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Abstract

In this paper, we further develop the local discontinuous Galerkin method to solve
three classes of nonlinear wave equations formulated by the general KdV-Burgers type
equations, the general fifth-order KdV type equations and the fully nonlinear K(n, n, n)
equations, and prove their stability for these general classes of nonlinear equations. The
schemes we present extend the previous work of Yan and Shu [30, 31] and of Levy, Shu
and Yan [24] on local discontinuous Galerkin method solving partial differential equations
with higher spatial derivatives. Numerical examples for nonlinear problems are shown
to illustrate the accuracy and capability of the methods. The numerical experiments
include stationary solitons, soliton interactions and oscillatory solitary wave solutions.
The numerical experiments also include the compacton solutions of a generalized fifth-
order KdV equation in which the highest order derivative term is nonlinear and the fully
nonlinear K(n, n, n) equations.
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1. Introduction

In this paper we further develop the local discontinuous Galerkin method to solve three
classes of generalized nonlinear wave equations formulated by the KdV-Burgers type (KdVB)
equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x = 0, (1.1)

the fifth-order KdV type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x + (s′(u)h(s(u)xx)xx)x = 0, (1.2)

and the fifth-order fully nonlinear K(n, n, n) equations

ut + (un)x + (un)xxx + (un)xxxxx = 0 (1.3)
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where f(u), a(u) ≥ 0, r(u), s(u), g(p) and h(q) are arbitrary (smooth) nonlinear functions.
The schemes we present extend the previous work of Yan and Shu [30, 31] and of Levy, Shu
and Yan [24] on local discontinuous Galerkin method solving partial differential equations with
higher spatial derivatives.

A special case of equation (1.1) is the KdV-Burgers equation

ut + εuux − αuxx + βuxxx = 0 (1.4)

derived by Su and Gardner [28], which is a model for nonlinear wave motion incorporating
several important physical phenomena, namely dispersion, nonlinear advection and viscosity.
The equation arises in the description of long wave propagation in shallow water [2] and in
weakly nonlinear plasma physics with dissipation [18]. Efforts to shed light on this problem by
means of numerical experiments are made in [3, 6, 33] and the references therein.

The fifth order nonlinear evolution equation

ut + uux + uxxx − δuxxxxx = 0, (1.5)

which is a special case of (1.2), is known as the critical surface-tension model [19]. This equation
arises in the modeling of weakly nonlinear waves in a wide variety of media, including magneto-
acoustic waves in plasma [23] and long waves in the liquids under ice sheets [25]. There are
only a few numerical works in the literature to solve the fifth-order KdV equation. A general
type of “semi-localized” solitary wave solutions has been investigated by Kawahara [23], which
gave the first numerical evidence of oscillatory solitary wave solutions. Numerical experiments
on the semi-localized solutions and their interactions appeared in [4, 5]. In recent numerical
studies of break-up of initial data, Hyman and Rosenau [21] have observed a variety of localized
pulsating “multiplet” solutions.

The fifth-order fully nonlinear K(n, n, n) equations (1.3) are useful for describing the dy-
namics of various physical systems. Such nonlinearly dispersive partial differential equations
support compacton solutions. A variety of explicit compact solitary wave structures of these
fifth-order nonlinear dispersive equations are constructed in [16, 26]. The numerical simula-
tions of these equations in [26] have also revealed the existence of compact traveling breathers.
Recently, some attempts have been made to numerically study the stability of the compacton
solutions of the fifth-order nonlinear dispersive equations in [15]. The lack of smoothness at
the edge of compacton introduces high-frequency dispersive errors into the calculation. It is a
challenge to design stable and accurate numerical schemes for solving equation (1.3).

The discontinuous Galerkin method we discuss in this paper is a class of finite element
methods using completely discontinuous piecewise polynomial space for the numerical solution
and the test functions in the spatial variables, coupled with explicit and nonlinearly stable high
order Runge-Kutta time discretization [27]. It was first developed for hyperbolic conservation
laws containing first derivatives by Cockburn et al. in a series of papers [11, 10, 8, 12]. For a
detailed description of the method as well as its implementation and applications, we refer the
readers to the lecture notes [7], the survey paper [9], other papers in that Springer volume, and
the review paper [14].

These discontinuous Galerkin methods were generalized to solve a convection diffusion equa-
tion (containing second derivatives) by Cockburn and Shu [13]. Their work was motivated by
the successful numerical experiments of Bassi and Rebay [1] for the compressible Navier-Stokes
equations. Later, Yan and Shu developed a local discontinuous Galerkin method for a general
KdV type equation containing third derivatives in [30] and generalized the local discontinuous
Galerkin method to PDEs with fourth and fifth spatial derivatives in [31]. Recently, Levy, Shu
and Yan [24] developed local discontinuous Galerkin methods for solving nonlinear dispersive
equations that have compactly supported traveling wave solutions, the so-called “compactons”.

The schemes we present in this paper extend the work of Yan and Shu [30, 31] and of Levy,
Shu and Yan [24]. The paper is organized as follows. In section 2 we present local discontinuous
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Galerkin methods for three classes of general nonlinear wave equations. In section 2.1, we
present the methods for the KdVB type nonlinear problems. We also present a theoretical result
of L2 stability for the nonlinear case as well as an error estimate for the linear case. In section 2.2,
we present and analyze the local discontinuous Galerkin methods for the fifth-order KdV type
nonlinear problems and give a proof of the nonlinear L2 stability. In section 2.3, we present a
local discontinuous Galerkin method for the nonlinear fifth orderK(n, n, n) equations and prove
its Ln+1 stability for odd n. Section 3 contains numerical results for the nonlinear problems to
demonstrate the accuracy and capability of the methods. In section 3.1, both KdV type and
KdVB type solutions are simulated. In section 3.2, the numerical experiments for the fifth-order
KdV equations containing stationary solitons, soliton interactions and oscillatory solitary wave
solutions are presented. In section 3.3, we present numerical results of a generalized fifth-order
KdV equation in which the highest order derivative term is nonlinear. In section 3.4, we show
the accuracy test results and compacton solutions of the K(n, n, n) equations for n = 3 and
n = 5. Concluding remarks are included in section 4.

2. The Local Discontinuous Galerkin Method for Nonlinear Wave
Equations

In this section, we present and analyze local discontinuous Galerkin methods for three classes
of general nonlinear wave equations.

2.1. KdVB type equations

We first present and analyze the local discontinuous Galerkin method for the following
KdVB type nonlinear problems:

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x = 0 (2.1)

with an initial condition
u(x, 0) = u0(x) (2.2)

and periodic boundary conditions. Here f(u), a(u) ≥ 0, r(u) and g(q) are arbitrary (smooth)
nonlinear functions. Notice that the assumption of periodic boundary conditions is for sim-
plicity only and is not essential: the method can be easily designed for non-periodic boundary
conditions and such non-periodic boundary conditions are used in the numerical experiments
in next section. Equation (2.1) without the third dissipation term was considered in [30] and
[24].

We denote the mesh by Ij = [xj− 1
2
, xj+ 1

2
], for j = 1, . . . , N . The center of the cell is

xj = (xj− 1
2

+ xj+ 1
2
)/2 and ∆xj = xj+ 1

2
− xj− 1

2
. We denote by u+

j+ 1
2

and u−
j+ 1

2
the values

of u at xj+ 1
2
, from the right cell Ij+1, and from the left cell Ij , respectively. We define the

piecewise-polynomial space V∆x as the space of polynomials of degree up to k in each cell Ij ,
i.e.

V∆x = {v : v ∈ P k(Ij) for x ∈ Ij , j = 1, . . . , N}. (2.3)

To simplify the notation, we still use u to denote the numerical solution.
To define the local discontinuous Galerkin method, we rewrite the equation (2.1) as a first

order system:
ut + f(u)x − (b(u)v)x + (r′(u)p)x = 0, (2.4)

v −B(u)x = 0, p− g(q)x = 0, q − r(u)x = 0

where b(u) =
√
a(u) and B(u) =

∫ u
b(τ)dτ . We can use the discontinuous Galerkin method

to solve (2.4), resulting in the following scheme: find u, p, v, q ∈ V∆x such that, for all test
functions ρ, ψ, φ, ϕ ∈ V∆x,
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∫
Ij

utρdx−
∫

Ij

(f(u)− b(u)v+ r′(u)p)ρxdx+(f̂ − b̂v̂+ r̂′p̂)j+ 1
2
ρ−

j+ 1
2
− (f̂ − b̂v̂+ r̂′p̂)j− 1

2
ρ+

j− 1
2

= 0

∫
Ij

vψdx+
∫

Ij

B(u)ψxdx− B̂j+ 1
2
ψ−

j+ 1
2

+ B̂j− 1
2
ψ+

j− 1
2

= 0 (2.5)

∫
Ij

pφdx+
∫

Ij

g(q)φxdx− ĝj+ 1
2
φ−

j+ 1
2

+ ĝj− 1
2
φ+

j− 1
2

= 0

∫
Ij

qϕdx+
∫

Ij

r(u)ϕxdx− r̂j+ 1
2
ϕ−

j+ 1
2

+ r̂j− 1
2
ϕ+

j− 1
2

= 0

The “hat” terms in (2.5) are the boundary terms that emerge from integration by parts. These
are the so-called “numerical fluxes” which should be designed based on different guiding prin-
ciples for different PDEs to ensure stability. It turns out that we can take the simple choices
such that

f̂ = f̂(u−, u+), ĝ = ĝ(q−, q+), b̂ =
B(u+) −B(u−)

u+ − u−
, r̂′ =

r(u+) − r(u−)
u+ − u−

B̂ = B(u−), v̂ = v+, r̂ = r(u−), p̂ = p+ (2.6)

where we have omitted the half-integer indices j + 1
2 as all quantities in (2.6) are computed

at the same points (i.e. the interfaces between the cells). Here f̂(u−, u+) and −ĝ(q−, q+) are
monotone fluxes, i.e. Lipschitz continuous in both arguments, consistent (i.e. f̂(u, u) = f(u)),
non-decreasing in the first argument and non-increasing in the second argument. Examples of
monotone fluxes which are suitable for discontinuous Galerkin methods can be found in, e.g.,
[11]. We could for example use the simple Lax-Friedrichs flux

f̂(u−, u+) =
1
2
(f(u−) + f(u+) − α(u+ − u−)), α = max |f ′(u)|

where the maximum is taken over a relevant range of u; This flux is used in the numerical
experiments in next section. The algorithm is now well defined.

We remark that the choice for the fluxes (2.6) is not unique. In fact the crucial part is
taking p̂ and r̂ from opposite sides and taking v̂ and B̂ from opposite sides.

With such a choice of fluxes we can get the theoretical results of L2 stability for the general
nonlinear case and an error estimate for the linear case.
Proposition 2.1 (cell entropy inequality). There exist numerical entropy fluxes Φ̂j+ 1

2
such

that the solution to the scheme (2.5) - (2.6) satisfies

1
2
d

dt

∫
Ij

u2(x, t)dx + Φ̂j+ 1
2
− Φ̂j− 1

2
≤ 0.

Summing up the cell entropy inequalities, we obtain
Corollary 2.2 (L2 stability). The solution to the scheme (2.5) - (2.6) satisfies the L2 stability

d

dt

∫ L

0

u2(x, t)dx ≤ 0.

The stability result obtained here can be used to get an error estimate in L2 for the numerical
solution u when the equation (2.1) is linear. Without loss of generality we can consider the
error estimate for linearized KdVB equation

ue
t + ue

x − αue
xx + βue

xxx = 0 (2.7)
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where we use ue to denote the exact solution to equation (2.7) since u is used to denote the
numerical solution.
Proposition 2.3 (error estimate). The error for the scheme (2.5) - (2.6) applied to the
linearized KdVB equation (2.7) satisfies

‖ue − u‖0 ≤ C‖ue‖k+1∆xk+ 1
2 (2.8)

where || · ||m is the standard Sobolev m norm and the constant C depends on the time t.
Propositions 2.1 and 2.3 can be proven by the standard techniques of proving the L2-stability

and convergence of the semidiscrete discontinuous Galerkin methods, see for example [13] and
[30]. We will thus not give the details here.

2.2. Fifth-order KdV type equations

In this section, we present and analyze the local discontinuous Galerkin method for the
following fifth order nonlinear problem:

ut + f(u)x + (r′(u)g(r(u)x)x)x + (s′(u)h(s(u)xx)xx)x = 0, (2.9)

with an initial condition
u(x, 0) = u0(x)

and periodic boundary conditions. Here f(u), r(u), s(u), g(p) and h(q) are arbitrary (smooth)
nonlinear functions. Equation (2.9) is more general that those considered in [31].

To define the local discontinuous Galerkin method, we rewrite the equation (2.9) as a first
order system:

ut + f(u)x + (r′(u)p)x + (s′(u)v)x = 0

p− g(q)x = 0, q − r(u)x = 0, v − wx = 0 (2.10)

w − h(l)x = 0, l − zx = 0, z − s(u)x = 0

We can use the discontinuous Galerkin method to solve (2.10), resulting the following scheme:
find u, p, q, v, w, l, z ∈ V∆x such that, for all test functions ρ, φ, ϕ, ψ, η, ξ, ζ ∈ V∆x,∫

Ij

utρdx−
∫

Ij

(f(u)+r′(u)p+s′(u)v)ρxdx+(f̂+ r̂′p̂+ ŝ′v̂)j+ 1
2
ρ−

j+ 1
2
−(f̂+ r̂′p̂+ ŝ′v̂)j− 1

2
ρ+

j− 1
2

= 0

∫
Ij

pφdx+
∫

Ij

g(q)φxdx− ĝj+ 1
2
φ−

j+ 1
2

+ ĝj− 1
2
φ+

j− 1
2

= 0

∫
Ij

qϕdx+
∫

Ij

r(u)ϕxdx− r̂j+ 1
2
ϕ−

j+ 1
2

+ r̂j− 1
2
ϕ+

j− 1
2

= 0

∫
Ij

vψdx+
∫

Ij

wψxdx− ŵj+ 1
2
ψ−

j+ 1
2

+ ŵj− 1
2
ψ+

j− 1
2

= 0 (2.11)

∫
Ij

wηdx +
∫

Ij

h(l)ηxdx− ĥj+ 1
2
η−

j+ 1
2

+ ĥj− 1
2
η+

j− 1
2

= 0

∫
Ij

lξdx+
∫

Ij

zξxdx− ẑj+ 1
2
ξ−
j+ 1

2
+ ẑj− 1

2
ξ+
j− 1

2
= 0

∫
Ij

zζdx+
∫

Ij

s(u)ζxdx− ŝj+ 1
2
ζ−
j+ 1

2
+ ŝj− 1

2
ζ+
j− 1

2
= 0.

We can again take the following simple choices of fluxes to guarantee stability:

f̂ = f̂(u−, u+), ĝ = ĝ(q−, q+), ĥ = ĥ(l−, l+),
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r̂′ =
r(u+) − r(u−)
u+ − u−

, ŝ′ =
s(u+) − s(u−)
u+ − u−

(2.12)

p̂ = p+, r̂ = r(u−), v̂ = v+, ŝ = s(u−), ŵ = w+, ẑ = z−,

where we have again omitted the half-integer indices j + 1
2 . Here f̂(u−, u+), −ĝ(q−, q+) and

ĥ(l−, l+) are monotone fluxes. The algorithm is now well defined.
We remark that the choice for the fluxes (2.12) is not unique. In fact the crucial part is

taking p̂ and r̂ from opposite sides, v̂ and ẑ from opposite sides, and ŵ and ẑ from opposite
sides.

With such a choice of fluxes we have
Proposition 2.4 (L2 stability). The solution to the scheme (2.11) - (2.12) satisfies the L2

stability
d

dt

∫ L

0

u2(x, t)dx ≤ 0.

Proof. Since (2.11) holds for any test functions in V∆x, we can choose

ρ = u, φ = q, ϕ = −p, ψ = z, η = −l, ξ = w, ζ = −v.
With these choices of test functions and summing up the seven equations in (2.11) we obtain∫

Ij

utudx+ Φ̂j+ 1
2
− Φ̂j− 1

2
+ Θj− 1

2
= 0

where the numerical entropy flux is given by

Φ̂ = −F (u−) +G(q−) −H(l−) + (f̂ + r̂′p̂+ ŝ′v̂)u− − ĝq− + ĥl−

+w−z− − ẑw− − ŵz− − r(u−)p− + r̂p− − s(u−)v− + ŝv−

and the extra term Θ is given by

Θ = [F (u)] − f̂ [u] − [G(q)] + ĝ[q] + [H(l)] − ĥ[l] + [r(u)p] − r̂[p] − r̂′p̂[u]

+[s(u)v] − ŝ[v] − ŝ′v̂[u] − [wz] + ẑ[w] + ŵ[z].

Here

F (u) =
∫ u

f(u)du, G(q) =
∫ q

g(q)dq, H(l) =
∫ l

h(l)dl

and [v] = v+ − v− denotes the jump of v.
With the definition (2.12) of the numerical fluxes and with simple algebraic manipulations,

we easily obtain

[r(u)p] − r̂[p] − r̂′p̂[u] = 0, [s(u)v] − ŝ[v] − ŝ′v̂[u] = 0, −[wz] + ẑ[w] + ŵ[z] = 0

and hence
Θ = [F (u)] − f̂ [u] − [G(q)] + ĝ[q] + [H(l)] − ĥ[l]

=
∫ u+

u−
(f(τ) − f̂(u−, u+))dτ −

∫ q+

q−
(g(τ) − ĝ(q−, q+))dτ +

∫ l+

l−
(h(τ) − ĥ(l−, l+))dτ ≥ 0

where the last inequality follows from the monotonicity of the fluxes f̂ , −ĝ and ĥ. Hence∫
Ij

utudx+ Φ̂j+ 1
2
− Φ̂j− 1

2
≤ 0

which is the cell entropy inequality. Summing over all j and taking into account the periodic
boundary condition, we obtain ∫

I

utudx ≤ 0.
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This is the L2 stability.

2.3. Ln+1 stable schemes for the K(n, n, n) equations

In this section, following the technique introduced in [24], we present and analyze a local
discontinuous Galerkin method for which we can prove Ln+1 stability for odd n. Consider the
K(n, n, n) equation

ut + α(un)x + β(un)xxx + γ(un)xxxxx = 0 (2.13)

with initial data
u(x, 0) = u0(x)

and periodic boundary conditions. Here α, β and γ are constants.
To define a local discontinuous Galerkin method, we rewrite the equation (2.13) as a first

order system:

ut + αvx + px + wx = 0, p− βqx = 0, q − vx = 0, w − hx = 0,

h− γsx = 0, s− zx = 0, z − vx = 0, v − un = 0. (2.14)

We can use the discontinuous Galerkin method to solve (2.14), resulting in the following scheme:
find u, p, q, w, h, s, z, v ∈ V∆x such that, for all test functions ρ, φ, ϕ, ψ, η, ξ, ζ, g ∈ V∆x,∫

Ij

utρdx−
∫

Ij

(αv + p+ w)ρxdx+ (αṽ + p̂+ ŵ)j+ 1
2
ρ−

j+ 1
2
− (αṽ + p̂+ ŵ)j− 1

2
ρ+

j− 1
2

= 0

∫
Ij

pφdx+ β

∫
Ij

qφxdx− βq̂j+ 1
2
φ−

j+ 1
2

+ βq̂j− 1
2
φ+

j− 1
2

= 0

∫
Ij

qϕdx +
∫

Ij

vϕxdx − v̄j+ 1
2
ϕ−

j+ 1
2

+ v̄j− 1
2
ϕ+

j− 1
2

= 0

∫
Ij

wψdx +
∫

Ij

hψxdx − ĥj+ 1
2
ψ−

j+ 1
2

+ ĥj− 1
2
ψ+

j− 1
2

= 0 (2.15)

∫
Ij

hηdx+ γ

∫
Ij

sηxdx− γŝj+ 1
2
η−

j+ 1
2

+ γŝj− 1
2
η+

j− 1
2

= 0

∫
Ij

sξdx+
∫

Ij

zξxdx− ẑj+ 1
2
ξ−
j+ 1

2
+ ẑj− 1

2
ξ+
j− 1

2
= 0

∫
Ij

zζdx+
∫

Ij

vζxdx− v̂j+ 1
2
ζ−
j+ 1

2
+ v̂j− 1

2
ζ+
j− 1

2
= 0

∫
Ij

vgdx−
∫

Ij

ungdx = 0.

The “hat” terms in (2.15) are the numerical fluxes. It turns out that we can again take the
simple choices such that if α, β, γ > 0,

ṽ = v−, p̂ = p+, q̂ = q+, v̄ = v−, ŵ = w+, ĥ = h−, ŝ = s−, ẑ = z+, v̂ = v−, (2.16)

and if α, β, γ < 0,

ṽ = v+, p̂ = p+, q̂ = q−, v̄ = v−, ŵ = w+, ĥ = h−, ŝ = s+, ẑ = z+, v̂ = v−. (2.17)

Fluxes for other combinations of signs for α, β and γ can be obtained similarly.
We remark that the choice for the fluxes (2.16) and (2.17) are not unique. In fact the

crucial part is taking p̂ and v̄ from opposite sides, ĥ and ẑ from opposite sides, and ŵ and v̂
from opposite sides.
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With such a choice of fluxes we have
Proposition 2.5 (Ln+1 stability). The solution to the scheme (2.15) - (2.16) or (2.15) -
(2.17) satisfies the Ln+1 stability

d

dt

∫ L

0

un+1(x, t)dx ≤ 0

for odd n.
Proof. We assume α, β, γ > 0 and take the fluxes as (2.16). Since (2.15) holds for any test

functions in V∆x, we can choose

ρ = v, φ = q, ϕ = −p, ψ = z, η = −s, ξ = h, ζ = −w, g = ut.

Summing up the first seven equations in (2.15) we can get∫
Ij

utvdx− α

∫
Ij

vvxdx+ αṽj+ 1
2
v−

j+ 1
2
− αṽj− 1

2
v+

j− 1
2

+β
∫

Ij

qqxdx− βq̂j+ 1
2
q−
j+ 1

2
+ βq̂j− 1

2
q+
j− 1

2
+ γ

∫
Ij

ssxdx− γŝj+ 1
2
s−

j+ 1
2

+ γŝj− 1
2
s+

j− 1
2

−
∫

Ij

(pv)xdx+ p̂j+ 1
2
v−

j+ 1
2
− p̂j− 1

2
v+

j− 1
2

+ v̄j+ 1
2
p−

j+ 1
2
− v̄j− 1

2
p+

j− 1
2

−
∫

Ij

(wv)xdx+ ŵj+ 1
2
w−

j+ 1
2
− ŵj− 1

2
w+

j− 1
2

+ v̂j+ 1
2
w−

j+ 1
2
− v̂j− 1

2
w+

j− 1
2

+
∫

Ij

(hz)xdx− ĥj+ 1
2
z−

j+ 1
2

+ ĥj− 1
2
z+

j− 1
2
− ẑj+ 1

2
h−

j+ 1
2

+ ẑj− 1
2
h+

j− 1
2

= 0.

With the definition (2.16) of the numerical fluxes, denoting

Θ =
1
2
(v+ − v−)2 +

1
2
(q+ − q−)2 +

1
2
(s+ − s−)2 ≥ 0,

summing over j and taking into account the periodic boundary condition, we obtain∫ L

0

utvdx +
∑

j

Θj− 1
2

= 0,

hence
∫ L

0
utvdx ≤ 0, and with the last equation of (2.15) we have

d

dt

∫ L

0

un+1dx ≤ 0.

This is the Ln+1 stability for odd n.

3. Numerical Results

In this section we provide numerical examples to illustrate the accuracy and capability of
the method for these nonlinear wave equations. Time discretization is either by the third order
explicit Runge-Kutta method in [27] or by the third-order semi-implicit Runge-Kutta method
in [32]. In all examples, the figures present the solution obtained with a particular choice of
the mesh. We have verified with the aid of successive mesh refinements, that in all cases, the
results shown are numerically convergent.

3.1. The KdVB equation

First, we approximate solutions of the KdVB equation

ut + εuux − αuxx + βuxxx = 0. (3.1)
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Table 3.1: Accuracy test for the KdVB equation (3.1) with the exact solution (3.2). ε = α =
β = 1, x0 = 0. Exact boundary condition. Uniform and non-uniform meshes with N cells at
time t = 1.

uniform mesh non-uniform mesh
N L2 error order L∞ error order L2 error order L∞ error order

40 1.02E-02 – 6.90E-02 – 1.03E-02 – 7.49E-02 –
p0 80 5.14E-03 0.99 3.54E-02 0.96 5.20E-03 0.99 3.82E-02 0.97

160 2.57E-03 1.00 1.77E-02 1.00 2.62E-03 0.99 2.10E-02 0.86
320 1.23E-03 1.00 8.91E-03 1.00 1.31E-03 1.00 1.05E-02 1.00

40 1.35E-03 – 1.40E-02 – 1.30E-03 – 1.28E-02 –
p1 80 3.51E-04 1.94 3.76E-03 1.90 3.61E-04 1.86 3.97E-03 1.69

160 8.87E-05 1.99 9.52E-04 1.98 9.13E-05 1.98 1.12E-03 1.83
320 2.23E-05 1.99 2.38E-04 2.00 2.29E-05 1.99 2.80E-04 2.00

40 1.15E-04 – 1.87E-03 – 1.55E-04 – 2.63E-03 –
p2 80 1.24E-05 3.21 1.95E-04 3.26 1.36E-05 3.51 2.26E-04 3.54

160 1.56E-06 2.99 2.51E-05 2.95 1.67E-06 3.02 3.33E-05 2.76
320 1.95E-07 3.00 3.14E-06 3.00 2.09E-07 3.00 4.18E-06 2.99

40 1.38E-05 – 1.36E-04 – 1.05E-05 – 9.73E-05 –
p3 80 9.30E-07 3.89 1.27E-05 3.42 1.02E-06 3.36 1.30E-05 2.90

160 5.97E-08 3.96 8.54E-07 3.89 6.62E-08 3.94 1.06E-06 3.62
320 3.76E-09 3.99 5.38E-08 3.99 4.17E-09 3.99 7.32E-08 3.86

Example 3.1. We show an accuracy test for the equation (3.1) with the exact solution

u(x, t) = − 3α2

25εβ
(−sech2(k(x− x0) − ct) + 2 tanh(k(x− x0) − ct) + 2

)
(3.2)

where k =
α

10β
and c =

3α3

125β2
. Both uniform and nonuniform meshes are used. The non-

uniform meshes in this and later examples are a repeated pattern of 0.9∆x and 1.1∆x with
an even number of elements. The L2 and L∞ errors and the numerical order of accuracy
are contained in Table 3.1 for the uniform and nonuniform mesh cases. We can see that the
method with P k elements gives a uniform (k+1)-th order of accuracy in both norms for both
the uniform and non-uniform meshes.

Example 3.2. In this example we show KdV type solutions for the equation (3.1) to see the
birth of solitons from the Gaussian initial condition

u(x, 0) = e−x2
(3.3)

with boundary conditions
u(−15, t) = u(15, t) = 0, t > 0 (3.4)

In Figure 3.1 we can clearly see that the initial Gaussian breaks up into a number of solitons.
Comparing with the results obtained by the quintic B-spline finite element scheme in [33], we
can see that our methods use fewer cells (about half) to get the same result.

Example 3.3. We compute the KdVB type solutions for the equation (3.1) with the initial
condition

u(x, 0) = 0.5
(

1 − tanh
|x| − x0

d

)
(3.5)

to see the effect of using different values of α and β.
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Figure 3.1: KdV type solutions with the Gaussian initial condition (3.3) at time t = 12.5, α = 0
and ε = 1. (a) β = 0.04, one soliton plus an oscillating tail, P 1 elements with 160 cells; (b)
β = 0.01, three solitons, P 1 elements with 320 cells; (c) β = 0.001, nine solitons, P 2 elements
with 320 cells; (d) β = 0.0005, twelve solitons, P 2 elements with 320 cells.

In Figure 3.2 we take the boundary conditions

u(−50, t) = u(150, t) = 0. (3.6)

We can see that the solution of the KdVB equation (3.1) tends to behave like a solution of the
viscous Burgers equation as we increase α.

Next, in Figure 3.3 we proceed to take the boundary conditions

u(0, t) = 1, u(150, t) = 0. (3.7)

As α is decreased, the computed solutions of the KdVB equation (3.1) become more oscillatory.

3.2. The fifth-order KdV equations
In the following examples we present results for the fifth-order KdV type equations with

linear higher derivative terms.
Example 3.4. We show an accuracy test for the Kawahara equation

ut + uux + uxxx − uxxxxx = 0 (3.8)

with the exact solution [29]

u(x, t) =
105
169

sech4

(
1

2
√

13
(x − 36

169
t− x0)

)
. (3.9)
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Figure 3.2: KdVB type solutions with the initial condition (3.5) and the boundary conditions
(3.6) at time t = 800, −50 ≤ x ≤ 150, d = 5, x0 = 25, ε = 0.2 and β = 0.1. (a) α = 0.0001, P 1

elements with 640 cells; (b) α = 0.005, P 1 elements with 640 cells; (c) α = 0.03, P 1 elements
with 640 cells; (d) α = 0.4, P 1 elements with 320 cells.

Table 3.2: Accuracy test for the Kawahara equation (3.8) with the exact solution (3.9). Periodic
boundary condition, x0 = 0. Uniform and non-uniform meshes with N cells at t = 1.

uniform mesh non-uniform mesh
N L2 error order L∞ error order L2 error order L∞ error order

20 3.20E-02 – 1.20E-01 – 3.24E-02 – 1.36E-01 –
p0 40 1.68E-02 0.93 6.33E-02 0.91 1.71E-02 0.93 7.30E-02 0.89

80 8.61E-03 0.97 3.38E-02 0.91 8.76E-03 0.96 3.86E-02 0.92
160 4.36E-03 0.98 1.73E-02 0.97 4.44E-03 0.98 1.99E-02 0.95

20 6.47E-03 – 5.31E-02 – 6.59E-03 – 5.97E-02 –
p1 40 1.68E-03 1.94 1.48E-02 1.84 1.73E-03 1.93 1.73E-02 1.79

80 4.27E-04 1.98 3.81E-03 1.96 4.39E-04 1.98 4.47E-03 1.95
160 1.07E-04 1.99 9.58E-04 1.99 1.11E-04 1.99 1.13E-03 1.99

20 5.46E-04 – 3.91E-03 – 6.13E-04 – 4.67E-03 –
p2 40 6.77E-05 3.01 5.80E-04 2.75 7.35E-05 3.06 7.37E-04 2.66

80 8.49E-06 3.00 7.53E-05 2.95 9.10E-06 3.01 9.99E-05 2.88
160 1.39E-06 2.62 9.76E-06 2.95 1.45E-06 2.65 1.27E-05 2.97
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Figure 3.3: KdVB type solutions with the initial condition (3.5) and the boundary conditions
(3.7) at time t = 800, 0 ≤ x ≤ 150, d = 5, x0 = 50, ε = 0.2 and β = 0.1. (a) α = 0.5, P 1

elements with 320 cells; (b) α = 0.05, P 1 elements with 320 cells; (c) α = 0.01, P 1 elements
with 320 cells; (d) α = 0.005, P 1 elements with 320 cells.

We can see in Table 3.2 that the method with P k elements gives (k+1)-th order of accuracy in
both L2 and L∞ norms for both the uniform and non-uniform meshes.

Example 3.5. We show an accuracy test for generalized Kawahara equation

ut + σuux + u2ux + uxxx − uxxxxx = 0 (3.10)

with the exact solution

u(x, t) = −6
√

10k2 sech2 (k(x− c t− x0)) (3.11)

where c = 4k2(1 − 4k2), k2 =
1
20

+
σ

4
√

10
and σ =

2√
90

. We can see in Table 3.3 that the

method with P k elements gives (k+1)-th order of accuracy in both L2 and L∞ norms for both
the uniform and non-uniform meshes.

Example 3.6. Ito’s fifth-order mKdV equation [22]

ut +
(
6u5 + 5αu(u2)xx − uxxxx

)
x

= 0. (3.12)

When α = −1, an exact solution is

u(x, t) = k tanh (k(x− c t− x0)) (3.13)
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Table 3.3: Accuracy test for the generalized Kawahara equation (3.10) with the exact solution
(3.11). Periodic boundary condition, x0 = 0. Uniform and non-uniform meshes with N cells at
time t = 1.

uniform mesh non-uniform mesh
N L2 error order L∞ error order L2 error order L∞ error order

20 7.71E-02 – 2.73E-01 – 7.86E-02 – 3.01E-01 –
p0 40 4.59E-02 0.75 1.80E-01 0.60 4.65E-02 0.76 1.84E-01 0.71

80 2.58E-02 0.83 1.10E-01 0.71 2.62E-02 0.83 1.12E-01 0.71
160 1.39E-02 0.90 6.05E-02 0.86 1.41E-02 0.90 6.09E-02 0.88

20 1.74E-02 – 1.48E-01 – 1.76E-02 – 1.62E-01 –
p1 40 4.69E-03 1.89 4.73E-02 1.65 4.81E-03 1.87 5.47E-02 1.57

80 1.21E-03 1.95 1.28E-02 1.89 1.25E-03 1.95 1.50E-02 1.86
160 3.09E-04 1.97 3.27E-03 1.97 3.18E-04 1.97 3.85E-03 1.96

20 2.42E-03 – 1.73E-02 – 2.63E-03 – 2.10E-02 –
p2 40 2.68E-04 3.17 2.84E-03 2.61 2.92E-04 3.17 3.19E-03 2.71

80 3.36E-05 3.00 3.49E-04 3.03 3.61E-05 3.02 4.63E-04 2.79
160 4.35E-06 2.95 4.4E-05 2.97 4.65E-06 2.95 5.90E-05 2.97

Table 3.4: Accuracy test for the Ito’s fifth-order mKdV equation (3.12) with the exact solution
(3.13), k = 0.1, x0 = 0. Exact boundary condition. Uniform and non-uniform meshes with N
cells at time t = 1.

uniform mesh non-uniform mesh
N L2 error order L∞ error order L2 error order L∞ error order

20 5.52E-03 – 2.45E-02 – 5.55E-03 – 2.68E-02 –
p0 40 2.76E-03 1.00 1.24E-02 0.98 2.78E-03 1.00 1.40E-02 0.94

80 1.38E-03 1.00 6.24E-03 0.99 1.41E-03 0.98 7.42E-03 0.91
160 6.91E-04 1.00 3.13E-03 1.00 7.04E-04 1.00 3.71E-03 1.00

20 6.25E-04 – 3.78E-03 – 6.54E-04 – 3.88E-03 –
p1 40 1.62E-04 1.95 1.00E-03 1.92 1.67E-04 1.97 1.08E-03 1.85

80 4.06E-05 2.01 2.51E-04 2.00 4.18E-05 2.00 2.92E-04 1.88
160 1.01E-05 2.00 6.28E-05 2.00 1.04E-05 2.00 7.38E-05 1.99

20 3.68E-005 – 3.55E-004 – 4.41E-005 – 4.27E-004 –
p2 40 4.82E-006 2.93 5.02E-005 2.82 5.48E-006 3.01 6.78E-005 2.65

80 5.98E-007 3.01 6.46E-006 2.96 6.41E-007 3.10 8.51E-006 2.99
160 8.22E-008 2.86 8.10E-007 2.99 8.71E-008 2.88 1.08E-006 2.98

where c = 6k4, k is an arbitrary constant. We can see in Table 3.4 that the method with P k

elements gives (k+1)-th order of accuracy in both L2 and L∞ norms for both the uniform and
non-uniform meshes.

We also present the shock profile wave propagation for Ito’s fifth-order mKdV equation
(3.12) in Figure 3.4 with the initial condition

u(x, 0) = k tanh (k(x− x0)) (3.14)

for different k.

Example 3.7. Solitons of the fifth-order KdV type equations with high nonlinearities [17]

ut + upux + uxxx − δuxxxxx = 0. (3.15)
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Figure 3.4: The shock profile wave propagation of the Ito’s fifth-order mKdV equation (3.12)
with initial condition (3.14). Exact boundary condition for different k. (a0) k = 0.25, t = 0;
(a1) k = 0.25, t = 1000, P 1 elements with 100 cells; (b0) k = 1, t = 0; (b1) k = 1, t = 3, P 1

elements with 200 cells;

Solitary wave solutions of equation (3.15) are unstable with respect to the collapse-type insta-
bilities if p ≥ 4 for δ = 0. When δ �= 0, i.e., with the addition of the fifth-order term, solitons
become stable also for certain p ≥ 4. The exact upper limit of the nonlinearity parameter p for
stability is still an open problem. We present the numerical results of the equation (3.15) in
Figure 3.5 for p = 4 and different δ > 0 with the initial condition

u(x, 0) =
(
k

8
(p+ 1)(p+ 4)(3p+ 4)

p+ 2

) 1
p

sech
4
p

(
p
√
k(p2 + 4p+ 8)
4(p+ 2)

(x− x0)

)
(3.16)

where k =
(

2(p+ 2)
p2 + 4p+ 8

)2 1
δ
.

Next we present numerical results of the equation (3.15) in Figure 3.6 for p = 2 and different
δ < 0 with initial condition

u(x, 0) = 3

√
2
5δ

sech

(√
1

10δ
x

)
tanh

(√
1

10δ
(x− x0)

)
. (3.17)

We have also made numerical experiments for p = 1, 2, 3 and different δ > 0 with the initial
condition (3.16), but we will not show the results to save space.
Example 3.8. In this example we show the soliton interaction for the Kawahara equation

ut + uux + uxxx − δuxxxxx = 0. (3.18)



264 Y. XU AND C.-W. SHU

x

u

-20 -10 0 10 20

0

0.5

1

(a) x

u

-20 -10 0 10 20
0

1

2

(b)

x

u

-20 -10 0 10 20

0

1

2

(c) x

u

-20 -10 0 10 20

0

1

2

3

(d)

Figure 3.5: Solitons of the fifth-order KdV type equation (3.15) with initial condition (3.16),
p=4. Periodic boundary condition for different δ. Dashed line is at t = 0. (a) δ = 1, t = 100,
P 2 elements with 100 cells; (b) δ = 0.1, t = 20, P 2 elements with 200 cells; (c) δ = 0.05, t = 10,
P 2 elements with 300 cells; (d) δ = 0.01, t = 2, P 2 elements with 700 cells.

The double soliton collision case has the initial condition

u(x, 0) =
105

338δ1
sech4

(
1

2
√

13δ1
(x− x1)

)
+

105
338δ2

sech4

(
1

2
√

13δ2
(x − x2)

)
(3.19)

where δ = 0.1, δ1 = 0.04× 338/105, δ2 = 0.15× 338/105, x1 = −10 and x2 = −4. The solution
is computed with periodic boundary condition in [-18,18] using P 2 elements with 200 cells and
is shown in Figure 3.7.

The triple soliton splitting case has the initial condition

u(x, 0) =
1
δ1

sech4

(
1

2
√

13δ1
(x− x1)

)
+

1
δ2

sech4

(
1

2
√

13δ2
(x − x2)

)
+

1
δ3

sech4

(
1

2
√

13δ3
(x− x3)

)
(3.20)

where δ = 0.1, δ1 = 0.25, δ2 = 0.35, δ3 = 0.45, x1 = −11, x2 = −9 and x3 = −7. The solution
is computed with periodic boundary condition in [-20,20] using P 2 elements with 200 cells and
is shown in Figure 3.8.

Next we proceed to take the compact initial condition

u0(x) =
{
A cos2(Bx− C) |Bx− C| ≤ π/2
0 otherwise (3.21)

In Figure 3.9 we can see the pulsating multiplet solution which has been shown in [21].
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Figure 3.6: Solitons of the fifth-order KdV type equation (3.15) with initial condition (3.17),
p=2. Periodic boundary condition using P 2 elements for different δ. Dashed line is at t = 0.
(a) δ = −1, t = 140, P 2 elements with 120 cells; (b) δ = −0.1, t = 12, P 2 elements with 250
cells; (c) δ = −0.05, t = 5, P 2 elements with 320 cells; (d) δ = −0.01, t = 1, P 2 elements with
700 cells.

Example 3.9. In this example we present the more general type of “semi-localized” solitary
wave solutions and their interactions [5] for the fifth-order KdV equation

ut + uux + uxxx + uxxxxx = 0. (3.22)

The tails of these oscillatory solitary wave solutions no longer decay to zero, but have finite
amplitude oscillatory structures. These solutions are rigorously characterized in [20] as singular
perturbations of the KdV solitons.

The examples about these “semi-localized” solitary wave solutions take the following initial
condition

u(x, 0) = 12ε2sech2[ε(x− x0)], (3.23)

where ε is related to the size of the oscillations. Figure 3.10 shows the “semi-localized” solitary
wave solutions and Figure 3.11 shows their interactions for different ε with the initial condition

u(x, 0) = 12ε2
(
sech2[ε(x− x0)] + sech2[ε(x+ x0)]

)
. (3.24)

In Figure 3.12 we show the space time graph of the solutions up to t = 20 for the third and the
fourth cases in Figure 3.11.

3.3. A generalized fifth-order KdV equation
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Figure 3.7: Double soliton collision profiles. Periodic boundary condition in [-18,18] using P 2

elements with 200 cells.

Example 3.10. In this example we first show the accuracy test result of a generalized fifth-
order KdV equation [26]

ut + (u3)x + (u(u2)xx)x + δ(u(u2)xxxx)x = 0 (3.25)

Notice that the highest order derivative term of equation (3.25) is also nonlinear. Equation
(3.25) has compacton solutions of the form

u(x, t) =

{ √
8
3λ cos2(

√�−(x− λt)/2) |√�−(x − λt)| ≤ π

0 otherwise
(3.26)

where �−= (1 − √
1 − 4δ)/2δ. The degree of polynomials is taken as k = 0, 1. We can see in

Table 3.5 that the method with P k elements gives (k+1)-th order of accuracy in both L2 and
L∞ norms for both the uniform and non-uniform meshes.

Next, we proceed to show the single compacton propagation in Figure 3.13 for the initial
condition

u(x, 0) =

{ √
8
3λ cos2(

√
∆−(x− x0)/2) |√∆−(x− x0)| ≤ π

0 otherwise.
(3.27)

We also show the single compacton propagation in Figure 3.14 for the initial condition

u(x, 0) =

{ √
2λ[2 − cos(

√
∆−(x− x0))] cos2(

√
∆−(x− x0)/2) |√∆−(x − x0)| ≤ π

0 otherwise.
(3.28)
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Figure 3.8: Triple soliton collision profiles. Periodic boundary condition in [-20,20] using P 2

elements with 200 cells.
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Figure 3.9: The pulsating multiplet solution with initial condition (3.21) for δ = 0.5 in [0,330]
using P 2 elements with 1500 cells, where A = 2, B = 1/28 and C = 50/28.
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Figure 3.10: “Semi-localized” solitary wave solutions for the fifth-order KdV equation (3.22)
with initial condition (3.23). Periodic boundary condition in [-32,32] using P 2 elements with
200 cells, x0 = 0. (a0) ε = 0.16, t = 0; (a1) ε = 0.16, t = 30; (b0) ε = 0.125, t = 0; (b1)
ε = 0.125, t = 100.
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Figure 3.11: The interactions of the “semi-localized” solitary wave solutions for the fifth-order
KdV equation (3.22) with initial condition (3.24). Periodic boundary condition in [-30,30] using
P 2 elements with 300 cells at time t=20, x0 = 10. (a0) ε = 0.116573, t = 0; (a1) ε = 0.116573,
t = 20; (b0) ε = 0.165639, t = 0; (b1) ε = 0.165639, t = 20; (c0) ε = 0.208756, t = 0; (c1)
ε = 0.208756, t = 20; (d0) ε = 0.25, t = 0; (d1) ε = 0.25, t = 20.
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Figure 3.12: Space time graph of the “semi-localized” solitary wave solutions. The left is the
third case in Figure 3.11 and the right is the fourth case in Figure 3.11.

Table 3.5: Accuracy test for the compacton solution (3.26) of the equation (3.25). δ = 0.16.
Uniform and non-uniform meshes with N cells at time t = 1.

uniform mesh non-uniform mesh
N L2 error order L∞ error order L2 error order L∞ error order

20 1.43E-02 – 8.53E-02 – 1.44E-02 – 8.94E-02 –
p0 40 7.17E-03 1.00 4.45E-02 0.94 7.23E-03 1.00 4.89E-02 0.87

80 3.72E-03 0.95 2.49E-02 0.84 3.77E-03 0.94 2.50E-02 0.97
160 1.90E-03 0.97 1.32E-02 0.91 1.94E-03 0.96 1.50E-02 0.74

20 5.73E-03 – 4.99E-02 – 5.97E-03 – 5.08E-02 –
p1 40 1.97E-03 1.54 1.89E-02 1.40 1.97E-03 1.60 2.02E-02 1.33

80 5.02E-04 1.97 5.03E-03 1.91 5.10E-04 1.95 6.16E-03 1.72
160 1.29E-04 1.96 1.30E-03 1.95 1.32E-04 1.95 1.54E-03 2.00

3.4. The fully nonlinear K(n, n, n) equations

Example 3.11. In this example we first show the accuracy test result of the fully nonlinear
K(n, n, n) equations [16]

ut + α(un)x + β(un)xxx + γ(un)xxxxx = 0 (3.29)

The exact solution is

u(x, t) =
{
An cosδ(Bn(x− λt)) |Bn(x − λt)| ≤ π

2
0 otherwise (3.30)

Where δ, An and Bn are constants for n = 3, 5 respectively. For the K(3, 3, 3) equation,

δ = 2, A3 = 2

√
2λ
5α
, B3 =

1
12

√
13α
β
, γ =

36β2

169α
; (3.31)

for the K(5, 5, 5) equation,

δ = 1, A5 = 4

√
15λ
8α

, B5 =
1
15

√
34α
β
, γ =

225β2

1156α
. (3.32)

The accuracy is measured in smooth parts of the solution, π/8 away from the corners. We can
see in Table 3.6 that the method with P k elements gives (k+1)-th order of accuracy in both L2

and L∞ norms.
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Figure 3.13: The single compacton. The initial data is taken as (3.27), where δ = 0.16, x0 = −5
and λ = 0.1. Using P 1 elements with 160 cells in [-10,20].

Table 3.6: Accuracy test for the compacton solution (3.30). The L4 stable scheme for the
K(3, 3, 3) equation in [-20,20] and the L6 stable scheme for the K(5, 5, 5) equation in [-25,25].
L2 and L∞ errors. Nonuniform meshes with N cells in smooth parts of the solution with
P 0, P 1, P 2 at time T = 1.0.

K(3, 3, 3) K(5, 5, 5)
n L2 error order L∞ error order L2 error order L∞ error order

20 2.45E-02 – 1.13E-01 – 2.35E-02 – 2.53E-01 –
p0 40 1.37E-02 0.84 7.79E-02 0.53 1.31E-02 0.84 1.07E-01 1.24

80 7.74E-03 0.82 4.76E-02 0.71 7.59E-03 0.79 7.25E-02 0.56
160 4.15E-03 0.90 2.54E-02 0.91 4.35E-03 0.80 3.93E-02 0.88

20 9.06E-03 – 7.93E-02 – 1.02E-02 – 8.96E-02 –
p1 40 3.22E-03 1.49 2.43E-02 1.70 4.02E-03 1.34 4.19E-02 1.10

80 8.51E-04 1.92 9.14E-03 1.41 9.99E-04 2.01 1.19E-02 1.81
160 2.23E-04 1.93 2.38E-03 1.94 2.41E-04 2.05 3.49E-03 1.77

20 2.55E-03 – 2.51E-02 – 3.244E-03 – 4.07E-02 –
p2 40 5.05E-04 2.34 9.18E-03 1.45 2.84E-04 3.51 2.72E-03 3.90

80 6.06E-05 3.06 1.17E-03 2.97 3.94E-05 2.85 4.46E-04 2.61
160 7.28E-06 3.06 1.35E-04 3.11 4.72E-06 3.06 6.74E-05 2.73
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Figure 3.14: The single compacton. The initial data is taken as (3.28), where δ = 0.09, x0 = −5,
λ = 0.1. Using P 1 elements with 220 cells in [-10,20].
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Figure 3.15: The single compacton solution of K(3, 3, 3). The initial data is taken as (3.33)
and (3.31), where x0 = 0, λ = 0.1. Using P 2 elements with 120 cells in [-10,20].

Next, we show the single compacton propagation in Figure 3.15 for the initial condition

u(x, 0) =
{
A cosδ(B(x− x0)) |B(x − x0)| ≤ π

2
0 otherwise (3.33)

where δ, A and B are defined in (3.31) for K(3, 3, 3).
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4. Concluding Remarks

We have further developed the local discontinuous Galerkin method to solve three classes
of general nonlinear wave equations formulated by the KdV-Burgers type equations, the fifth-
order KdV type equations and the fully nonlinear K(n, n, n) equations and have proven their
stability. Numerical examples for nonlinear problems are shown to illustrate the accuracy and
capability of the methods.
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