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Abstract

In this paper, we consider the static output feedback (SOF) H∞-synthesis problem

posed as a nonlinear semi-definite programming (NSDP) problem. Two numerical algo-

rithms are developed to tackle the NSDP problem by solving the corresponding Karush-

Kuhn-Tucker first-order necessary optimality conditions iteratively. Numerical results for

various benchmark problems illustrating the performance of the proposed methods are

given.
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1. Introduction

In this paper, we consider the following NSDP problem:

(P0) :

{

min
X,V, γ

γ

s.t. H(X, γ) = 0, Y (X, V, γ) ≺ 0, V ≻ 0,
(1.1)

where γ ∈ IR+, and H : IRr×t ×Sn × IR+ → Sn, Y : IRr×t ×Sn ×Sn × IR+ → Sn are assumed

to be sufficiently smooth matrix functions. In the considered optimal control applications the

variable X is a decomposition of a matrix pair (F, L) ∈ IRr×t × Sn, where Sn denotes the set

of real symmetric n× n matrices. The problem (1.1) is a nonlinear semi-definite programming

and is generally non-convex.

In recent years there were several attempts to employ the available successful computational

techniques in nonlinear optimization to solve various NSDP problems numerically. Such NSDP

problems represent a variety of applications in system and control theory; see among others

[6, 7, 9, 12, 14, 17, 18, 19, 22, 24, 32]. In particular, the above NSDP problem (1.1) represents

a wide range of applications in system and control theory; see, e.g., the benchmark collection

COMPleib [25].

By solving (1.1) we mean computing a feasible point (X, V, γ) that satisfies the set of equality

and inequality constraints as well as enforcing the objective γ to attain its least possible value.

Due to the difficulties in solving problem (1.1) numerically, however, in most of the above

citations the attempts were only to compute suboptimal solution.

The main goal of this paper is to propose two first-order methods for solving (1.1) that

take advantage of the problem structure and use inexact computations. In these methods we
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compute a stationary point of the above optimization problem by solving numerically the non-

linear system of equations resulting from the Karush-Kuhn-Tucker (KKT) first-order necessary

optimality conditions. It is particularly important in the proposed methods to deal with a

scalar objective function together with matrix variables.

This paper is organized as follows. In the next section we present the problem formulation

and then we state the assumptions imposed on the problem (1.1). In addition, we obtain the

nonlinear system of equations resulting from the first-order necessary optimality conditions of

the problem (1.1). In Section 3 we develop two first-order methods for computing approximately

a stationary point of the problem (1.1). In Section 4 we test numerically the proposed algorithms

through several test problems from the benchmark collection COMPleib [25].

Notations: For a matrix M ∈ IRn×n the notations M ≻ 0, M ≺ 0 denote that M is

positive definite, negative definite, respectively. Throughout the paper, the symbol ‖ ·‖ denotes

the Frobenius norm defined by ‖M‖ =
√

〈M, M〉, where 〈·, ·〉 is the inner product given by

〈M1, M2〉 = Tr (MT
1 M2), and Tr (·) is the trace operator.

2. Problem Formulation

The solution of the H∞ synthesis problem has received considerable attention in the control

literature; see, e.g., [1-3, 6-10, 12, 14, 15, 17-19, 22, 24, 31, 32] and the references therein.

Given a linear time-invariant (LTI) control system, the H∞ synthesis problem can be stated as

follows: Find an output feedback control matrix F that minimizes the H∞ norm of a certain

transfer function subject to the constraint that this control matrix F is stabilizing the associated

control system. A typical instance of an output feedback control system can be stated as follows.

Consider the LTI control system

ẋ(t) = Ax(t) + Bu(t) + B1w(t),

y(t) = Cx(t), (2.1)

z(t) = C1x(t) + D1u(t),

where x ∈ IRnx , w ∈ IRnw , u ∈ IRnu , z ∈ IRnz , and y ∈ IRny denote the state, the distur-

bance input, the control input, the regulated output, and the measured output, respectively.

Furthermore, A, B1, B, C1, C, and D1 are given constant matrices of appropriate dimensions.

We consider the static output feedback (SOF) control law:

u(t) = Fy(t), (2.2)

where F ∈ IRnu×ny denotes the unknown static output feedback gain, which we attempt to

compute by a suitable numerical procedure.

Given an output feedback matrix F and a control system (2.1), the closed-loop counterpart

is given by:

ẋ(t) = A(F )x(t) + B(F )w(t),

z(t) = C(F )x(t),
(2.3)

where

A(F ) := A + BFC, B(F ) := B1, C(F ) := C1 + D1FC

are the augmented closed loop operators, respectively.

The following assumption is needed throughout the paper.
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Assumption 2.1. The matrix C ∈ IRny×nx has full row rank, and the matrix product DT
1 D1

is invertible.

The optimal SOF H∞-synthesis problem (see the above citations) is equivalent to the fol-

lowing NSDP problem:

(P) :

{

min
F, L, γ

γ

s.t. H(F, L; γ) = 0, Y (F, L; γ) ≺ 0, L ≻ 0,
(2.4)

where H : IRnu×ny × Sn × IR→ Sn, Y : IRnu×ny × Sn × IR→ Sn are defined by

H(F, L; γ) = A(F )T L + LA(F ) + C(F )T C(F ) +
1

γ2
LB1B

T
1 L,

Y (F, L; γ) = (A(F ) +
1

γ2
B1B

T
1 L)T L + L(A(F ) +

1

γ2
B1B

T
1 L),

which are sufficiently smooth matrix functions, γ ∈ IR+, and Sn denotes the set of real symmet-

ric n × n matrices. In the optimal control terminology F represents the control, L represents

the state, the equality constraint represents the state equation, and the coupled inequality

constraints replace the (asymptotic) stability constraint in the Lyapunov sense for which the

spectral abscissa of the matrix A(F ) defined by

α(A(F )) = max
i

Re (λi(A(F ))), (2.5)

must be strictly negative; in other words, the largest real-part of the eigenvalues of A(F ) must

be strictly negative.

The Lagrangian function associated with the equality constraint of (2.4) is defined by

L(F, L, K, γ) = γ + 〈K, H(F, L, γ)〉, (2.6)

where K ∈ IRn×n is the associated Lagrange multiplier.

The formulation of the NSDP problem (2.4) is clearly involving bilinear matrix inequalities

(BMIs). The H∞-synthesis problem using BMIs has been considered, e.g., in [10, 20, 22, 26].

Typically through this formulation the optimal static H∞-synthesis problem can be treated as

a regular nonlinear programming problem, where various available successful numerical tech-

niques can be employed.

For solving the problem (2.4) we have two different view points regarding γ. First we consider

γ as a variable. In this case we can differentiate L with respect to γ, and therefore γ enters

into the search direction. In the second case we consider γ to be a parameter. Consequently,

we do not differentiate L with respect to γ and as a result we try to estimate γ using one

of the available equations of the first-order necessary optimality conditions. Two numerical

algorithms are developed corresponding to the two cases. Although only first-order information

are involved the numerical results given in Section 4 show that this approach is quite successful

for computing a stationary point to the problem (2.4).

Assumption 2.2. The following assumptions are used throughout the paper:

• AS1. There exists an initial (F0, L0, γ0) ∈ Fs, where

Fs =
{

(F, L, γ) ∈ IRnu×ny × Sn × IR+ | Y (F, L, γ) ≺ 0, L ≻ 0
}

.
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• AS2. There exists a (F∗, L∗, γ∗) ∈ Fs solution of the NSDP problem (2.4).

Next, let us compute the first-order directional derivatives of the Lagrangian function (2.6),

which are required in the derivation of the computational methods.

Lemma 2.1. Let (F, L, γ) ∈ Fs and K ∈ IRnx×nx be given. Then, the constraint function H

is continuously differentiable on Fs. Furthermore, the first-order directional derivatives of the

Lagrangian function in the direction (∆F , ∆L, ∆γ) are given by

LF (F, L, K, γ)∆F ≡ 〈∆F ,∇FL(·)〉 = 〈∆F , 2(BT L + DT
1 C(F ))KCT 〉,

LL(F, L, K, γ)∆L ≡ 〈∆L,∇LL(·)〉 = 〈∆L, Ã(·)K + KÃ(·)T 〉,
LK(F, L, K, γ)∆K ≡ 〈∆K,∇KL(·)〉 = 〈∆K, H(F, L, γ)〉,

Lγ(F, L, K, γ)∆γ ≡
[

1− 2

γ3
〈K, LB1B

T
1 L〉

]

∆γ,

where

Ã(·) ≡ Ã(F, L, γ) = (A(F ) +
1

γ2
B1B

T
1 L).

Proof. The first-order directional derivatives of L(F, L, K, γ) with respect to F , L, K, and

γ in the direction of (∆F , ∆L, ∆K, ∆γ) yield the above derivatives, where the trace properties

are used.

The KKT necessary optimality conditions of the NSDP problem (2.4) can be obtained

directly from the result of Lemma 2.1, which are the following:

(BT L + DT
1 C(F ))KCT = 0, (2.7)

(A(F ) +
1

γ2
B1B

T
1 L)K + K(A(F ) +

1

γ2
B1B

T
1 L)T = 0, (2.8)

2 〈K, LB1B
T
1 L〉 = γ3, (2.9)

LA(F ) + A(F )T L + C(F )T C(F ) +
1

γ2
LB1B

T
1 L = 0. (2.10)

For optimal control problems (2.10) is the state equation, (2.8) corresponds to the adjoint

equation, while the left-hand side of (2.7) is the gradient. Obviously, the explicit analytical

expression for γ given by (2.9) can be used for estimating such a scalar variable for given K

and L. On the other hand, (2.8) can be rewritten as a Lyapunov equation of the form

A(F )K + K A(F )T +
1

γ2
(B1B

T
1 LK + KLB1B

T
1 ) = 0. (2.11)

3. First-order Methods for Solving the Problem P

In the next subsection, a first-order method is proposed for computing approximately a

stationary point of the NSDP problem (2.4) by solving the KKT system (2.7)-(2.10) iteratively.

This method can be considered as a Lagrangian method and is pioneered by the algorithm of

Levine and Athans [23].

3.1. Treating γ as a variable

The attempt is to solve the KKT system (2.7)-(2.10) iteratively using only first-order infor-

mation. The procedure is described as follows. From the Assumption 2.2 and if K is positive
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definite, the matrix inverse (CKCT )−1 exists and (2.7) implies

F̃ (L, K) = −(DT
1 D1)

−1(BT L + DT
1 C1)KCT (CKCT )−1. (3.1)

Then, given the new estimate F̃ we solve the Lyapunov equation (2.10):

LA(F̃ ) + A(F̃ )T L +
[

C(F̃ )T C(F̃ ) +
1

γ2
LB1B

T
1 L

]

= 0. (3.2)

Let L̃ be the corresponding solution. Next, a new estimate for γ can be obtained explicitly by

using (2.9):

γ̃ := γ(L̃, K) =
3

√

2 〈K, L̃B1B
T
1 L̃〉. (3.3)

The final step is to plug the nonlinear term F̃ (L, K) of (3.1) and the computed γ̃ into (2.8). It

implies the matrix equation

[

A−B(DT
1 D1)

−1(BT L + DT
1 C1)KCT (CKCT )−1C

]

K

+K
[

A−B(DT
1 D1)

−1(BT L + DT
1 C1)KCT (CKCT )−1C

]T

+
1

γ̃2

(

B1B
T
1 L̃K + KL̃B1B

T
1

)

= 0, (3.4)

which is nonlinear in the unknown K and can be solved by any nonlinear solver. Let K̃ denote

the computed solution.

From Lyapunov stability theory it is well known (see, e.g., [5]) that the closed-loop control

system (2.3) is asymptotically stable if and only if there exists a triplet (F̃ , L̃, γ̃) such that

L̃ ≻ 0 and Y (F̃ , L̃, γ̃) ≺ 0. (3.5)

Hence, it is also possible to replace the computation of the spectral abscissa α(A(F̃ )) in every

iteration by checking the positive/negative definiteness constraints (3.5). This can be done

efficiently by using the incomplete Cholesky decomposition, e.g., by using the Matlab function

[R, p] = cholinc (M, ′0′), where M is a square matrix. If M ≻ 0, then p is 0; otherwise p is a

positive integer. However, in the implementation we observed that this issue is not influential

due to the low size of the most considered test problems; see Section 4.

It is particularly important to note that, if the computed iteration hits the boundary of the

inequality constraints, then we do backtracking and stop with the corresponding least possible

value of γ; see step b of the two algorithms 3.1 and 3.2 below.

A reasonable stopping criterion for this procedure is the following

‖∇FL(F, L, K, γ)‖+ ‖H(F, L, γ)‖ ≤ ǫtol, (3.6)

where ∇FL(F, L, K, γ) denotes the gradient of the optimal control problem (2.4) represented

by the left hand side of (2.7) and ǫtol is the tolerance. This criterion provides a measure of

convergence towards a stationary point (F∗, L∗, γ∗) of the NSDP problem (2.4). Its first part

measures the reduction in the gradient term, while the second part measures the fulfillment of

the state equation (2.10); i.e., it measures convergence towards feasibility. The remaining parts

of the KKT system (2.8)-(2.9) might be represented in the above criterion. However, (2.8) is
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transformed into the nonlinear equation (3.4), which depends on the used nonlinear solver. Eqn

(2.9) is used for computing the new estimate of γ and consequently the difference

∣

∣

∣
γ̃ − 3

√

2 〈K, LB1B
T
1 L〉

∣

∣

∣

is negligible, and therefore that term is not included in (3.6).

We emphasize that various types of stopping criteria have been tried, among them are (3.6),

max
{

‖∇FL(F, L, K, γ)‖+ ‖H(F, L, γ)‖,
∣

∣

∣
γ̃ − 3

√

2 〈K, LB1B
T
1 L〉

∣

∣

∣

}

≤ ǫtol,

and

|∆γ|+ ‖∆F‖+ ‖∆L‖ ≤ ǫtol.

From our numerical experience with the convergence behavior of the considered methods the

stopping criterion (3.6) was the best choice; see Section 4.

The computational algorithm corresponding to the case of γ being a variable is stated in

the following lines.

Algorithm 3.1. (FOM1: First-order method for solving the KKT system (2.7)-(2.10))

Given (F0, L0, γ0) ∈ Fs with γ0 > 0, and K0 ≻ 0. Choose β, ǫ ∈ (0, 1), τ ∈ (0, 1
2 ).

While the termination criterion (3.6) is not reached, do

a. Given Lk and Kk compute the new estimate Fk+1 = F̃ (Lk, Kk) by using (3.1).

b. Compute the spectral abscissa α(A(Fk+1)).

While α(A(Fk+1)) ≥ 0, do

(Perform backtracking)

Set l ← l + 1 and Fk+1 = Fk + βlτ(Fk − Fk+1).

If βlτ ≤ ǫ, stop.

c. Given Fk+1, solve the Lyapunov equation (3.2) for Lk+1.

d. Given Kk and Lk+1, compute γk+1 = γ(Lk+1, Kk) by using (3.3).

e. Given γk+1 and Lk+1 solve the nonlinear matrix equation (3.4) in Kk+1.

f. Set k← k + 1 and go to step a.

end(While)

Remark 3.1. If the computed Fk+1 in the Algorithm 3.1 is such that α(A(Fk+1)) ≥ 0, then

we do backtracking to compute the least possible γk+1 and we stop if the stepsize parameter

βlτ reaches a small constant value ǫ ∈ (0, 1). However, this situation is not prevailing as will

be seen in the numerical results.

3.2. Treating γ as a parameter

In this subsection we consider γ as a parameter. The main attempt is to derive a computa-

tional method for solving (2.4) similar to Algorithm 3.1. As is mentioned above, the Lagrangian

function is not differentiated in this case with respect to γ, and consequently (2.9) is not avail-

able any more among the KKT system (2.7)-(2.10). Therefore, the number of unknowns exceeds

the number of equations. However, we can overstep this difficulty and derive a computational
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method for solving the reduced KKT system (2.7)-(2.8), (2.10) similar to Algorithm 3.1. In

other words, we will proceed almost the same way as in the last subsection, but we estimate γ

differently.

Note that in the last subsection we substitute F̃ into (2.11) for giving (3.4). Hence, (2.11) is

not used within the method FOM1 in its given form as a Lyapunov equation. On the contrary,

in the current case we use (2.11) to update γ as follows: By applying the trace operator on

both sides of (2.11) followed by taking the square root, it yields

γ(F, L, K) =

√

Tr (B1B
T
1 LK + KLB1B

T
1 )

−Tr (A(F )K + KA(F )T )
, (3.7)

which can be used to estimate γ for given F , L, and K. Since there is no guarantee for the

fraction within the square root to be non-negative we need to take the absolute value to this

fraction.

The algorithm corresponding to the case of γ being a parameter is stated in the following

lines.

Algorithm 3.2. (FOM2: First-order method for solving the KKT system (2.7)-(2.8), and

(2.10) - γ is a parameter)

Given (F0, L0, γ0) ∈ Fs with γ0 > 0, and K0 ≻ 0. Choose β, ǫ ∈ (0, 1), τ ∈ (0, 1
2 ).

While the termination criterion (3.6) is not reached, do

a. Given Lk, Kk, then compute Fk+1 = F̃ (Lk, Kk) by using (3.1).

b. Compute the spectral abscissa α(A(Fk+1)).

While α(A(Fk+1)) ≥ 0, do

(Perform backtracking)

Set l ← l + 1 and Fk+1 = Fk + βlτ(Fk − Fk+1).

If βlτ ≤ ǫ, stop.

c. Given Fk+1, solve the Lyapunov equation (3.2) for Lk+1.

d. Compute the new estimate γk+1 = γ(Fk+1, Lk+1, Kk) by using (3.7).

e. Solve the nonlinear matrix equation (3.4) in Kk+1.

f. Set k← k + 1 and go to step a.

End(While)

Next, regarding the initialization of the two methods FOM1 and FOM2 if A is such that

α(A) < 0, then we choose F0 = 0nu×ny
. Otherwise, we use any of the available software for

computing suboptimal stabilizing SOF controller F0 such that α(A(F0)) < 0, e.g., by using the

Linear Matrix Inequality based method [24, slpmm].

We emphasize here that, currently a first-order penalty method is under investigation for

computing suboptimal output feedback controllers. In that work we consider an unconstrained

minimization problem of the form; see [34]:

min
(F,µ)∈(SF ,IR+)

J(F, µ) = Tr(L(F, µ)B1B
T
1 ) + σµ2, (3.8)

where L(F, µ) solves the Lyapunov equation:

LĀ(F, µ) + Ā(F, µ)T L + C(F )T C(F ) = 0, (3.9)
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where

Ā(F, µ) = Aµ + BFC,

Aµ = A± µInx
, µ ∈ IR+,

C(F ) = C1 + D1FC,

and (F, µ) belongs to the set

SF =
{

(F, µ) ∈ IRnu×ny × IR+ | α(Ā(F, µ)) < 0
}

, (3.10)

σ is a large positive constant, and the dimensions of all matrices are as defined in Section 2.

Clearly this problem is an unconstrained optimization problem in the unknowns F and µ.

Observe that in (3.8)-(3.10) we parameterize the constant matrix A and replace it by Aµ =

A ± µInx
, where µ > 0 is a scalar variable. In this approach we replace the matrix A by Aµ

and include µ as a quadratic penalty term in the objective function. The sign in Aµ is chosen

such that its spectral abscissa α(Aµ) is strictly negative.

By applying the first-order necessary optimality conditions on this problem, the resulting

nonlinear system can be solved using a similar approach to that used with the method FOM1.

The advantage of parameterizing A is that we can initiate this method by

(F̂0, γ0) = (0nu×ny
, γ0),

for some γ0 > 0. Let the computed suboptimal stabilizing SOF gain be F̂ , where α(A(F̂ )) < 0.

Consequently, this suboptimal SOF controller can be considered for initiating the two methods

FOM1 and FOM2 as follows. Given F0 = F̂ with α(A(F0)) and for γ0 > 0 one can obtain

the initial L0 and K0 by solving modifications of the Lyapunov equations (2.10) and (2.11),

respectively:

L
(

A(F0) +
1

2γ2
0

B1B
T
1

)

+
(

A(F0) +
1

2γ2
0

B1B
T
1

)T
L + C(F0)

T C(F0) = 0, (3.11)

A(F0)K + KA(F0)
T +

1

γ2
0

(

B1B
T
1 L0 + L0B1B

T
1

)

= 0. (3.12)

The appropriate values assigned to the parameters β, τ, ǫ, γ0 of the algorithms FOM1 and FOM2

are given in Section 4.

4. Numerical Results

In this section, an implementation for the two algorithms FOM1 and FOM2 is described.

All of the computations in this section were carried out on a PC with a Pentium IV 2.8 Ghz

processor with 224 MB RAM. Two Matlab codes were written corresponding to this implemen-

tation. Within the two methods FOM1 and FOM2 we need to solve one nonlinear equation

per iteration. It is desirable to compute approximate solution for that equation, which can be

achieved by using the Matlab function fsolve from the Optimization Toolbox.

We have used the benchmark collection COMPleib [25] for testing the two methods. In

order to see the convergence behavior of the proposed methods some of the obtained results

are listed in table forms, which are the following: the iterations counter k, the computed

γk, the convergence criterion ‖∇FLk‖ + ‖Hk‖, the absolute value |∆γk| of the change in γk,

the number of iterations inonlin of the Matlab nonlinear solver fsolve required for solving the
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Table 4.1: Performance of the method FOM1 on Example 4.1.

k γk ‖∇FLk‖+ ‖Hk‖ |∆γk| inonlin α(A(Fk))

0 1.0000e+03 5.62e-04 - 0 -1.3e+00

1 1.5562e+00 1.57e-07 9.98e+02 4 -1.3e+00

2 1.0137e-02 1.08e-07 1.55e+00 4 -6.4e-01

3 9.5627e-03 1.03e-15 5.74e-04 12 -4.4e-01

Table 4.2: Performance of the method FOM1 on Example 4.2.

k γk ‖∇FLk‖+ ‖Hk‖ |∆γk| inonlin α(A(Fk))

0 1.0000e+03 2.03e+01 - 0 -5.2e-01

1 1.8321e+01 3.77e-06 9.82e+02 28 -6.2e-02

2 1.4583e-02 2.26e-06 1.83e+01 98 -3.1e-01

3 8.1404e-03 1.45e-08 6.44e-03 21 -5.3e-01

nonlinear equation (3.4), and the spectral abscissa α(A(Fk)) representing the stability margin

of the closed-loop control system (2.3).

In the computations the following values have been assigned to the parameters of the two

methods FOM1 and FOM2: γ0 = 103, β = 0.8, τ = 0.4, ǫ = 10−5, and ǫtol = 10−7.

4.1. Performance of the method FOM1

In order to see the convergence behavior of the method FOM1 we consider first in detail

three test problems from the benchmark collection COMPleib [25].

Example 4.1. The first example is a chemical reactor model [25, REA1]. The given data

matrices are

A =









1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104









,

B =









0 0

5.679 0

1.136 −3.146

1.136 0









, CT =









1 0 0

0 1 0

1 0 1

−1 0 −1









,

B1 = C1 = D1 = [ ],

where we borrow the Matlab notation [ ] to denote the empty matrix. As is described above, the

main goal is to compute a feasible point (F∗, L∗, γ∗) to the NSDP problem (2.4) such that γ∗ > 0

is attaining its least possible value. The zero matrix F0 = 0nu×ny
is such that α(A(F0)) ≥ 0.

Therefore, the following F0 is chosen:

F0 =

[

0.357 −2.6200

2.580 0.7764

]

.
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Fig. 4.1. Uncontrolled and controlled state space models for Example 4.1.

After 3 iterations and 20 iterations for the nonlinear solver (see Table 4.1) the method FOM1

converges to the stationary point (F∗, L∗, γ∗), where γ∗ = 9.5627 ∗ 10−3,

F∗ =

[

−0.230 0.815

4.071 −2.869

]

,

and L∗ is the corresponding solution of the Lyapunov equation (3.11).

Fig. 4.1 shows the performance of the computed SOF controller F∗ on the closed-loop control

system (2.3), which enforces all state variables to the zero state.

Example 4.2. This test problem is a power system model [25, PSM]. The given data are the

following

A =























−0.042 0 4.92 −4.92 0 0 0

−5.21 −12.5 0 0 0 0 0

0 3.33 −3.33 0 0 0 0

0.545 0 0 0 −0.545 0 0

0 0 0 4.92 −0.042 0 4.92

0 0 0 0 −5.21 −12.5 0

0 0 0 0 0 3.33 −3.33























,

B =























−4.92 0

0 0

0 0

0 0

0 −4.92

0 0

0 0























, CT =























1 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0

0 0 0























, B1 =























0 0

12.5 0

0 0

0 0

0 0

0 12.5

0 0























,

C1 =
[

C 02×7

]

, D1 =

[

03×2

I2

]

.

In this example the zero matrix F0 = 0nu×ny
is such that (F0, L0, γ0) ∈ Fs, where L0 is

the corresponding solution of the Lyapunov equation (3.11) and γ0 = 103. The method FOM1
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Fig. 4.2. Uncontrolled and controlled state space models for Example 4.2.

reaches the stationary point (F∗, L∗, γ∗) in 3 iterations and 147 inner iterations for the nonlinear

solver (see Table 4.2) yielding the least value γ∗ = 8.1404 ∗ 10−3 and the H∞ stabilizing SOF

controller

F∗ =

[

3.249 −0.840 2.242

0.255 0.086 2.533

]

.

Table 4.2 shows the convergence behavior of the method FOM1 on this example. In Fig. 4.2

we see the effect of the computed SOF controller F∗ on the closed-loop control system (2.3).

Although the open-loop system is stable, the computed SOF controller F∗ smears the oscillatory

behavior of the state variables.

Example 4.3. This test example is an aircraft model [25, AC1]. It has the following data

matrices

A =















0 0 1.132 0 −1

0 −0.054 −0.171 0 0.071

0 0 0 1 0

0 0.049 0 −0.856 −1.013

0 −0.291 0 1.053 −0.686















, B =















0 0 0

−0.12 1 0

0 0 0

4.419 0 −1.665

1.575 0 −0.073















,

CT =

[

I3

02×3

]

, B1 =















3.59e− 2 0 1.672e− 2

0 9.89e− 3 0

0 −7.55e− 2 0

0 0 5.635e− 2

1.45e− 3 0 6.743e− 2















,

CT
1 =

1√
2















0 0

1 0

0 1

0 0

0 0















, D1 =
1√
2

[

1 0 0

0 1 0

]

.

The initial iterate (F0, L0, γ0) ∈ Fs is chosen, where γ0 = 103,

F0 =





0.8221 −0.0173 0.3160

0.0183 −1.7067 0.0438

2.1731 0.0233 1.8150



 ,
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Table 4.3: Performance of the method FOM1 on Example 4.3.

k γk ‖∇FLk‖+ ‖Hk‖ |∆γk| inonlin α(A(Fk))

0 1.0000e+03 1.80e+01 - 0 -2.2e-01

1 1.4767e+01 3.27e-06 9.85e+02 41 -2.4e-01

2 2.8094e-02 8.58e-07 1.47e+01 18 -1.5e-01

3 1.0457e-02 4.45e-10 1.76e-02 4 -1.4e-01

Table 4.4: Performance of the method FOM2 on Example 4.4.

k γk ‖∇FLk‖+ ‖Hk‖ |∆γk| inonlin α(A(Fk))

0 1.0000e+03 1.74e+03 - 0 -3.9e-01

1 4.6770e-02 1.45e-06 1.00e+03 114 -1.3e+00

2 2.7607e-02 5.12e-08 1.92e-02 18 -2.2e-01

and L0 is the corresponding solution of the Lyapunov equation (3.11). After 3 iterations and

63 inner iterations of the nonlinear solver fsolve the method FOM1 reaches the least γ∗ =

1.0457 ∗ 10−2 and the corresponding H∞ stabilizing SOF feedback gain:

F∗ =





0.226 −0.253 −0.149

0.238 −1.060 0.103

1.306 −1.321 0.676



 .

Table 4.3 shows the convergence behavior of the method FOM1 on this example. Fig. 4.3 shows

the uncontrolled and controlled state variables.

In addition to the above results, Table 4.6 gives some preliminary tests for the method

FOM1 in a compact form. For every test problem we report the problem name together with

the problem dimensions (nx, nu, ny, nw, nz), the total CPU time in seconds, the least computed

γ∗, and the overall number of iterations together with the number of inner iterations by the

nonlinear solver fsolve.

Note, however, that for some test problems the matrix D1 does not exist or sometimes

DT
1 D1 is not invertible (see [25]). In such cases we replace DT

1 D1 by the identity matrix or any

positive definite matrix.

For the sake of comparison, we have compared the computed γ∗ using the method FOM1

of Table 4.6 with its corresponding counterpart that was obtained in [22, Table 2], where an

augmented Lagrangian method was used with the publicly available general purpose software

PENBMI. The method FOM1 wins out of 55 test problems in 37 trials to reach a lower value

for γ∗ and consequently a better stationary point (F∗, L∗, γ∗), while the augmented Lagrangian

PENBMI method of [22] wins in only 18 trials.

4.2. Performance of the method FOM2

In this subsection we give some preliminary tests of the method FOM2 for solving the

NSDP problem (2.4). The convergence behavior of the method FOM2 can be seen through the

following examples.

Example 4.4. The considered test problem is a decentralized interconnected system [25, DIS3].
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Fig. 4.3. Uncontrolled and controlled state space models for Example 4.3.
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Fig. 4.4. Uncontrolled and controlled state space models for Example 4.4.

The linearized state space model has the following given data

A =



















−1 0 0 0 0 0

−1 1 1 0 0 0

1 −2 −1 −1 1 1

0 0 0 −1 0 0

−8 1 −1 −1 −2 0

4 −0.5 0.5 0 0 −4



















,

B =



















0 1 0 0

1 0 0 0

1 1 0 0

0 0 0 −1

0 0 1 0

0 0 0 1



















, CT =



















0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1



















.

In this test problem (see [25]), B1 = C1 = D1 = [ ].
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Table 4.5: Performance of FOM2 on test problem [25, AC15]: updating γ using (4.1).

k γk ‖∇FLk‖+ ‖Hk‖ |∆γk| inonlin α(A(Fk))

0 1.0000e+03 5.20e-04 − 0 -3.6e-01

1 7.0592e+02 2.65e-18 2.94e+02 2 -3.4e-01

2 4.9911e+02 1.63e-18 2.07e+02 2 -3.5e-01

3 3.5322e+02 1.21e-18 1.46e+02 2 -3.5e-01
...

...
...

...
...

...

13 1.7803e+01 3.71e-18 1.96e+00 3 -4.0e-01

14 1.7719e+01 1.43e-17 8.45e-02 4 -5.0e-01

The following starting point is chosen (F0, L0, γ0) = (0nu×ny
, L0, 103) ∈ Fs, where L0 is the

corresponding solution of the Lyapunov equation (3.11). Starting from that point, the method

FOM2 converges after two iterations and 132 inner iterations of the nonlinear solver fsolve to

the stationary point (F∗, L∗, γ∗), where γ∗ = 2.7607 ∗ 10−2,

F∗ =









−199.274 −104.219 −9.270 59.588

−132.158 −149.031 −40.432 56.895

51.300 −42.678 −42.357 17.619

117.298 15.543 −28.145 −31.296









,

and L∗ is the corresponding solution of the Lyapunov equation (3.11).

Table 4.4 shows the convergence behavior of the method FOM2 on this example. Fig. 4.4

shows the uncontrolled and controlled state variables.

Additional information regarding the performance of the methods FOM1 and FOM2 for all

the above test problems can be found within Tables 4.6 and 4.7. If we compare the computed

γ∗ of Table 4.7 with the corresponding values obtained in [22, Table 2] we find that the method

FOM2 wins out of 55 test problems in 28 trials to reach better γ∗’s, while the augmented

Lagrangian algorithm with PENBMI [22] wins in 27 trials. In Table 4.7, the test problem DIS3

was tested using two different starting points; the associated results correspond to the second

starting point.

We have also tried to estimate γ within the method FOM2 using

γ(F, L, K) =

√

|Tr (LB1B
T
1 L)|

| − Tr (LA(F ) + A(F )T L + C(F )C(F )T )| , (4.1)

which is obtained from (2.10) similar to (3.7). The absolute value is taken to the fraction

within the square root to ensure it to be non-negative. The method FOM2 when using (4.1)

is less efficient. A typical convergence behavior in this case on most test problems is shown in

Table 4.5.

Observe that the considered approach is first-order and iterative, where a nonlinear matrix

equation is solved in each iteration. Tables 4.1-4.3 and 4.4 show the convergence behavior of

the methods FOM1 and FOM2 for computing a stationary point of the NSDP problem (2.4),

respectively.

Tables 4.6 and 4.7 show the efficiency and robustness of the proposed methods, where the

number of iterations in the last column of these tables show the efficiency of these methods.

In Table 4.6 exactly 51 test problems out of 55 did not exceed 5 outer iterations to reach the
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Table 4.6: Performance of the method FOM1 on test problems from [25].

Problem nx nu ny nw nz CPU(sec) γ∗ α(A(Fk)) No. of iter.

AC1 5 3 3 3 2 4.51e-01 5.1438e-02 -4.4e-02 3(47)

AC2 5 3 3 5 5 6.11e-01 3.1569e-02 -3.3e-01 3(71)

AC3 5 2 4 5 5 1.50e+00 1.6228e-01 -2.9e-01 3(101)

AC4 4 1 2 2 2 3.40e-01 2.8771e-02 -5.0e-02 3(95)

AC6 7 2 4 7 7 7.01e-01 3.5232e-02 -4.0e-01 3(55)

AC7 9 1 2 4 1 8.73e+00 6.0423e-01 -4.1e-02 3(306)

AC8 9 1 5 10 2 7.91e-01 8.6637e-03 -2.2e-01 3(29)

AC9 10 1 5 1 10 2.11e+01 6.5976e-01 -1.1e-01 4(473)

AC11 4 2 4 4 4 2.81e+00 2.5841e-01 -8.3e-02 3(264)

AC12 4 3 4 3 1 5.91e-01 1.8739e+01 -6.1e-02 2(51)

AC15 4 2 3 4 6 3.00e-01 3.4417e-03 -1.0e-01 2(20)

AC16 4 2 4 4 6 2.01e-01 5.0301e-02 -3.3e-01 2(9)

AC17 4 1 2 4 4 4.51e-01 3.3488e-02 -4.7e-01 2(49)

HE1 4 2 1 2 2 1.80e-01 3.6161e-02 -8.5e-02 2(12)

HE2 4 2 2 4 4 2.90e+00 2.9817e-02 -1.5e-02 4(374)

HE3 8 4 6 1 10 2.08e+00 1.0912e+01 -1.7e-03 7(150)

HE4 8 4 6 8 12 3.82e+00 2.7568e+00 -2.9e-02 4(187)

HE5 8 4 2 3 4 2.28e+01 1.4431e+02 -1.1e-05 9(902)

REA1 4 2 3 4 4 2.30e-01 9.5627e-03 -1.1e+00 3(30)

REA2 4 2 2 4 4 7.01e-01 2.8419e-02 -4.2e-01 3(69)

REA3 12 1 3 12 12 2.34e+01 3.4095e+00 -2.1e-02 5(370)

DIS1 8 4 4 1 8 3.51e-01 3.5917e-02 -1.4e-01 3(9)

DIS2 3 2 2 3 3 2.61e-01 6.5138e-02 -1.4e+00 5(24)

DIS3 6 4 4 6 6 5.71e-01 6.2902e-03 -6.4e-01 5(52)

DIS4 6 4 3 6 6 2.76e+00 2.1223e-01 -3.0e-02 3(197)

DIS5 4 2 2 3 3 1.55e+00 3.6074e+03 -9.4e-01 2(221)

WEC1 10 3 4 10 10 1.21e+01 5.7023e-02 -6.7e-02 5(337)

WEC2 10 3 4 10 10 1.39e+01 1.9540e-01 -7.8e-01 5(360)

WEC3 10 3 4 10 10 1.05e+01 2.2362e-01 -1.3e+00 3(325)

UWV 8 2 2 2 1 5.80e+00 1.5341e-02 -6.3e-02 3(245)

CSE1 20 2 10 1 12 9.66e+00 1.7930e-01 -8.7e-02 3(21)

EB1 10 1 1 2 2 1.27e+01 8.8455e-01 -1.5e-01 3(286)

EB2 10 1 1 2 2 7.61e-01 1.1365e-02 -1.1e-03 3(15)

TF1 7 2 4 1 4 3.57e+00 9.9789e-02 -2.3e-02 3(154)

TF2 7 2 3 1 4 2.68e+00 9.5752e-01 -1.0e-05 5(147)

TF3 7 2 3 1 4 4.62e+00 2.0318e-01 -3.2e-03 5(246)

PSM 7 2 3 2 3 2.68e+00 8.1404e-03 -5.3e-01 3(147)

BDT1 11 3 3 1 6 9.61e-01 7.6094e-01 -5.6e-04 3(12)

MFP 4 2 3 4 4 3.11e-01 1.9536e-01 -4.2e-03 3(22)

TG1 10 2 2 10 10 1.19e+01 1.9325e-02 -1.9e-01 5(294)

AGS 12 2 2 12 12 4.54e+00 1.9708e-02 -1.7e-01 3(80)

NN1 3 1 2 3 3 5.61e-01 2.7681e-02 -1.2e+00 3(15)

NN2 2 2 2 2 2 7.00e-02 4.4387e-03 -2.2e-01 3(15)

NN4 4 2 3 4 4 2.31e-01 5.7396e-03 -1.9e-01 3(19)

NN5 7 1 2 7 7 2.31e+00 3.7458e-01 -7.0e-04 5(146)

NN6 9 1 4 9 9 1.27e+01 1.2868e+01 -1.1e-02 5(394)

NN7 9 1 4 5 3 1.63e+00 8.5178e-01 -1.3e-02 3(82)

NN9 5 3 2 2 4 1.63e+00 3.1553e+00 -1.2e-01 3(245)

NN11 16 3 5 3 3 1.01e+01 2.6512e+01 -8.3e-01 13(26)

NN12 6 2 2 6 6 1.92e+00 3.8781e-01 -2.1e-01 3(149)

NN13 6 2 2 3 3 2.75e+00 2.7177e-02 -5.8e-01 3(227)

NN14 6 2 2 3 3 2.03e+00 2.0957e-02 -4.7e-01 3(175)

NN15 3 2 2 1 4 7.51e-01 4.4143e+01 -1.2e-01 5(168)

NN16 8 4 4 8 4 1.27e+00 1.0179e-01 -4.4e-02 3(78)

NN17 3 2 1 1 2 2.10e-01 4.0159e-02 -4.5e-01 3(21)

corresponding stationary point (F∗, L∗, γ∗), while in Table 4.7 the number of iterations did not

exceed 4 outer iterations in the whole 55 test problems. On the other hand, the total CPU time

for all test examples (the 7th column of both of Tables 4.6 and 4.7) is less than 45 seconds in

the worst case of Table 4.6 and 11 seconds in Table 4.7, which also show the robustness of the

proposed methods for determining stationary points of the considered problems.
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Table 4.7: Performance of the method FOM2 on test problems from [25].

Problem nx nu ny nw nz CPU(sec) γ∗ α(A(Fk)) No. of iter.

AC1 5 3 3 3 2 9.31e-01 1.6688e+00 -2.0e-01 2(104)

AC2 5 3 3 5 5 5.71e-01 4.1406e+00 -2.0e-01 3(55)

AC3 5 2 4 5 5 3.30e-01 1.2278e+00 -4.2e-01 2(45)

AC4 4 1 2 2 2 9.51e-01 2.3987e+00 -5.0e-02 3(153)

AC6 7 2 4 7 7 2.30e+00 7.5352e-01 -1.8e-01 2(123)

AC7 9 1 2 4 1 3.61e+00 2.8690e+01 -3.9e-02 2(122)

AC8 9 1 5 10 2 8.71e-01 5.6789e-01 -2.1e-01 2(36)

AC9 10 1 5 1 10 1.07e+01 1.4853e+01 -6.4e-02 3(253)

AC11 4 2 4 4 4 2.41e-01 1.1965e+00 -1.2e-01 1(23)

AC12 4 3 4 3 1 1.50e-01 2.6642e+01 -4.4e-02 2(24)

AC15 4 2 3 4 6 7.00e-02 1.5782e+01 -2.2e-01 2(6)

AC16 4 2 4 4 6 9.00e-02 1.0039e+01 -3.2e-01 2(7)

AC17 4 1 2 4 4 1.70e-01 8.6284e-01 -4.9e-01 2(20)

HE1 4 2 1 2 2 1.81e-01 1.7026e+00 -4.9e-02 2(18)

HE2 4 2 2 4 4 1.41e-01 1.6350e+00 -1.8e-01 1(15)

HE3 8 4 6 1 10 3.10e-01 1.5968e+01 -7.1e-03 1(24)

HE4 8 4 6 8 12 6.51e-01 6.0622e+00 -1.1e-02 1(34)

HE5 8 4 2 3 4 7.90e+00 5.8318e-01 -1.1e-01 3(335)

REA1 4 2 3 4 4 8.00e-02 5.8107e-01 -3.6e+00 1(14)

REA2 4 2 2 4 4 2.50e-01 1.7508e-01 -1.9e+00 2(37)

REA3 12 1 3 12 12 8.12e+00 5.5686e+00 -2.1e-02 1(116)

DIS1 8 4 4 1 8 2.40e-01 2.3621e+00 -5.1e-01 1(9)

DIS2 3 2 2 3 3 4.00e-01 1.4505e+00 -3.6e+00 1(12)

DIS3 6 4 4 6 6 8.00e-01 1.1746e+00 -1.3e+00 1(13)

DIS31) 6 4 4 6 6 1.81e+00 2.7607e-02 -2.2e-01 2(132)

DIS4 6 4 3 6 6 2.49e+00 4.8810e+00 -1.6e-01 2(179)

DIS5 4 2 2 3 3 5.81e-01 1.7725e+01 -9.6e-01 1(73)

WEC1 10 3 4 10 10 5.64e+00 2.5431e-01 -2.1e-01 2(160)

WEC2 10 3 4 10 10 7.31e-01 3.7787e-01 -4.4e-01 1(20)

WEC3 10 3 4 10 10 1.01e+01 2.7003e-01 -7.9e-01 2(228)

UWV 8 2 2 2 1 3.28e+00 2.1567e-01 -1.4e+01 2(146)

CSE1 20 2 10 1 12 3.09e+00 7.1648e+00 -5.5e-02 1(6)

EB1 10 1 1 2 2 6.11e-01 1.5620e+00 -1.5e-01 1(13)

EB2 10 1 1 2 2 4.91e-01 3.0089e+00 -1.0e-01 1(11)

TF1 7 2 4 1 4 1.39e+00 7.6462e+00 -2.4e-02 4(63)

TF2 7 2 3 1 4 - - - -

TF3 7 2 3 1 4 2.69e+00 1.2995e+02 -3.2e-03 2(146)

PSM 7 2 3 2 3 9.41e-01 3.1524e-01 -6.2e-02 1(54)

BDT1 11 3 3 1 6 6.31e-01 1.6874e+02 -1.1e-03 2(10)

MFP 4 2 3 4 4 2.11e-01 2.2419e+01 -1.2e-02 2(12)

TG1 10 2 2 10 10 7.71e+00 4.7523e+00 -4.8e-01 2(180)

AGS 12 2 2 12 12 3.38e+00 1.8872e-01 -1.9e-01 3(71)

NN1 3 1 2 3 3 1.71e-01 1.9161e+00 -3.3e-01 2(15)

NN2 2 2 2 2 2 4.00e-02 1.4564e+00 -3.8e-01 1(4)

NN4 4 2 3 4 4 1.30e-01 1.2858e+00 -3.9e-01 1(8)

NN5 7 1 2 7 7 8.21e-01 5.5475e+01 -3.3e-02 1(44)

NN6 9 1 4 9 9 6.62e+00 5.5569e+00 -4.2e-02 2(219)

NN7 9 1 4 5 3 1.53e+00 3.4646e+00 -3.2e-02 2(67)

NN9 5 3 2 2 4 3.25e+00 5.5859e+00 -5.1e-02 3(341)

NN11 16 3 5 3 3 3.10e-01 2.6633e+00 -8.7e-01 1(2)

NN12 6 2 2 6 6 1.47e+00 1.2654e+01 -3.4e-02 1(104)

NN13 6 2 2 3 3 3.61e-01 8.2769e-01 -1.5e+00 1(22)

NN14 6 2 2 3 3 1.52e+00 8.2088e-01 -1.5e+00 1(104)

NN15 3 2 2 1 4 2.81e-01 3.0855e+01 -1.5e+00 1(33)

NN16 8 4 4 8 4 1.29e+00 4.7154e+00 -3.0e-02 2(57)

NN17 3 2 1 1 2 1.50e-01 5.4893e+00 -4.9e-01 3(14)

By comparing the obtained results of Tables 4.6 and 4.7, we observe the following: γFOM1
∗ <

γFOM2
∗ for most of the considered test problems indicating that FOM1 achieves better stationary

points (F∗, L∗, γ∗) than FOM2. On the other side, the number of iterations is remarkably

reduced when employing the method FOM2 on most of the considered test problems. Therefore,

one cannot give a specific decision which one of the two algorithms outperforms the other.
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