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Abstract
The convergence problem of the family of Euler-Halley methods is considered under
the Lipschitz condition with the L-average, and a united convergence theory with its
applications is presented.
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1. Introduction

Let E and F be real or complex Banach space with norm ||.||, and let f: D C E — F
be a nonlinear twice differentiable operator. The family of Euler-Halley iterations with the
parameter A € [0, 2] for solving the operator equation f(z) = 0 is defined as follows:

Tpt1 = Tra(xn) = op +up(zy) +vpa(zy), n=0,1,---, (1.1)
where
up(x) = —f'(z)"" f(=),
via(r) = —%f’(l’)_1f"($)uf($)Qf,>\($1)Uf(55),

Qra(z) = {I+3f' (@) f'(@)us(x)}”

This family includes, as particular cases, the well known Euler method (A = 0),[1, 4, 12],
the Halley method (A = 1), [3, 5, 10, 12, 18] and the convex acceleration of Newton’s method
or supper-Halley method (A = 2),[6, 7, 11], so that recent interests are focused in this direction,
see for example [2, 8, 9]. In particular, using a quadratic majorizing function, Argyros et al
analyze the convergence of the method (1.1). However it is incorrect as shown by Han [9].
In [8], Gutierrez and Hernandez established the convergence with a cubic polynomial as the
majorizing function under the classical Lipschitz condition of f” while Han [9] established the
convergence under the weak condition, so-called, y-condition of f”, which was first presented
by Wang [13, 14] when he investigated the convergence of the family of Halley methods. The
purpose of the present paper is to give a united convergence theory for the family of Euler-
Halley iterations such that all the known results are included as its special cases. Also some
new results are obtained as the corollaries. It should be noted that this work is in sprit of
Wang’s idea in [15, 16].

2. Preliminaries and Lemmas

Let D C E be a convex subset, open or closed. For xg € E,r > 0, let B(xo,r) denote the
open ball with the radius r and the center xy while the corresponding closed ball is denoted
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by B(zg,7). Through the paper, we always assume that f’(z) ! exists. In order to study the
convergence we require some definitions and lemmas, some of which are directly taken from
[15, 16].

Definition 2.11%1, A function f from D to F is called to satisfy the center Lipschitz
condition in the ball B(zg,r) with the L average if

p(z)
Hﬂ@—ﬂmmSA L(u)du, Yz € Blzo,r), (2.1)

where p(z) = ||z — zo|| and L is a positive integrable function on the interval [0, R] for some

sufficient large number R > 0, for example, with fOR(R —u)L(u)du = R.
Take ro > 0 such that

/ " L(w)du =1 (2.2)
and set : v
_ /0 wL (u)du. (2.3)
For 3 € (0,b], define
ht) =B —t+ /Ot(t —WI(u)du, Vi€ [0,R). (2.4)

Lemma 2.1['5], The function h is decreasing monotonically in [0, 7], while it is increasing
monotonically in [rg, R]. Moreover, if § < b,
h(B) >0, h(ro)=8-0<0, h(R)=p8>0.
Consequently, h has a unique zero in each interval, respectively, which are denoted by r; and
ro. They satisfy
ﬁ<7‘1<%ﬁ<7‘0<7‘2<R (25)

when 3 < b and r; = ro when 8 = b.

Furthermore, we assume that L is a positive nondecreasing differentiable function in [0, R].
Then we have the following lemma.

Lemma 2.2. Let h be defined as (2.4) and 8 < b. Then, for each ¢ € [0, ],

(i) Hi(t) = B'(t) 20" (t)h(t) < 1;

(ii) Th)‘(t) S [0,1“1];

(iii) t < T a(2).

Proof. (i) It suffices to show that

g(t) = n'(t)* — h"(t)h(t) > 0.
Since
g'(t) = KON (t) = K" (D) = K (B)L(E) — L'(Hh(t) <O,

so that g(t) > g(r1) = h/(r1)?> > 0 and proves (i).
Hi(1)? A A

(ii) Observe that
Ty (1) = mﬁ”(l = 3)+ 5 (A= 1) Ha(t) - Hy (t)]-
Since Hy(t) is negative and 0 < Hp(t) < 1 for each t € [0,74], it follows that T}, ,(¢) > 0 for
all ¢ € [0,71] and each X\ € [1,2]. Hence T}, A(t) is monotonically increasing on [0,7] for each
A € [1,2]. Consequently, Ty, A(t) < Ty a(r1) = r1 for each A € [1,2]. On the other hand, for any
A € [0, 1], we have
Th’)\(t) S Thyl(t) S ry.

Thus (ii) holds.
(iii) This results from that up(t) > 0 and vy A (¢) > 0. W
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The following two lemmas are due to [16]. Note that, under the assumption of the following
Lemma 2.3, we may assume that f'(zo) ! f' satisfies the center Lipschitz condition in the closed
ball B(xo,r) with the L average.

Lemma 2.3. Suppose that f'(zo) !f’ satisfies the center Lipschitz condition in the ball
B(zo,r) with the L average and r > ro. Then for each z € B(zo, 7o), f'(z) ! exists and

[ (@) f' (o) <

1
(2.6)
1— fop(m) L
Lemma 2.4. Let 8 =||f (z0) ' f(w0)]| < b. Assume that ry <r < ry if 3 < b, or r =y if
B =b. Then, under the hypotheses of the conditions (2.1), the equation f(z) = 0 has a unique
solution

z" € B(xo — f'(x0)~" f(w0),m1 — B) C B(xo,71) (2.7)

in the closed ball B(zg,r).
We still need a lemma below.
Lemma 2.5. Suppose that

[1f(z0) ™" £ (o)l = L(0) (2.8)

[ f'(zo)  (f"(") = f"(2))|| < L(p(za’)) — L(p(z)),
VwEB(mO, r), V&' € B(z,r — p(x)),

and

where p(z) = ||z — z0]|, p(x2") = p(x) + ||z’ — z||. Then, for each x € B(zo, 7o),
(

(@) [1f" (o) 1 f" (@) < (|2 = =ol]);
(ii) f'(z)~! exists and
1

()" f (o)l < Tl =l

Proof. Tt follows from (2.8) and (2.9) that

1" (o)~ " (@)1 < L(0) + [If" (o) " (f" (&) = f" (o))l < Lllz = =oll) = 2" (| = =ol]),
using the fact that h"”(t) = L(¢) and (i) follows.

To prove (ii), by Lemma 2.2, it suffices to show that f'(zo) !f’ satisfies the center Lip-
schitz condition in the closed ball B(zo,ro) with the L average since h'(||lz — zo|]) = —1 +

fo‘lzizou L(u)du. By Taylor formula,
1
f'(@) = f'(wo) + f"(x0)(x — w0) + /0 (f"(wo + t(x — o)) — f" (o)) dt(z — mo).
This, togather with (2.8) and (2.9), implies that
1
1f' (o)~ ' (z) — I L)l — ol + /0 1" (w0 + t(w — o)) — f"(wo)l dtf|z — ol
p(x)
/ L(u)du.
0

Hence (ii)holds and the proof is complete. B

IN

IN

3. The United Convergence Theorem

Let {z,} be defined as (1.1) and let {¢,,} be the corresponding sequence of the majorizing
function h, that is,
tnt1 :Th7>\(tn), n=0,1,---, (3.1)

where tg = 0. Then it follows from Lemma 2.2 that {¢,,} is well defined, increasing monotonically
and tending to ry.
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Lemma 3.18l, For any n =0,1,2,---,
1
fl@ntr) = 5" (@) {2 = Nuy(zn) +vpa(2n)} v (20)
b [ AP @ 7 = ) = @)} (L= D - o)
0
Now we are ready to give the main theorem of this section.
Theorem 3.1. Suppose that r > r; and (2.8),(2.9) hold on B(zo,r). If
T

B = |1 (z0)" flao)|| < b= / " uL(u)du,

then the iteration
Tn41 :Tf,)\(mn); n:():]-)"'a

is well defined for all A € [0, 2] and that {x,} converges to a solution z* of the equation f(z) =0
satisfying

z™ € B(xo = f'(x0) 1 f(x0),m1 = ) C B(wo, 71)- (3.8)

Moreover, for each r satisfying 1y <r < rs if 8 < b and r =7 if 8 = b, the equation f(z) =0
has a unique solution in the closed ball B(zg,r).

Proof. Using the mathematical induction, we can prove that following four statements
hold for any n =0,1,---

(a) f'(zn)~" exists and [[f'(zn) =" /(o) |l < I'(tn) 'R (to);

(b) ||uf(~75n)|| < up(tn);

(¢) Qra(zn) exists and [|Qrx(zn)|| < @na(tn);

(d) llvpa(@n)ll < vna(tn).
In fact, (a)-(b) are clearly true for n = 0. Consequently, ||z1 — xo|| < ¢1. Now assume (a)-(b)
are also true for n. Then

|Znt1 — Zull < tny1 —tn (3.9)

so that ||znr1 — zo|| < the1 < r1. Thus Lemma 2.5 and Lemma 3.1 imply that (a) and (b) hold
for n + 1. This again implies that (c) and (d) hold for n + 1. Hence 41 is well defined for
alln =0,1,--- and X € [0,2]. Furthermore, we also have that (3.9) holds for any n =0,1,2,---
so that {z,} converges to a solution z* of the equation f(z) = 0 satisfying z* € B(zo,r) while
(3.8) and the uniqueness of the solution z* result from Lemma 2.4. The proof is complete. l

4. Corollaries of the Convergence Theorem

In this section we will take L to be some particular functions and then obtain a series of
concrete results, some of which have been given by some authors, see for example [8, 9], while
the others seem new up to the present.

4.1 Kantorovith’s Type Theorem

Given fixed positive constants v and K, take

L(u) =v+ Ku. (4.1)
Then rg is the solution of the equation

T0 1
/ (’)/+KU)dU:’)/T0+§KT%:].,
0

ie.,
2
T) = ————————. 4.2
V2K (4.2)
Therefore
ro 2 2v/72 + 2K
b:/ u(y + Ku)du = (+ 2y + ) (4.3)
0 3(v+ V2 +2K)?2
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In this case the majorizing function is

1 1
h(t)=p3—t+ §7t2 + gKt3, (4.4)
and r; < ry are its two positive solutions when 8 < b. Thus from Theorem 3.1 we immediately

obtain the Kantorovith’s type theorem.
Theorem 4.1. Suppose that r > rq, ||f (z0) "L f"(z0)]] = v and

a0 ()~ )| < K~ o]
Yz € B(xo,r), Vz' € B(z,r — ||z — ol]).

2(y + 2y/7? +2K (4.6)
3(v+ V% +2K)? '

Tn41 :Tf,)\(mn); n:():]-)"'a

If
B =11 (@)~ fzo)ll <

then the iteration

is well defined for all A € [0,2] and {z,} converges to a solution z* of the equation f(z) =0
satisfying

z* € B(xo — f'(z0) " f(20),m1 — B) C B(wo,71).
Moreover, for each r satisfying 1y <r < re if 8 < b and r =7 if 8 = b, the equation f(z) =0
has a unique solution in the closed ball B(zg,r).
4.2 Smale’s Type Theorem

For fixed v > 0, let
2y

L(u) = ————. 4.
) = T (47)
Then by [15] we have
1.1 1
ro=(1--—=)=, b=(3-2V2)=, 4.8
0=(-—5), b=6-2/2); (43)
and the majorizing function is
vt
h(t)y=0—t+ . 4.9
0 T (49)

So its two positive solutions are

ri 1+a:F\/1+a —8a (4.10)
T2 ')/
where o = §7. From Theorem 3.1 we again have the Smale’s type theorem.
Theorem 4.2. Suppose that r > r1, || f'(x0) " (20)]| = 2y and
"(z') " 2y 2y
1760 =N < T —m = ~ G =wl 1)
Vo € B(xzo,r), V' € B(z,r — ||z — zo]).
Let 8= ||f' (x0)~" f(x0)|| and a = By < 3 — 2y/2. Then the iteration
Tnt1 :Tf,)\(mn)7 n=0,1,---,
is well defined for all A € [0,2] and {z,} converges to a solution z* of the equation f(z) =0
satisfying

x* € B(xg — f'(xo) 1 f(x0),r1 — B) C B(zo,r1).
Moreover, for each r satisfying 1, < r < 7y if @ < 3 —2v2 and r = r; if @ = 3 — 2V/2, the
equation f(z) = 0 has a unique solution in the closed ball B(zo,r).
4.3 Other Examples
Let ¢ be a positive constant. Then, for different functions L given in the following table, we
can get a series of concrete results. The corresponding ro and b, which have been computed in
[17], are illustrated in the following table.
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L(u) yro ~vb
1 1
cyer? log et (c+1)log crl_ 1
c
1 m
1 m+T 1 1\ m+1I
ce(m+ 1)y 1 c 1+Cm+ 1 c+
(1 — yu)m+2 1+c¢ m c
cy 1 c+1
—_— 1—clog——
(1 —yu)? c+1 €08,
i l—e* l—c+ce c
1—yu
where m > —1, m # 0. Thus using Theorem 3.1 we obtain the corresponding convergence
results.
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