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Abstract

In my earlier paper [4], an eigen-decompositions of the Laplacian operator is given on
a unit regular hexagon with periodic boundary conditions. Since an exact decomposition
with Dirichlet boundary conditions has not been explored in terms of any elementary form.
In this paper, we investigate an approximate eigen-decomposition. The function space,
corresponding all eigenfunction, have been decomposed into four orthogonal subspaces.
Estimations of the first eight smallest eigenvalues and related orthogonal functions are
given. In particulary we obtain an approximate value of the smallest eigenvalue λ1 �
29
40

π2 = 7.1555, the absolute error is less than 0.0001.
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conditions.

1. Introduction

Given an origin point O and two plane vectors e1 and e2, e.g. e1 = {0,−1}, e2 = {
√

3
2 , 1

2},
we form a 3-direction 2-D partition as drawn in Fig.1. To deal with symmetry along the three
direction, we apply a 3-direction coordinates instead of the usual 2-D Cartesian coordinates
and barycentry coordinates, which is a very useful within a triangle domain. Setting the origin
point O = (0, 0, 0), each partition line is represented by tl=integer (l=1,2,3), and each 2-D
point P is represented by

P = (t1, t2, t3), t1 + t2 + t3 = 0, (1.1)

and any function f(P ) defined on the plane can be written as f(P ) = f(t1, t2, t3). In particulary,
Pk is called an integer node if and only if Pk = (k1, k2, k3), k1 + k2 + k3 = 0.

Let Ω be the unit regular hexagon domain
Ω = {P |P = (t1, t2, t3) t1 + t2 + t3 = 0, −1 ≤ t1, t2, t3 ≤ 1} (1.2)

we consider the following eigenvalue problem
−∆u = λu, (1.3)

with zero Dirichlet boundary
u|

∂Ω = 0 (1.4)

In terms of the 3-direction partition form, the Laplacian operator can be written as

L = −2
3
∆ = −(

∂

∂t1
− ∂

∂t2
)2 − (

∂

∂t2
− ∂

∂t3
)2 − (

∂

∂t3
− ∂

∂t1
)2. (1.5)

∗ Received January 31, 2004.
1) Project supported by the Major Basic Project of China (No.G19990328) and National Natural Science

Foundation of China (No. 60173021).



276 J.C. SUN

O

(3,-3,0)(3,0,-3)(3,-1,-2)(3,-2,-1)

(2,1,-3)

(1,2,-3)

(0,3,-3)

(-1,3,-2)

(-2,3,-1)

(-3,3,0)

Figure 1.1: 3-direction partition
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Figure 1.2: Parallel hexagon domain Ω

Definition 1.1. A function f(P ), defined in the 3-direction coordinate, is called periodic, if
for all P = (t1, t2, t3) the equality

f(P + Q) = f(P )

holds for any integer vector Q = (n1, n2, n3) with n2
1 + n2

2 + n2
3 = 0 (mod 6)

The following results have been proved in my earlier paper [4].

Theorem 1.1. For all integer triple j = (j1, j2, j3), the function system

gj(P ) = ei 2π
3 (j1t1+j2t2+j3t3)

forms a complex eigen decomposition of the Laplacian operator (1.3) with three direction periodic
boundary conditions, where P = (t1, t2, t3), j1 + j2 + j3 = 0. The corresponding eigenvalues
equal to

λj1,j2,j3 = (
2π

3
)2((j1 − j2)2 + (j2 − j3)2 + (j3 − j1)2) (1.6)

Since

λj1,j2,j3 = λj2,j3,j1 = λj3,j1,j1 = λ−j1,−j3,−j2 = λ−j3,−j2,−j1 = λ−j2,−j1,−j3

we have the following real eigen-decomposition.

Corollary 1.1. For all integer triple j = (j1, j2, j3), two function system

cos(
2π

3
(j1t1 + j2t2 + j3t3)) and sin(

2π

3
(j1t1 + j2t2 + j3t3))

form an eigen decomposition of the Laplacian operator (1.3) with three direction periodic bound-
ary conditions. Moreover, except the smallest eigenvalue is single, all other eigenvalues are six
multiple.

It is clear that the first eigenfunction is a trivial constant. Several figures of eigenfunctions,
related from the second to the four without counting multiple, are drawn in Figure 1.3- 1.12.

Definition 1.2. TSinj(P ) :=
1
2i

[
gj1,j2,j3(P ) + gj2,j3,j1(P ) + gj3,j1,j2(P )

−g−j1,−j3,−j2(P ) − g−j2,−j1,−j3(P ) − g−j3,−j2,−j1(P )
]

(1.7)

Definition 1.3. TCosj(P ) :=
1
2
[
gj1,j2,j3(P ) + gj2,j3,j1(P ) + gj3,j1,j2(P )

+g−j1,−j3,−j2(P ) + g−j2,−j1,−j3(P ) + g−j3,−j2,−j1(P )
]

(1.8)
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Figure 1.3: 2-nd eigen. function 1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.4: 2-nd eigen. function 2
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Figure 1.5: 2-nd eigen. function 3
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Figure 1.6: 2-nd eigen. function 4

Theorem 1.2. TSinj(P ) and TCosj(P ) form an eigen-decoposition system of the Laplacian
operator (1.3) on an equilateral triangle subdomain: t1 ≤ 0 and t2, t3 ≥ 0 with zero Dirichlet
and Neumann boundary conditions, respectively. The range of integer triple j in eigenvalue
expression (1.6) corresponds

j1 > 0, j2, j3 < 0

and
j1 ≥ 0, j2, j3 ≤ 0

respectively.

2. Two Kinds of Orthogonal Decomposition for a Function Defined
on a Parallel Hexagon

Definition 2.1. A function f , defined over a parallel hexagon domain Ω, is called partial
symmetry with respect to direction t1 if

f(t1, t2, t3) = f(−t1,−t3,−t2)

or is called partial asymmetry with respect to direction t1 if

f(t1, t2, t3) = −f(−t1,−t3,−t2)
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Figure 1.7: 2-nd eigen. function 5
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Figure 1.8: 2-nd eigen. function 6
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Figure 1.9: 3-nd eigen. function 1-3
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Figure 1.10: 2-nd eigen. function 4-6

Definition 2.2. A function f , defined over a parallel hexagon domain Ω, is called partial
symmetry with respect to axis t2 − t3 if

f(t1, t2, t3) = f(t1, t3, t2)

or is called partial asymmetry with respect to axis t2 − t3 if

f(t1, t2, t3) = −f(t1, t3, t2)

Lemma 2.1. If f is partial symmetry with respect to direction t1 and g is partial asymmetry
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Figure 1.11: 4-th eigen. function 1-3
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Figure 1.12: 4-th eigen. function 4-6
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with respect to a direction t1 on the same parallel hexagon, then the two functions are orthogonal

< f, g >:=
∫

Ω

f(P )ḡ(P )dp = 0

Lemma 2.2. If f is partial symmetry with respect to axis t2 − t3 and g is partial asymmetry
with respect to axis t2 − t3 on the same parallel hexagon, then the two functions are orthogonal.

There are similar definitions and lemmas of partial symmetry and asymmetry with respect
to direction t2, t3 and axes t3 − t1 and t1 − t2, respectively.

By using the above lemmas, it leads to the following orthogonal decomposition theorem

Theorem 2.1. Any function f , defined over a parallel hexagon domain Ω, can be decomposed
into following four orthogonal sub-functions

f(t1, t2, t3) = f1(t1, t2, t3) + f2(t1, t2, t3) + f3(t1, t2, t3) + f4(t1, t2, t3) (2.1)

where

f1(t1, t2, t3) =
1
4
{f(t1, t2, t3) + f(−t1,−t3,−t2) + f(t1, t3, t2) + f(−t1,−t2,−t3)}

is both partial symmetry with respect to direction t1 and the axis t2 − t3,

f2(t1, t2, t3) =
1
4
{f(t1, t2, t3) − f(−t1,−t3,−t2) + f(t1, t3, t2) − f(−t1,−t2,−t3)}

is partial asymmetry with respect to direction t1 and partial symmetry with the axis t2 − t3

f3(t1, t2, t3) =
1
4
{f(t1, t2, t3) + f(−t1,−t3,−t2) − f(t1, t3, t2) − f(−t1,−t2,−t3)}

is partial symmetry with respect to direction t1 and partial asymmetry with the axis t2 − t3

f4(t1, t2, t3) =
1
4
{f(t1, t2, t3) − f(−t1,−t3,−t2) − f(t1, t3, t2) + f(−t1,−t2,−t3)}

is both partial asymmetry with respect to direction t1 and the axis t2 − t3.

Now we turn to construct another orthogonal decomposition.

Definition 2.3. A function f , defined over a parallel hexagon domain Ω, is called centered
symmetry if

f(t1, t2, t3) = f(−t1,−t2,−t3)

or is called centered asymmetry if

f(t1, t2, t3) = −f(−t1,−t2,−t3)

Lemma 2.3. If f is centered symmetry and g is centered asymmetry on the same parallel
hexagon, then the two functions are orthogonal on the domain

Definition 2.4. A function f , defined over a parallel hexagon domain Ω, is called isotropic if
f is centered symmetry and partial symmetry with respect to all three directions t1,t2 and t3.

Denote
HI := {f |f isotropic} (2.2)

HII := {f |f centered asymmetry & partial asymmetry with respect to a direction}
HIII := {f |f centered symmetry & partial asymmetry with respect to a direction}
HIV := {f |f centered asymmetry & partial symmetry with respect to three directions}

Lemma 2.4. The above four function spaces HI , HII ,HIII and HIV are orthogonal each other.
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Lemma 2.5. For a regular hexagon domain, Laplacian operator preserves the above symmetry
and asymmetry of the original function.

Therefore, we lay down our foundation for find approximate eigenvalues and related orthog-
onal function in succeed sections.

Lemma 2.6. Both of four spaces, f1,f2,f3,f4 defined in (2.1) and HI ,HII ,HIII ,HIV defined
in (2.2), are orthogonal decomposition of any eigen-function of (1.3) with (1.4).

3. Approximation to the Smallest Eight Eigenvalues and Related
Functions

3.1. The smallest eigenvalue estimation

As is well know, the smallest eigenvalue of (1.3) with zero boundary conditions (1.4) is the
minimum of the following quadratic functional

λ1 = inf
u∈H0

1 (Ω)

< ∇u,∇u >

< u, u >

Denote ΩS and ΩB to be an interior circle with radius R =
√

3
2 and an exterior equilateral

triangle with side length H = 3, respectively.
It is obvious ΩS ⊂ Ω ⊂ ΩB, hence, by using comparison principle, we have the following

inequalities

Lemma 3.1.

0.5926π2 =
16

3H2
π2 = λmin(ΩB) < λ1 := λmin(Ω) < λmin(ΩS) ≤ (π2 + 4)

4(π2 − 4)
π2

R2
= 0.7814π2

(3.1)

The lower bound comes from eigenvalues expression of Laplacian in an equilateral triangle
with side length 3, e.g. see [1] and [4]. To get the righthand side we rewrite the Laplacian
eigen-problem in terms of polar coordinates

−∆u = −1
r

∂

∂r
(r

∂u

∂r
) − 1

r2

∂2u

∂θ2
, u(r, θ)|r=R = 0 (3.2)

Hence, denote ξ0,k to be zero points of the Bessel function J0(r), then all isotropic eigen-
values of (3.2) equal to ξ2

0,k/R2. Since J0(ξ0,1)|ξ0,1=2.405 = −0.000090558, J0(ξ0,2)|ξ0,2=5.52 =
−0.0000265784. Hence, the first two isotropic eigenvalues on the circle equal to 2.4052 ∗ 4/3 =
7.71203 and 5.522∗4/3 = 40.6272 approximately, and the related Bessel functions J0(ξ0,kr), (k =
1, 2) are the strict eigenfunctions. In general, all zero points ξn,k of Bessel functions Jn(r) cor-
respond eigenvalues of the Laplacian operator on the unit circle with zero boundary condition
λn,k = ξ2

n,k. The related double eigenfunctions are Jn(ξn,kr) cos nθ and Jn(ξn,kr) sin nθ.
Because three areas of the circle, the regular hexagon and the equilateral triangle equal to

SΩS = 3π/4, SΩ =
3
√

3
2

, SΩB =
9
√

3
4

or

SΩ = S1−t
ΩS

St
ΩB

, t =
log( SΩ

SΩS
)

log(SΩB

SΩS
)

= 0.1942

Corollary 3.1. We may take an approximation for the first eigenvalue as a generalized geom-
etry means between the upper bound and the lower bound of (3.1)

λ1 � λmin(ΩS)(1−t)λmin(ΩB)tπ2 = 0.7499π2, where t = 0.1942. (3.3)
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To get an elementary approximation for the first eigenfunction, we substitute u(r) = cos rπ
2R

into the following expression

λ1 = inf
u(R)=0,u(0)bounded

∫ R

0
ru′2dr∫ R

0
ru2dr

(3.4)

then

λ1 ≤ (4 + π2)/(16R2)
(π2 − 4)/(4π2)

=
(4 + π2)

4R2(π2 − 4)
π2 = 7.7739.

Hence, in this sense the function is a good approximate of the first eigenfunction. To obtain a
further approximation for an approximation of the first eigenfunction, we denote

F1,1 = 4 cos
t1π

2
cos

t2π

2
cos

t3π

2
= cos t1π + cos t2π + cos t3π + 1; (3.5)

F1,2 = (1 − t21)(1 − t22)(1 − t23). (3.6)

These two functions are isotropic and belong to space HI . The graphics of the function F1,1 is
shown in Figure 3.1.

A straight computation leads to
< ∇F1,1,∇F1,1 >

< F1,1, F1,1 >
=

8
√

3 + 3
√

3π2

3
4

√
3(5π2 + 16)/π2

=
4(8 + 3π2)π2

3(5π2 + 16)
= 0.7674π2

< ∇F1,2,∇F1,2 >

< F1,2, F1,2 >
=

24641
9450

√
3

3167
8820

√
3

= 0.7358π2

Further, if test is done in the space spanned of F1,1 and F1,2.
Therefore function F1 can be taken as the first eigen-function.
Next, the computation can be done in the space spanned of F21 and F22. In fact, set a

stiffness matrix

K1 =

⎡
⎣ < ∇F1,1,∇F1,1 > < ∇F1,1,∇F1,2 >

< ∇F1,2,∇F1,1 > < ∇F1,2,∇F1,2 >

⎤
⎦ =

⎡
⎣ 65.1404 16.9864

16.9864 4.5163

⎤
⎦

and mass matrix

M1 =

⎡
⎣ < F1,1, F1,1 > < F1,1, F1,2 >

< F1,2, F1,1 > < F1,2, F1,2 >

⎤
⎦ =

⎡
⎣ 8.6011 2.3084

2.3084 0.6219

⎤
⎦

The smallest eigenvalue of the related generalized matrix eigenvalue problem equals to
7.1847 = 0.7280π2.

The estimation can be improve further if we take the minimum in more wide space
F1(t1, t2, t3) = Spanν=1,...,6{F1,ν}

where

F13 = W1 + W2 + W3; W1 = 4 cos
πt1
2

sin πt2 sin πt3;

W2 = 4 sinπt1 cos
πt2
2

sin πt3; W3 = 4 sinπt1 sinπt2 cos
πt3
2

;

F14 = 4 cos
3πt1

2
cos

πt2
2

cos
πt13

2
; F15 = 4 cos

πt1
2

cos
3πt2

2
cos

πt3
2

;

F16 = 4 cos
πt1
2

cos
πt1
2

cos
3πt3

2
.

The minimum value
λ1 � 7.1650 = 0.7260π2

reaches when
F1 = −0.8946F1,1 + 3.9425F1,2 − 0.1105F13 + 0.0713(F14 + F15 + F16)
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Finally, if we add the following extra five high frequency functions

F17 = 4 cos
πt1
2

cos
3πt2

2
cos

3πt3
2

; F18 = 4 cos
3πt1

2
cos

πt2
2

cos
3πt3

2
;

F19 = 4 cos
3πt1

2
cos

3πt2
2

cos
πt3
2

; F1,10 = 4 cos
3πt1

2
cos

3πt2
2

cos
3πt3

2
;

and
F1,11 = F 2

1,2

into the above space, we may obtain more accuracy upper bound for the smallest eigenvalue

λ1 ≤ 7.1567 = 0.72512π2.

As is well known that the numerical results of first smallest eigen-values are less than their
true values. Therefore, we obtain a very close pair of upper bound and lower bound for the
first smallest eigenvalue of (1.3) with zero boundary conditions (1.4).

Proposition 3.1.
0.72490π2 < λ1 < 0.72512π2 (3.7)

3.2. The 2nd to 5th eigenvalue approximation

According to the eigenvalue max-min property, we know

λ2 = sup
u1

inf
u∈H0

1 (Ω)
⋂

<u,u1>=0

< ∇u,∇u >

< u, u >

Since the first eigen-function is invariant under rotation 60o with non zero within the hexagon
domain, the second eigen function must be partial asymmetry along a bisection line, e.g. t3 = 0
or t2 = t1, and the line in the only zero line within the domain. Therefore, the second eigenvalue
is double multiple.

Denote

G1 = 4 sinπt1 cos
πt2
2

cos
πt3
2

; G2 = 4 cos
πt1
2

sin πt2 cos
πt3
2

; G3 = 4 cos
πt1
2

cos
πt2
2

sin πt3;

The three functions are partial asymmetry along direction t1, t2 and t3, respectively. They have
no zero lines except on their asymmetry axis.

F21 = G2 + G3 − 2G1; F22 =
√

3(G2 − G3);
It is obvious that function F21 and F22 are partial asymmetry with respect to direction t1 and
t2 − t3, respectively. Hence, both of them belong to HII , orthogonal to F1 in HI , and they are
orthogonal each other.

By symmetry and asymmetry, it is obvious⎧⎪⎨
⎪⎩

< G1, F1 >=< G2, F1 >=< G3, F1 >= 0,

< G1, G2 >=< G2, G3 >=< G3, G1 >,

< G1, G1 >=< G2, G2 >=< G3, G3 > .

(3.8)

Hence
< F21, F22 >=< F21, F1 >=< F22, F1 >= 0

Moreover

< F21, F21 >=< F22, F22 >=
2
√

3
75π2

(4048 + 720π + 675π2) = 60.7064

< ∆F21, F21 >=< ∆F22, F22 >= (
40192
225

+
592
15

π + 36π2)
√

3 = 1139.6

λ2 = λ3 ≤=
1139.6
60.7064

= 8.7717 = 1.9020π2
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Figure 3.13: Minimum surface approximation F1,1

Similarly, the 4th and 5th eigenvalue are also double multiple. Their corresponding functions
have two across bisection zero lines.

Denote

W1 = 4 cos
πt1
2

sin πt2 sinπt3; W2 = 4 sinπt1 cos
πt2
2

sin πt3; W3 = 4 sin πt1 sin πt2 cos
πt3
2

;

F31 =
√

3(W2 − W3); F32 = W2 + W3 − 2W1;

The two functions are orthogonal each other < F31, F32 >= 0, because of permutation
symmetry, {

< W1, W2 >=< W2, W3 >=< W3, W1 >,

< W1, W1 >=< W2, W2 >=< W3, W3 > .
(3.9)

Note that both of F31 and F32 belong to HIII , they are orthogonal to F1 ∈ HI and F21, F22 ∈
HII . Moreover the two Rayleigh quotations are the same, because

< F31, F31 >=< F32, F32 >=
2
√

3
3675π2

(70208 + 6720π + 33075π2) = 39.8985

< ∆F31, F31 >=< ∆F32, F32 >= (
1301248
11025

+
3904
105

π + 54π2)
√

3 = 1329.9

λ4 = λ5 ≤=
1329.9
39.8985

= 33.3310 = 3.3771π2

3.3. The 6th to 8th eigenvalue approximation

As another isotropic function in HI we may take
F6 = W1 + W2 + W3;

By using (3.9) and isotropic property of F6 ∈ HI , it is orthogonal to the above four functions
F21, F22 ∈ HII and F31, F32 ∈ HIII .

< F6, F21 >=< F6, F22 >=< F6, F31 >=< F6, F32 >= 0.

To get an approximation to the second isotropic eigenfunction, we find a linear combination
of two isotropic functions F1,1 in (3.5) and the above F6 such that

F6 = 0.7822F1 + 0.6230F6
It corresponding the larger generalized eigenvalues of the sub-space spanned of two functions
F1 and F6. And

< F6, F6 >= 2.4580, < −∆F6, F6 >= 94.1353
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Figure 3.14: Two orthogonal surfaces F21 andF22 related to λ2 = λ3
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Figure 3.15: Two orthogonal surfaces F31 and F32 related to λ4 = λ5
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Figure 3.16: Isotropic surface F6 related to λ6



On Approximation of Laplacian Eigenproblem over a Regular Hexagon with Zero Boundary Conditions 285

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−4

−3

−2

−1

0

1

2

3

4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3

−2

−1

0

1

2

3

Figure 3.17: Two orthogonal surfaces F7 and F8 related to λ7 and λ8(λ7 < λ8)

the Rayleigh quotation

λ6 ≤ 94.1353
2.4580

= 38.2969 = 3.8803π2

The functions corresponding the 7th and 8th belong to space HIV . They are centered
asymmetry and have zero lines on three direction tν = integer or on the three bisection tµ−tν =
integer, µ �= ν, respectively.

F7 = 4 sin(t1 − t2)π sin(t2 − t3)π sin(t3 − t1)πF1;

F8 = 4 sinπt1 sin πt2 sin πt3; (3.10)

Since F7 is partial symmetry to axis t2 − t3 and F8 is partial asymmetry to t2 − t3, hence
they are orthogonal both in ordinary sense and in energy sense.

< F7, F8 >=< −∆F7, F8 >= 0
As F7 and F8 belong to space HIV , by Lemma 2.4, they are orthogonal to F1, F6 ∈ HI ,

F21, F22 ∈ HII and F31, F32 ∈ HIII .
Moreover, a straight computation leads to

< −∆F7, F7 >= (−295408
11025

− 1844
105

π +
39
4

π2)
√

3 = 24.7024

< F7, F7 >=
√

3
2450π2

(−33016− 21840π + 11025π2) = 0.5146

The Rayleigh quotation
< −∆F7, F7 >

< F7, F7 >
=

24.7024
0.5146

= 48.0031 = 4.8637π2

< −∆F8, F8 >

< F8, F8 >
=

205.135
3.8971

= 52.6379 = 5.3333π2

4. Lower Bound of Eigenvalues Via Difference Scheme

To get a lower bound of eigenvalues, we may use difference scheme of (1.3) with zero bound-
ary conditions (1.4). Let mesh size h = 1/(N + 1), using two variable Taylor expanding follows

Lhuj =
2

3h2
{6u(j1, j2, j3) − u(j1, j2 + h, j3 − h) − u(j1, j2 − h, j3 + h)

−u(j1 + h, j2, j3 − h) − u(j1 − h, j2, j3 + h) − u(j1 − h, j2 + h, j3) − u(j1 − h, j2, j3 + h)}

= −∆uj − h2

16
∆2uj − h4

5760
{11u(6,0) + 15u(4,2) + 45u(2,4) + 9u(0,6)}|u=uj + O(h6) (4.1)
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Since the biharmonic operator is positive, hence, for sufficient smooth function and suitable
small mesh size h, we can take eigenvalues of the partial difference equation as a lower bound
of the related Laplacian eigenvalues.

The number of total inner knots equals to 3N(N + 1) + 1. The related stiffness matrix has
tri-diagonal block form

A = Tridiag{A11, A12; A21, A22, A23; · · · ; AN,N−1, AN,N , AN,N+1; · · · ; A2N−1,2N , A2N,2N}
As an example, for h=1/2, the related stiffness matrix becomes

A =
2

3h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −1 −1 −1
−1 6 −1 −1
−1 6 −1 −1
−1 −1 −1 6 −1 −1 −1

−1 −1 6 −1
−1 −1 6 −1

−1 −1 −1 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

For N = 48, the first eight approximate smallest eigenvalues are equal to
{0.7249, 1.8363, 1.8363, 3.2853, 3.2853, 3.7950, 4.8199, 5.3260}π2 (4.3)

respectively.

5. Conclusion

TSinj(P ) in Theorem 1.2, as eigenfunctions of Laplacian operator over an equilateral tri-
angle with zero boundary conditions, still are a part of eigenfunctions in the regular hexagon
case. The function space, corresponding all eigenfunction, have been decomposed into four
orthogonal subspaces. For the smallest eight eigenvalues of (1.3) over the regular hexagon with
zero boundary condition (1.4), we get an upper bound

{0.7251, 1.9020, 1.9020, 3.3771, 3.3771, 3.8803, 4.8637, 5.3333}π2

and a lower bound
{0.7249, 1.8363, 1.8363, 3.2853, 3.2853, 3.7950, 4.8199, 5.3260}π2

Their maximum relative gaps are less than 4%. The pictures of eigenfunction, corresponding
from the smallest to 8th, are shown in Fig. 3.1 to Fig. 3.17, where λ2 = λ3 and λ4 = λ5 are
two double roots, other four eigenvalues are single roots. Moreover, so far only λ8 and related
eigenfunction (3.10) are exact. Approximations to other eigenvalues and related functions can
be constructed in a similar way.

How to use these approximation of partial eigen-decomposition for constructing a fast solver
of the related discrete system is our future work.

References

[1] Mark. A. Pinsky, Completeness of the eigenfunctions of the equilateral triangle, SIAM J. Math.

Anal., 16 (1985), 848–851.

[2] Milan Prager, An investigation of eigenfunctions over the equilateral triangle and square, Applica-

tions of mathematics, 43 (1998), 311–320.

[3] Jiachang Sun, Orthogonal piecewise polynomials basis on an arbitrary triangular domain and its

applications, Journal of Computational Mathematics, 19 (2001), 55–66.

[4] Jiachang Sun, Multivariate Fourier Series over a Class of non Tensor-product Partition Domains,

Journal of Computational Mathematics, 21 (2003), 53–62.

[5] Jiachang Sun and Huiyuan Li, Generalized Fourier transform on an arbitrary tirangular domain,

Advances in Computational Mathematics, to appear.

[6] Zhijie Yang and Jiachang Sun, The construction and classification of a set of complete orthogonal

bases on an arbitrary triangular domain, Mathematica Numerica Sinica, 25:2 (2003), 219–230.


