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Abstract

In this paper, the natural boundary integral method, and some related methods, includ-
ing coupling method of the natural boundary elements and finite elements, which is also
called DtN method or the method with exact artificial boundary conditions, domain de-
composition methods based on the natural boundary reduction, and the adaptive boundary
element method with hyper-singular a posteriori error estimates, are discussed.
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1. Introduction

In many fields of scientific and engineering computing it is necessary to solve boundary value
problems of partial differential equations over unbounded domains. The standard techniques
such as the finite element method will meet some difficulties, even if they are very effective for
bounded domains[1].

In recent twenty years many computational methods for solving problems over unbounded
domains have been developed, such as: the infinite element method[19], the adaptive finite
element method[1], the finite element method with approximate condition on an artificial
boundary[7,9,22], the boundary element method[10], the coupling method of finite and bound-
ary elements[21], the overlapping and non-overlapping domain decomposition methods, es-
pecially, the coupling and domain decomposition methods based on the natural boundary
reduction[26−31], and so on. Each method has its advantages and disadvantages.

The natural boundary integral method and its coupling with the finite element method
are suggested and developed by K. Feng, D. Yu and H. Han in early 1980 (see [4-6,9,20-22]).
And then a very similar method, so-called DtN method or exact artificial boundary condition
method, has also been devised by J.B. Keller and D. Givoli in later 1980 [12]. These methods
are very important for solving many problems over unbounded domains. Up to now there have
already been a lot of papers in this direction[11,14,15].

In this paper some new development of the natural boundary integral method is also pre-
sented. The method is applied to 3D problems, parabolic and hyperbolic equations, and
anisotropic elliptic problems. Based on the natural boundary integral operators the over-
lapping and non-overlapping domain decomposition methods are developed for problems over
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unbounded domain, which have very wide application background[3,18]. Besides, using hyper-
singular residuals as a posteriori error estimates, the adaptive boundary element method is
developed[13,32].

The natural boundary integral equations and their related computational methods can also
be applied to some semi-linear and nonlinear problems. We will discuss it in our forthcoming
papers.

2. Natural Boundary Reduction and DtN Operators

Finite element methods are effective for bounded domains. For unbounded domains we need
use boundary integral or boundary element methods. There are different ways for reducing
problems to boundary integral equations, based on which some boundary integral methods are
developed. For the same physical problem, there are different mathematical formulations, which
are equivalent in the theory, but often have different effects in the computing practice.

Based on natural boundary reduction, natural boundary integral method is developed by
Feng and Yu. The natural boundary integral method has distinctive advantages. This method
preserves basic properties of the original problem, has the same variational principle as finite
element method, and can be coupled with finite elements directly and naturally . Furthermore,
natural integral equation on artificial boundary is an exact artificial boundary condition. Nat-
ural integral operator is just the Dirichlet to Neumann (DtN) operator. It plays a key role in
domain decomposition methods, where it has an another name: the Steklov–Poincaré operator.

There is a relation between Dirichlet data u0 and Neumann data un, it is the DtN map, or
natural integral equation:

un = Ku0, on ∂Ω, (1)

where K is DtN operator, i.e. the natural integral operator. It is a hyper-singular integral
operator, a pseudo-differential operator with positive order. ∂Ω is the boundary of domain Ω.

The solution u is given by Poisson integral formula:

u = Pu0, in Ω. (2)

For some typical equations, when Ω is a half-plane or half-space, an interior or exterior
circular or spherical domain, K and P can be obtained explicitly.

3. Artificial Boundary Conditions on Circle and Ellipse

Circular artificial boundary is a good selection for most 2-d exterior problems [20,22]. With
natural boundary reduction, we get some DtN operators on the circle Γ = {(r, θ)|r = R, 0 <
θ ≤ 2π} as follows , where (r, θ) are polar coordinates and R is a constant ( see Yu’s books
[26,29]).

For harmonic equation:

K = − 1
4πR sin2 θ

2

∗, (3)

which satisfies K2 = − ∂2

∂s2
, s = Rθ.

Let
K(θ) = − 1

4π sin2 θ
2

.

For biharmonic equation:

K =
[

1+ν
R3 δ′′(θ) − 2

R3 K ′′(θ) 1+ν
R2 δ′′(θ) + 2

R2 K(θ)
1+ν
R2 δ′′(θ) + 2

R2 K(θ) − 1+ν
R δ(θ) + 2

RK(θ)

]
∗, (4)

where ν is Poisson ratio.
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For plane elasticity equation:

K =
2
R

[
ab

a+bK(θ) b2

a+bδ′(θ)
− b2

a+bδ
′(θ) ab

a+bK(θ)

]
∗, (5)

where a = λ + 2µ, b = µ, λ and µ are Lame coefficients.
For Stokes equation:

K =
2η

R

[
K(θ) 0

0 K(θ)

]
∗, (6)

where η is the viscosity.
For Helmholtz equation ( see [5-7],[12]):

K = −k

π

∞∑
n=0

[
H

(1)
n

′
(kR)

H
(1)
n (kR)

]
cosnθ ∗ . (7)

The following is DtN operator on sphere (3-D problems) for harmonic equation:

un(θ, ϕ) = − 1
16πR

∫ 2π

0

∫ 2π

0

sin θ′

sin3 γ
2

u0(θ′, ϕ′)dθ′dϕ′, (8)

where (r, θ, ϕ) are spherical coordinates, cos γ = cos θ cos θ′+sin θ sin θ′ cos(ϕ−ϕ′). The operator
for 3-D Helmholtz equation can be found in [7] and [12] .

The exact artificial boundary condition is nonlocal, and can be formulated by many different
integral equations. The natural boundary integral equation, i.e. the DtN map, is the best one:
the simplest, the most essential, convenient to applications with the unique formulation, coupled
with finite element method naturally and directly.

In computational practice, we use series expansion of the hyper-singular kernel to deal with
these hyper-singular integrals. This fast algorithm was first suggested in [20]. It is very simple
and effective indeed ( also see [26,29]).

There is an additional error as the series are truncated at the N-th term. Suppose u ∈
H1(Ωi) ∩ Hk− 1

2 (Γ0), k ≥ 1, R0 be the radius of the minimum circle including Γ0, R1 be the
radius of the circle which is the artificial boundary, R1 ≥ R0, where Γ0is the boundary of the
domain. A good estimate was first given by Yu in [22]

‖u − uN‖H1(Ωi)/P0 ≤ C
1

Nk−1

(
R0

R1

)N

‖u‖k− 1
2 ,Γ0

, (9)

where C is independent of N , R1 and u, P0 is the set of all constants.
There are already many numerical experiments for the natural boundary integral method,

which can be referred to the books [26,29], and many papers.
For problems over exterior domain of some narrow region, elliptic artificial boundary is

necessary or much better.
Use elliptic coordinates (µ, ϕ), {

x = f0 coshµ cosϕ,
y = f0 sinh µ sin ϕ,

(x, y) are Cartesian coordinates, f0 is a positive constant, (f0, 0) and (−f0, 0) are common
focuses of ellipses Γµ.

The natural boundary reduction reduces the harmonic equation over an exterior elliptic
domain

Ω = {(µ, ϕ)|µ > µ0} (10)

with elliptic boundary Γµ0 to an integral equation on the boundary.
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Let
√

J = f0

√
cosh2µ − cos2 ϕ, Poisson integral formula is (µ > µ0)

u(µ, ϕ) =
1
π

∞∑
n=1

en(µ0−µ)

∫ 2π

0

cosn(ϕ − ϕ′)u0(ϕ′)dϕ′ +
1
2π

∫ 2π

0

u0(ϕ′)dϕ′, (11)

or equivalently

u(µ, ϕ) =
e2µ − e2µ0

2π

∫ 2π

0

u0(ϕ′)
e2µ + e2µ0 − 2eµ+µ0 cos(ϕ − ϕ′)

dϕ′, (12)

The DtN map, i.e. the natural integral equation is:

Ku0(ϕ) =
1√
J

[
− 1

4π sin2 ϕ
2

∗ u0(ϕ)

]
, (13)

or equivalently

Ku0(ϕ) =
1

π
√

J

∞∑
n=1

n

∫ 2π

0

cosn(ϕ − ϕ′)u0(µ0, ϕ
′)dϕ. (14)

The difference between this DtN operator and that in circular case is only a factor 1/
√

J .
Let Lj(ϕ), j = 1, · · · , N , be piecewise linear basis functions on Γµ0 . The linear system is

QU = b, where Q = [qij ]N×N , U = [U1, · · · , UN ]T , b = [b1, · · · , bN ]T ,

qij =
∫

Γµ0

LjKLids, bj =
∫

Γµ0

uνLjds, (15)

Coefficients of the stiffness matrix are

qij = −
∫ 2π

0

∫ 2π

0

1
4π sin2 ϕ−ϕ′

2

Li(ϕ′)Lj(ϕ)dϕ′dϕ. (16)

It is completely the same as that in the case of circular boundary.

qij = a|i−j|,

aj =
4N2

π3

∞∑
n=1

1
n3

sin4 nπ

N
cos

2njπ

N
, j = 0, 1, · · · , N − 1.

Q is symmetrical and circulant. We only need to calculate aj, j = 0, 1, · · · , [N
2 ], to get it,

and the infinite sum can be replaced by a finite sum approximately.

4. Application to an Anisotropic Problem

Now we consider an elliptic equation associated with anisotropic problem (b > a > 0):

a
∂2u

∂x2
+ b

∂2u

∂y2
= 0. (17)

When a = b, it is just a harmonic equation.
In the case when the boundary Γ is a circle with radius R, we have Dirichlet problem:⎧⎨

⎩ a
∂2u

∂x2
+ b

∂2u

∂y2
= 0, in Ω,

u = u0, on Γ,
(18)

and Neumann problem: ⎧⎪⎨
⎪⎩

a
∂2u

∂x2
+ b

∂2u

∂y2
= 0, in Ω,

anx
∂u

∂x
+ bny

∂u

∂y
= g, on Γ,

(19)
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where 
n = (nx, ny) = −(x/R, y/R) is outward normal direction on Γ with respect to Ω.
By the variable transform, x =

√
aξ, y =

√
bη, the equation is reduced to a harmonic

equation, while the circular boundary is replaced by an elliptic boundary, and the exterior
circular domain is replaced by an exterior elliptic domain.

Introduce elliptic coordinates to above results, return to the original domain Ω, use polar
coordinates (r, θ), then obtain the DtN operator on the boundary Γ as:

g(θ) = −
√

ab

4πR sin2 θ
2

∗ u0(θ). (20)

The difference between its integral operator and the operator for the harmonic equation (a =
b = 1) is only a factor

√
ab.

In natural boundary element method the stiffness matrix is:
√

abQ = [
√

abqij ]N×N , (21)

where the formula for qij is completely same as before.
In the case when the boundary Γ is an ellipse: Γ = {(x, y)|αx2 + βy2 = R2}, the Neumann

problem can be reduced to Neumann problem of harmonic equation. The DtN map, i.e. the
natural integral equation is:

g(θ) = −
√

aαbβ

α cos2 θ + β sin2 θ

[
1

4πR sin2 θ
2

∗ u0(θ)

]
. (22)

The difference between the matrix on elliptic boundary Γ and the matrix for harmonic equation
is only a factor

√
ab:

√
ab

∫ 2π

0

∫ 2π

0

(
− 1

4π sin2 θ−θ′
2

)
Li(θ′)Lj(θ)dθ′dθ =

√
abqij , (23)

where the formula for qij is completely the same as before.
We have following results.
If the stiffness matrix of natural boundary element method on circular boundary for the

harmonic equation is Q = [qij ]N×N , then:
The stiffness matrix of natural boundary element method on elliptic boundary for the har-

monic equation still is Q = [qij ]N×N .
The stiffness matrix of natural boundary element method on circular boundary for the

anisotropic equation a
∂2u

∂x2
+ b

∂2u

∂y2
= 0 is

√
abQ = [

√
abqij ]N×N .

The stiffness matrix of natural boundary element method on elliptic boundary for anisotropic

equation a
∂2u

∂x2
+ b

∂2u

∂y2
= 0 is also

√
abQ = [

√
abqij ]N×N .

5. Coupling and Domain Decomposition Methods

For problems over the exterior domain of a bounded region, by using a circular or elliptic
artificial boundary, the domain is divided into a small bounded subdomain, where the finite ele-
ment method is used, and an exterior elliptic subdomain, where the natural boundary reduction
is applied.

We have the following error estimates for coupling method:
Theorem 5.1. (Estimate in energy norm) If u ∈ Hk+1(Ω1), k ≥ 1, the interpolation operator
Π satisfies

‖v − Πv‖1,Ω1
≤ Chj ‖v‖j+1,Ω1

, ∀v ∈ Hj+1(Ω1), j = 1, · · · , k, (24)
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then
(‖u − uh‖2

D1
+ ‖γ′u − γ′uh‖2

D̂2
)

1
2 ≤ CMhk ‖u‖k+1,Ω1

. (25)

Theorem 5.2. (Estimate in L2 norm) If u ∈ Hk+1(Ω1), k ≥ 1, the interpolation operator Π
satisfies the conditions of Theorem for energy norm, then

‖u − uh‖L2(Ω1) ≤ CMhk+1 ‖u‖k+1,Ω1
. (26)

Here C is a positive constant, which is independent of h and u, M = 1 for circular artificial
boundary, and M = max{|b/a|, |a/b|} when an elliptic artificial boundary is used[30,31].

Above results can also be applied to domain decomposition methods with circular or elliptic
artificial boundary (see [29]).

Overlapping domain decomposition method is Schwarz method and has geometric conver-
gence (see [18,27]).

Non-overlapping domain decomposition method is D–N method and the convergence is
correlative with the relaxation factor σ (see [3,28]).

Comparing with coupling method, advantages of domain decomposition methods are that
problems in each sub-domains can be solved separately, available finite element program can
be used directly, and these methods are suitable for developing parallel computation.

6. Hyper-singular A-posteriori Error Estimates for BEM

In recent years the adaptive technique with a posteriori error estimates is applied in many
fields of scientific and engineering computing. It is at first applied in the finite element methods
by I. Babuska and his cooperators, for example, we can see references [1,2,24,25] and other many
papers. Then the adaptive boundary element method with a posteriori error estimates is also
developed, we can find its mathematical theory in references [16,17,23] and other related papers.
In both adaptive finite and boundary element methods, some reliable and efficient a posteriori
error estimates plays a key role.

There are many ways to obtain a posteriori error estimates. Usually, residuals are used as
a posteriori error estimates. The residual is defined as the difference between two sides of the
boundary integral equations when the exact solution is replaced by the approximate solution.
Since for same boundary value problem there are many kinds of boundary integral equations,
we have some different classical or hyper-singular residuals, which are based on classical or
hyper-singular integral equations.

In this section the boundary reduction for potential problem is introduced, the residuals for
Dirichlet and Neumann problems are discussed. Three kinds of residuals for boundary element
methods are compared.

Many numerical experiences show some advantages of the hyper-singular residuals, which is
good a posteriori error indicator in many adaptive boundary element computations[13,32].

Now we discuss the potential problem as an example. There is a classical boundary integral
equation:

φ0 = Kφ0 + V φn, (27)

where the linear operators are defined as:

(V u)(p) := 2
∫

Γ

G(p, Q)u(Q)dsQ,

(Ku)(p) := −2
∫

Γ

∂

∂nQ
G(p, Q)u(Q)dsQ.

And we also have a boundary integral equation with a hyper-singular operator:

φn = Lφ0 + Mφn, (28)
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where
(Mu)(p) := 2

∫
Γ

∂

∂np
G(p, Q)u(Q)dsQ,

(Lu)(p) := −2
∫

Γ

∂

∂np

∂

∂nQ
G(p, Q)u(Q)dsQ.

Here V , K, M and L are all pseudo-differential operators with integer orders. The weakly-
singular operator V are of order -1. It is a smoothing operator. K and M are compact, then
I − K, I − M are operators of order 0, where I is the identical operator. The hyper-singular
operator L is a operator of order +1.

By the theory of natural boundary reduction[26,29], we also have the natural boundary
integral equation:

φn = Sφ0. (29)

It is the relation between Dirichlet and Neumann data. The hyper-singular integral operator S
is just the DtN operator, and it is a pseudo-differential operator of order +1.

For the Dirichlet boundary value problems, φ0 is given, and φn is unknown and should be
found. In this case, (27) is a Fredholm integral equation of the first kind, (28) is a singular
integral equation of Cauchy type, i.e. a Fredholm integral equation of the second kind, and
(29) is just a hyper-singular integral, it is unnecessary to solve any equation.

In the Neumann boundary value problems, we have given φn, and should find φ0. Then (27)
is a Fredholm integral equation of the second kind, (28) and (29) are hyper-singular integral
equations.

Even through (28) and (29) are all hyper-singular integral equations, however, (29) is much
simpler than (28), and is facile for theoretical analysis and numerical computation.

At first we discuss the Residuals for Dirichlet problem.
For same potential problem, there are several equivalent integral equations. Then we can

obtain some different residuals from the computed boundary element solution.
If the boundary integral equation (27) has been used for the initial solution, the error for

the approximation φh
n is:

eh = φh
n − φn. (30)

We can calculate the residuals by using (27), (28) or (29).
Using (27), the classical residual is defined as:

r
(1)
h = φ0 − (Kφ0 + V φh

n) = (φ0 − Kφ0 − V φn) − V eh = −V eh. (31)

Since V is a weakly singular integral operator, it smoothes eh, so the properties of the residual
r
(1)
h can not reflect the properties of the error exactly, it is not a proper measure of the error

eh.

Using (28), the iterate is defined by

φh′
n = Lφ0 + Mφh

n, (32)

one obtains:

r
(2)
h = φh

n − φh′
n = φh

n − (Lφ0 + Mφh
n), = (φn − Lφ0 − Mφn) + eh − Meh, (33)

i.e.
r
(2)
h = (I − M)eh. (34)

This hyper-singular residual is computable. We have following result.
Theorem 6.1. There are two positive constants 0 < C1 < C2, such that

C1‖r(2)
h ‖0 ≤ ‖eh‖0 ≤ C2‖r(2)

h ‖0. (35)
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Using (29), one obtains:

r
(3)
h = φh

n − Sφ0 = (φn − Sφ0) + eh = eh (36)

The hyper-singular residual is just the error in the primary approximation. From (36) we know
that, ‖eh‖ = ‖r(3)

h ‖ for both global and local norm. Therefore, when the integral of Sφ0 reaches
a high degree of accuracy, r

(3)
h is the best a posteriori error estimator.

The difficulty of computing hyper-singular integral exists in both (28) and (29). When the
expression of S is known, it is much easier and more effective to apply (29) than (28). In fact,
it is convenient to use the natural boundary integral equation (29) to get the initial solution.

Then we discuss the residuals for Neumann problem.
For Neumann problems, φn = g is known and φ0 is unknown. Assume that the solution is

smooth enough. Let the approximation solution be φh
0 . The error is denoted by:

eh = φh
0 − φ0. (37)

We also have three kinds of residuals.
Using boundary integral equation (27), one obtains:

φh′
0 = Kφh

0 + V φn. (38)

The residual is defined as above and thus

r
(1)
h = φh

0 − (Kφh
0 + V φn)

= (φh
0 + eh) − K(φh

0 + eh) − V g
= (I − K)eh.

(39)

The operator K is compact (for C1 boundary). We get the global error estimate:

C1‖r(1)
h ‖0 ≤ ‖eh‖0 ≤ C2‖r(1)

h ‖0, (40)

where 0 < C1 ≤ C2, C1, C2 are constants. The error is:

e ′
h = φh′

0 − φh
0 = Kφh

0 + V φn − φ0 = K(φ0 + eh) − V g − φ0 = Keh. (41)

The compact operator K filters out all the oscillatory components terms. In this sense, the
iterate result is super-convergent.

Using (28), the hyper-singular residual is defined as:

r
(2)
h = φn − (Lφh

0 + Mφn) = g − (L(φ0 + eh) + Mg) = −Leh. (42)

The pseudo-differential operator L is of order +1. L has the effect of amplifying the high
frequencies of eh. Thus, we anticipate that r

(2)
h will indeed be a good a posteriori estimator.

There exist two constants 0 < C1 ≤ C2, such that :

C1‖r(2)
h ‖− 1

2
≤ ‖eh‖ 1

2
≤ C2‖r(2)

h ‖− 1
2
. (43)

Substituting φh
n into (29), the hyper-singular residual is defined as:

r
(3)
h = φn − Sφh

0 = (φn − Sφ0) − Seh = −Seh. (44)

The hyper-singular operator S is of order +1.

C1‖r(3)
h ‖− 1

2
≤ ‖eh‖ 1

2
≤ C2‖r(3)

h ‖− 1
2
, (45)

where 0 < C1 ≤ C2, C1, C2 are constants.
When computing the integral Sφ0 reaches required precision, r

(3)
h is a good a posteriori error

estimator.
Therefor, based on different boundary integral equations, there are several residuals which

can be used as a posteriori error estimators in the boundary element methods. Numerical
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results illustrate the important features of these error estimates. Especially, the hyper-singular
residuals obtained from the natural boundary integral equations are good a posteriori error
estimates in adaptive boundary element methods. The calculation is reliable and efficient.

7. Conclusions

The boundary reduction is an powerful means for solving boundary value problems of par-
tial differential equations over unbounded domains. There are many different ways of boundary
reduction, the best one seems to be the natural boundary reduction. Based on it the nat-
ural boundary integral method and some related computational methods, including coupling
method, domain decomposition methods and adaptive method, are suggested. These methods
are developed rapidly and applied widely in recent years. For the mathematical foundation of
the natural boundary integral method we can see books[26,29].

Very recently, a review of Yu’s English book [29] has been given by D. Givoli [8]. He has
used many good words highly to appraise the book, such as: ‘superb’,‘written beautifully’,
‘very clear, interesting’, ‘definitely useful’,‘enjoyable and eye-opening’, ‘one can learn quite a
lot from this book’, and so on. In the meantime, he has also stressed the point that, even though
the natural boundary integral method and the DtN method are very similar, “so-called natural
integral operator is also known as the Dirichlet-to-Neumann map”, but DtN method is “devised
independently in the west”, since “most of Feng’s and Yu’s publications have appeared in
Chinese and have not been generally accessible to western readers”, “a very interesting piece of
work that has been hidden from the western readers so far”, then “this monograph is especially
welcome” and “highly recommended”. It just show that the natural boundary integral method
or so-called DtN method is very important for scientific and engineering computing.
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