3. Two layers piezoelectric layer bounded domain. (b) case 2 Figure 3. Two layers piezoelectric layer bounded domain.  (c) case 3 

(a) (b) (c)

Figure 3: Two layers piezoelectric layer bounded domain. (a) case 1 (b) case 2 (c) case 3.

Figure 4. The mesh of finite element model. 

Figure 4: The mesh of finite element model.
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Figure 5. Comparison of the vertical displacement and electric potential results by the proposed 

y

Figure 5. Comparison of the vertical displacement and electric potential results by the proposed (a) (b)

Figure 5. Comparison of the vertical displacement and electric potential results by the proposed 

y

Figure 5. Comparison of the vertical displacement and electric potential results by the proposed (c) (d)

Figure 5: Comparison of the vertical displacement and electric potential results by the proposed method and
FEM ((a), (b) are for the points on x=−3 axis; (c), (d) are for the points on y=0 axis) (case 1) (a) vertical
displacement uy, (b) electric potential ϕ, (c) vertical displacement uy, (d) electric potential ϕ.

Table 1: Material constants of the piezoelectric materials.

c11 c13 c33 c44 e31 e33 e15 p11 p33
PZT-4 139 74.3 113 25.6 -6.98 13.84 13.44 6.0 5.47

PZT-5H1 126 84.1 117 23 -6.5 23.3 17.44 15.03 13.0

less computation times. To consider the influence of different loads (in Fig. 3), the results
of three load cases are described in Fig. 7. It can be seen from the figure that the load
type has great influence on vertical displacement and electric potential in vertical direc-
tion. While the side face load has less effect on the displacement and electric potential in
horizontal direction.

6.2 Influence of the side face load acting direction and depth

The layered piezoelectric medium usually acts on the complicate load conditions in the
most cases. The displacement and electric potential appear different change trends. There-
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Figure 6. Comparison of the vertical displacement and electric potential results by the proposed 

y

Figure 6. Comparison of the vertical displacement and electric potential results by the proposed (a) (b)

Figure 6. Comparison of the vertical displacement and electric potential results by the proposed 

y

Figure 6. Comparison of the vertical displacement and electric potential results by the proposed (c) (d)

Figure 6: Comparison of the vertical displacement and electric potential results by the proposed method and
FEM ((a), (b) are for the points on x=−3 axis; (c), (d) are for the points on y=0 axis) (case 2) (a) vertical
displacement uy, (b) electric potential ϕ, (c) vertical displacement uy, (d) electric potential ϕ.

Table 2: Comparison of the proposed method and FEM in vertical displacement uy of nodes.

FEM (mesh1) FEM (mesh2) FEM (mesh3) Modified SBFEM (mesh 1) Modified SBFEM (mesh 2) Modified SBFEM (mesh 3)
Node number 733 1265 1941 10 18 26

Element number 216 384 600 4 8 12
Node(-3.00,-0.25) -0.10581 -0.11028 -0.11694 -0.09842 -0.10248 -0.11693

Case 1 Node(-3.00,-0.75) -0.04471 -0.05147 -0.05898 -0.03940 -0.04362 -0.05896
Node (-2.52,0.00) -0.16527 -0.17133 -0.17808 -0.15283 -0.16261 -0.17805
Node (-1.38,0.00) -0.09618 -0.10258 -0.10976 -0.08749 -0.09627 -0.10973

CPU time (s) 7.527 13.637 15.739 0.372 0.593 0.964
Node number 733 1265 1941 10 18 26

Element number 216 384 600 4 8 12
Node(-3.00,-0.25) -0.06169 -0.06738 -0.07171 -0.05893 -0.06372 -0.07168

Case 2 Node(-3.00,-0.75) -0.00816 -0.00982 -0.01185 -0.00865 -0.00916 -0.01183
Node (-2.52,0.00) -0.16263 -0.16947 -0.17298 -0.15845 -0.16374 -0.17295
Node (-1.38,0.00) -0.10563 -0.10968 -0.11117 -0.09657 -0.10635 -0.11115

CPU time (s) 8.591 14.837 16.159 0.429 0.628 1.236

fore, it is meaningful to discuss the response of multilayered piezoelectric model with
different side face loads. A three layered piezoelectric models with different side face
load acting directions are considered in Fig. 8. Three side face load cases are given as
follows: case 1: horizontal uniform load Px = 1 (Fig. 6(a)); case 2: vertical uniform load
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Figure 7. The vertical displacement and electric potential results with different loads ((a),(b) are Figure 7. The vertical displacement and electric potential results with different loads ((a),(b) are (a) (b)

Figure 7. The vertical displacement and electric potential results with different loads ((a),(b) are The vertical displacement and electric potential results with different loads ((a),(b) are (c) (d)

Figure 7: The vertical displacement and electric potential results with different loads ((a), (b) are for the points
on x=−3 axis; (c), (d) are for the points on y=0 axis) (a) vertical displacement uy, (b) electric potential ϕ,
(c) vertical displacement uy, (d) electric potential ϕ.

Figure 8. Three layers models with different side face load directions. (a) horizontal uniform load Figure 8. Three layers models with different side face load directions. (b) vertical uniform load Figure 8. Three layers models with different side face load directions. (c) Combination action of 

(a) (b) (c)

Figure 8: Three layers models with different side face load directions. (a) horizontal uniform load, (b) vertical
uniform load, (c) Combination action of the vertical and horizontal uniform loads.

Py =1 (Fig. 6(b)); case 3: the combination of vertical Py =1 and horizontal uniform loads
Px =1 (Fig. 6(c)). The three layers material are presented as follows, layer 1 with PZT-4,
layer 2 with PZT-5H1 and layer 3 with PZT-6B. And the piezoelectric material parameters
are listed in Table 3. The geometry dimensions of three models are the same as those of
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The influence of load direction on the results of three layers piezoelectric model ((a),(b) The influence of load direction on the results of three layers piezoelectric model ((a),(b) (a) (b)

Figure 9. The influence of load direction on the results of three layers piezoelectric model ((a),(b) Figure 9. The influence of load direction on the results of three layers piezoelectric model ((a),(b) (c) (d)

Figure 9: The influence of load direction on the results of three layers piezoelectric model ((a), (b) are for the
points on x=−3 axis; (c), (d) are for the points on y=0 axis) (a) vertical displacement uy, (b) electric potential
ϕ, (c) vertical displacement uy, (d) electric potential ϕ.

Figure 10. Three piezoelectric layers bounded domain subjected to x and y directions side face Figure 10. Three piezoelectric layers bounded domain subjected to x and y directions side face Figure 10. Three piezoelectric layers bounded domain subjected to x and y directions side face 

(a) (b) (c)

Figure 10: Three piezoelectric layers bounded domain subjected to x and y directions side face loads in different
depths. (a) case 1, (b) case 2, (c) case 3.

Section 6.1. The total thickness is equal to b=1m, each layer thickness is h1=h2=h3=1/b,
and the model width is 2r=6b. As shown in Fig. 9, the vertical displacement and electric
potential with different loads are analyzed. It can be observed from Fig. 9 that the dif-
ferences between the amplitudes of vertical displacement and electric potential for case
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Figure 11. The influence of load depth on the results of three layers piezoelectric model ((a),(b) Figure 11. The influence of load depth on the results of three layers piezoelectric model ((a),(b) (a) (b)

Figure 11. The influence of load depth on the results of three layers piezoelectric model ((a),(b) 
Figure 11. The influence of load depth on the results of three layers piezoelectric model ((a),(b) (c) (d)

Figure 11: The influence of load depth on the results of three layers piezoelectric model ((a), (b) are for the
points on x=−3 axis; (c), (d) are for the points on y=0 axis) (a) vertical displacement uy, (b) electric potential
ϕ, (c) vertical displacement uy, (d) electric potential ϕ.

2 and case 3 are relatively small, except for the electric potential of the points on y = 0
axis. Then, the complex side face loads case which act on the x and y directions in differ-
ent depths are considered, as shown in Fig. 10. The results of three layered piezoelectric
bounded domain are plotted in Fig. 11. From the figure, when the depth increases, the
vertical displacement of the points in vertical direction decreases. And the opposite phe-
nomenon can be found for the electric potential results. There is no significant influence
on the vertical displacement of the horizontal direction points with varying load depth.
The electric potential of horizontal direction points decreases with load depth increases.

Table 3: Material constants of the piezoelectric materials.

c11 c13 c33 c44 e31 e33 e15 p11 p33
PZT-4 139 74.3 113 25.6 -6.98 13.84 13.44 6.00 5.47

PZT-5H1 126 84.1 117 23.0 -6.50 23.3 17.44 15.03 13.0
PZT-6B 168 60 163 27.1 -0.90 7.1 4.60 3.60 3.40
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6.3 Influence of the side face load form on the multilayered piezoelectric
model

As shown in Fig. 12, a three layered model is calculated by considering different side face
load forms. The study aim in this section is to reveal the fact that side face load form can
obviously influence the static results of piezoelectric layered model. The physical dimen-
sions of three layered model are given as: total model thickness is b=1m, model width is
2r=6b, thickness of each layer is b/3. The piezoelectric material parameters of each layer
are: layer 1 with PZT-4; layer 2 with PZT-5H1; layer 3 with PZT-6B, as listed in Table 3.
As described above, the definition formulation of side face load is given in Eq. (5.2). For
the fixed radial coordinate ξ, the side face load depends on arbitrary constant t. When
t = 0, the side face load is a constant load and the solution form can be obtain easily.
Thus, the load form with t=0 case is applied to many examples about side face problem.
However, the practical load is not always constant. In this section, the side face load with
t= 1 is firstly considered for the horizontal layered model. Then, the varying side face
loads with t = 1,2,3, and constant side face load with t = 0 are plotted in Fig. 13. The
layered piezoelectric bounded domain with varying side face load is analyzed as shown

Figure 12. Three layers piezoelectric bounded domain subjecting on varying distributed side face 

Figure 12: Three layers piezoelectric bounded domain subjecting on varying distributed side face load.

Figure 13. Different side face load forms. Figure 13: Different side face load forms.
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Figure 14. The influence of load form on the results of three layers piezoelectric model ((a),(b) Figure 14. The influence of load form on the results of three layers piezoelectric model ((a),(b) (a) (b)

Figure 14. The influence of load form on the results of three layers piezoelectric model ((a),(b) Figure 14. The influence of load form on the results of three layers piezoelectric model ((a),(b) (c) (d)

Figure 14: The influence of load form on the results of three layers piezoelectric model ((a), (b) are for the
points on x=−3 axis; (c), (d) are for the points on y=0 axis) (a) vertical displacement uy, (b) electric potential
ϕ, (c) vertical displacement uy, (d) electric potential ϕ.

in Fig. 14. It can be seen from Fig. 14 that the vertical displacement and electric potential
decrease with arbitrary constant t increases. Secondly, for the fixed value t= 1, the side
face loads acts on three layered model (Fig. 12) in different depths as shown in Fig. 15.
Three acting depths are considered as: case 1 with 0, case 2 with b/3, and case 3 with
2b/3. According to the charge trends shown in Fig. 16, the influence of load depth on
vertical displacement and electric potential is significant. The conclusion can be obtained
that larger depth leads to the bigger vertical displacement and electric potential.

6.4 Influence of the action depth of electric side face load

According to the characteristic of piezoelectric medium, the results of the model with
complex side face loads reveals different mechanical and electrical properties. In this sec-
tion, a five layered piezoelectric bounded domain subjects the combination elastic force
P1 and electric force P2. As shown in Fig. 17, the total layer thickness is b= 1m, and the
model width is 2r=6b, and each layer thickness is h1 = h2 = h3 = h4 = b/3, h5 = b/3. The
piezoelectric material for each layer is listed in Table 4: layer 1 with PZH-5H1, layer 2
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Figure 15. Varying side face load acts on different depths on the three layers model. (a) case 1 Figure 15. Varying side face load acts on different depths on the three layers model. (b) case 2 Figure 15. Varying side face load acts on different depths on the three layers model. (c) case 3 

(a) (b) (c)

Figure 15: Varying side face load acts on different depths on the three layers model. (a) case 1, (b) case 2, (c)
case 3.

Figure 16. The influence of load depth on the results of three layers piezoelectric model ((a),(b) Figure 16. The influence of load depth on the results of three layers piezoelectric model ((a),(b) (a) (b)

Figure 16. The influence of load depth on the results of three layers piezoelectric model ((a),(b) 
Figure 16. The influence of load depth on the results of three layers piezoelectric model ((a),(b) (c) (d)

Figure 16: The influence of load depth on the results of three layers piezoelectric model ((a), (b) are for the
points on x=−3 axis; (c), (d) are for the points on y=0 axis) (a) vertical displacement uy, (b) electric potential
ϕ, (c) vertical displacement uy, (d) electric potential ϕ.

with InN, layer 3 with PZH-4, layer 4 with GaN and layer 5: AIN. As shown in Fig. 16,
the uniform elastic force P1 = 1 throughout acts on the surface line with y = 0, and the
uniform electric force P2 = 1 acts on different depths. Three electric force action depth-
s are considered in this example, case 1: 0, case 2: b/3, and case 3: 2b/3. The vertical
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Figure 17. Five layers piezoelectric model with different action depth of the electric force. (a) Figure 17. Five layers piezoelectric model with different action depth of the electric force. (b) Figure 17. Five layers piezoelectric model with different action depth of the electric force. (c) 

(a) (b) (c)

Figure 17: Five layers piezoelectric model with different action depth of the electric force. (a) case 1, (b) case
2, (c) case 3.

displacements and electric potential are described in Fig. 16. The vertical displacement
increases and electric potential decreases with the increase of electric force acting depth.

6.5 Practical application on the road system

To illustrate the practicability of proposed method, the road system is solved in this sec-
tion. As shown in Fig. 19, the piezoelectric layer lies on the road foundation. Two vehicle
loads q1 and q2 subject on the right and left road surfaces, respectively. The acting widths
are l1 = 2b and l2 = 2b. The piezoelectric layer thickness is h = b, and total road width
is 2r= 6b. The PZH-5H1 piezoelectric material parameters are given in Table 4. The left
vehicle load is q1 = 1.0×109N. In order to discuss the influence of vehicle load distri-
bution, three right vehicle loads q2 are considered as follows: 0.5×109N, 1.0×109N and
1.5×109N. The vertical displacements of the points on x=0 and y=0 axes for different ve-
hicle loads are plotted in Fig. 20. For the points on x=0 axis, the general trend of vertical
displacements is weaken with depth increase as plotted in Fig. 18(a). The enhanced right
vehicle load leads to bigger displacement. The vertical displacements of surface points
are given in Fig. 20(b). As expected, the results increase with right vehicle load enhances,
and the main influence area exists in the right change load segment. Because the differ-
ence between two vehicle loads is weaken, the influence of different vehicle loads trends
to disappear.

Table 4: Material constants of the piezoelectric materials.

c11 c13 c33 c44 e31 e33 e15 p11 p33
PZT-5H1 126 84.1 117 23 -6.5 23.3 17.44 15.03 13.0

InN 190 121 182 10 -0.57 0.97 -0.22 0.1355 0.1355
PZT-4 139 74.3 113 25.6 -6.98 13.84 13.44 6.0 5.47
GaN 390 106 398 105 -0.33 0.65 -0.30 0.0788 0.0788
AIN 410 99 389 125 -0.58 1.55 -0.48 0.0753 0.0753
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Figure 18. The influence on the action depth of electric force in the five layers combination model 

y

Figure 18. The influence on the action depth of electric force in the five layers combination model (a) (b)

Figure 18. The influence on the action depth of electric force in the five layers combination model 

y

Figure 18. The influence on the action depth of electric force in the five layers combination model (c) (d)

Figure 18: The influence on the action depth of electric force in the five layers combination model ((a), (b) are
for the points on x=−3 axis; (c), (d) are for the points on y=0 axis), (a) vertical displacement uy, (b) electric
potential ϕ, (c) vertical displacement uy, (d) electric potential ϕ.

Figure 19. The piezoelectric layer on the road foundation with different vehicular loads. 

Figure 19: The piezoelectric layer on the road foundation with different vehicular loads.

7 Conclusions

In this paper, a new technology the modified SBFEM which is used to model the static
problem for the layered piezoelectric bounded domain is proposed. Based on the Hamil-
ton system, the Duality theory is introduced to derive the modified SBFEM governing
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Figure 20. The vertical displacement
y
u of the observation points for different vehicular loads. (a) 

Figure 20. The vertical displacement
y
u of the observation points for different vehicular loads. (b) (a) (b)

Figure 20: The vertical displacement uy of the observation points for different vehicular loads (a) the points on
x=0 axis, (b) the points on y=0 axis.

equation with piezoelectric medium. The Hamilton derivation technology makes solv-
ing progress be concise. Then, the eigenvalue decomposition method is introduced to
solve the modified SBFEM equation with piezoelectric medium. The generalized dis-
placement and node forces can be expressed as power exponent function with radial
coordinate by introducing the auxiliary variable. A novel static solution forms for the
layered piezoelectric bounded domain are obtained. The inner displacement and electric
charge in bounded domain can be computed through interpolating boundary value. For
the special load case, the side face load can be expressed as the power exponent function
with radial coordinate. The static solution forms are given for a newly side face load form
which is quit suitable for horizontal layered bounded domain. It is a new formulation for
the static analysis of layered piezoelectric bounded domain. This technique significantly
extends the modified SBFEM application range in modelling elastostatic problems. The
propose method has high convergence rate and efficiency, excellent accuracy character-
istics. In this method, the exact solutions can be obtained even by less amount of com-
putation time and fewer discretized boundary nodes. The numerical results also show
that the increasement of depth leads to the vertical displacement for vertical direction
points weaken. However, the opposite phenomenon can be found for the electric poten-
tial in vertical direction. It can be noted that the load depth has an insignificant influence
on the vertical displacement in horizontal direction. The electric potential in horizon-
tal direction decreases with load depth increases. The influence of load acting depth on
vertical displacement and electric potential is significant. The larger depth leads to the
bigger vertical displacement and electric potential. The vertical displacement increases
and electric potential decreases with the electric force acting depth increases. At last, the
proposed method is applied to solve road system. The change trend of vertical displace-
ment causing by vehicle loads are given, and the influence of different vehicle loads is
discussed.
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