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Abstract

In this paper we introduce a primal-dual potential reduction algorithm for positive
semi-definite programming. Using the symetric preserving scalings for both primal and
dual interior matrices, we can construct an algorithm which is very similar to the primal-
dual potential reduction algorithm of Huang and Kortanek [6] for linear programming. The
complexity of the algorithm is either O(nlog(X° e S°/¢) or O(y/nlog(X° e S°/¢) depends
on the value of p in the primal-dual potential function, where X° and S° is the initial
interior matrices of the positive semi-definite programming.

Key words: Positive semi-definite programming, Potential reduction algorithms, Complex-
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1. Introduction

In this paper, we consider the following standard form of positive semi-definite programming:
(PSP) Minimize CeX
Subject to A; X =b;, i=1,...m, X >0,
where C, X € M", A; e M", i =1,...m, and b € R™. Here M" denotes the set of symetric
matrices in R"*". Let M} denotes the set of positive semi-definite matrices in M"™ and M ,
denotes the set of positive definite matrices in M™. We call M, the interior of M"™. The
notation X > 0 means that X € M%, and X > 0 means that X € M7 . If X > 0 satisfies
all equations in (PSP), it is called a primal interior feasible solution. The e operation is the
matrix inner product
AeB = tT‘ATB = ZA”B”
i,j
The dual problem to (PSP) can be written as:
(PSD) Maximize bTy
Subject to S =C—Y", v, S =0,
where S € M", y € R™. If a point (y,S = 0) satisfies all equations in (PSD), it is called a dual
interior feasible solution.
Define the Frobenius norm, or the [> norm, of the matrix X € M™ by

X=Xy = VX e X = Z(M(X))Q,
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where \;(X) is the jth eigenvalue of X, and the [, norm of X by
1 X loo := max;jeqi,..ny{IA; (X)[}-

Since semi-definite programming has many applications in combinatorial optimization, con-
trol theory, statistics, etc., it becomes a hot research topic in optimization over the last decade.
Many interior point algorithms have been developed to solve the semi-definite programming.
The primal potential reduction algorithms were developed by Alizadeh [1], Nesterov and Ne-
mirovskii [7], Ye [13], etc.; the primal-dual potential reduction algorithms using symetric matrix
scaling were proposed by Nesterov and Todd [8], Kojima, Shindoh and Hara [4], among others.
In this paper, we introduce a primal-dual potential reduction algorithm, which uses seperate
matrices scaling, for above positive semi-definite programming. This kind of scaling has been
used extensively in interior point algorithms for linear programming (e.g.,Kojima et la’ [4],
Huang and Kortanek [7],[8], Gonzaga and Todd [6]). To the best of our knowledge we have
not seen a paper on interior-point algorithms for semi-definite programming which uses such
seperate matrices scaling.

To measure the progress of the algorithm, we will use the following primal-dual potential
function

#(X,S) =plogX ¢S —logdetXS. (1)

The reduction in potential function is controlled by the length of projection of the search
directions. In this paper we show that the length of projection is bounded below by 1/4
if p = n + +/n. Furthermore, we prove that the length is greater than or equal to one if
p > 2n + v/2n. These results are the extentions of the results in Huang and Kortanek [8] for
linear programming to semi-definite programming.

2. The Search Directions

The gradient matrices of (1) are

14 -1
X =—85-X 2
X,8) = L—X -85
Vos(X,5) = g X - 5 ®
Let A = (a1,---,a,) be any n x n matrix, where a; (j = 1,---,n) are columns of A, we
define the vector of A as follows:
’UCC(A) = (a’{a e 7GZ)T'
Then define
vec(Ap)T
vec(Az)T
A= .
vec(Am)T
Also define the operator A : M™ — R™ as follows:
AX = Avec(X).
Furthermore

ATy =" yids.
i—1

Given a primal-dual interior feasible solution (X°, y°, S°) such that AX® = b and S° =
C — ATy% and a B € (0,1), we consider the following homogeneous minimization problem:
(HPSD) min  Vex (X0 5% e AX + Veg(X0,S0) e AS
s.t. AAX =0
ATAy+AS =0
[(XO) 7P AX(XO) =21 + [|(S°) =" AS(SY)~?|IP < 8° < 1.
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Let X = (X°)~5X(X%) %, § = (S9)775(5%) %, AX = (X°)"FAX(X?)~5, AS =
(5)~ 2 AS(S%) 7, Vo (X7, 87) = (X0) 3V (X0, 59) (X0)~7, Vés (XO, 5°) = ()~ Vo
(X0, 5% (X0)=5, A4, = (X0)~534;(X%)~5 and A;” = (§°)~54,(5°)~ for i = 1, .., m, and

vec(A)T vec(ANT
v vec(A4)T i} vec(AY)T
vec(AL)T vec(AIHT

Note that for any symmetric matrices A, B € M’ and X € M},
Ae X BX®=X%4X"eB
and
XAl = [[AX || = [|X°AX ]|,
where [ = 2, 00. Then (HPSD) becomes: B ) .
(HPSD’) min Vox (X2 8% ¢ AX + Vps(X? 5% e AS
s.t. AANX =0
ATAy+AS=0
AX]]? +[|AS|]? < 52 < L.
Let u € R™, V € R™" and A € R denote Lagrangians for constriants of (HPSD’) respec-
tively. Then the KKT conditions for (HPSD’) are:

Véx + A u+20AX =0, (4)
Vos +V +2X\AS =0, (5)
AV =0,. (6)

Let operator A’ acts on (4) and A” acts on (5), and using the constriants in (HPSD’) we obtain
the solution for (HPSD’): B
PA/V¢X(X0, SO)

AX = — , 7
b e, s0) ™
a QaVos(X°,S°)
AS = — , 8
b e, 50)] ®)
where
Py=T-ATA4" A,
Q.A” — AnT(AnAnT)flAw’
0 Q0y _ pX(XOaSO) )_ (PA’V¢X _ >
(X 50) = < ps(X°,8%) ) QaVos )’ )

Having found the search directions (AX,AS) of (7) and (8), we define the new iterates
X! =X%+AX, St =8%°+ AS. Constraints in (HPSD) guarantee that {X!,S1} is a feasible
primal-dual interior solution. To show the relationship between the reduction in potential
function and the projection p(X©°, S?), we state the following lemma. Its proof is similar to the
proof of lemma 2.2.3 in Huang [8].

Lemma 2.1. Let X!, S* be defined as above, then

2
X1, 51 = (X", 5) < ~pCX, S| + 5 (10)
From lemma 2.1 we can see that if ||p(X?, S°)|| > « for some « € (0,1), then
ﬂQ
1 qt 0 0
¢(X:S)—¢(X:S)S—ﬁa+m; (11)

hence the potential function will decrease by a constant.
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3. The Length of the Primal-Dual Projection with p=n+ /n

From (8) we can see that the length of p(X°,S%) is a key measurement of the reduction
in potential function ¢(X,S). Obviously, it would be nice if ||[p(X, S)|| is bounded away from
zero. In this section we show that |[p(X,S)|| of (9) is always great than or equal to 1/4 for
p = n + +/n. The analysis uses the similar approach as in [8] except that we are dealing with
the semi-definite programming now. We introduce some notations first.

Let F(P) and F(D) be the feasible regions of (PSP) and (PSD) respectively, and Fly (P)
and F (D) be the interiors of F'(P) and F(D) respectively. Define

Fy={W = (X S) X € F\(P),S € Fu(D)).

For W € F,, we define a primal-dual penalized function by
fu(W) =puX ¢S —logdetWW = pX o S —logdetXS. (12)
Note that, if we let D = AT(AAT)~b, then AD = b, hence b7y = b7 (AAT)"LAC - S) =
De(C —DeS forye F(D). Therefore,
XeS=CeX-bly=CeX+DeS—DeC.
So (12) becomes
fu(W)=pu(CeX +DeS)—puD eC —logdetW = uC o W — uD o C —logdetW,  (13)

where C' = <O D > We also define a class of primal-dual potential functions on F by

d(W) = plog(C e W — D e C) — log detW (14)
for p=n+ /n.
Our analysis is based on the relationship between ¢(W) and f,(W).
The minimizer of f,(W) over F, is called the p-center of F; and is denoted by W (u) =

<X(u) S(w) > Note that if W (i) is the minimizer of f,(W), then

X(u) o () = 2. (15)
The path {W(u))|p > 0} is called the central path.

Let p(X,S) be the primal-dual projection of (6), and p = ||[p(X,S)||. Then we have the
following lemma. B

Lemma 3.1. Let W € F, and W(u) € Fy be a u center of Fr., W(u) = W—SW (u)W >

and let s s B
_ AW () = W)Wl [[W (k) — Lonll2

TS W () = W)Wl W (1) — Bonlloo

where I, € R?"*2" is the unit matriz. If p < i, then

q =W (p) — Lnll2 < 2p, (16)
and
ICoeW(n)—CeW|< ? (17)

Proof. Let P = (PA' O >, and

A W) —Dn
_ _ _ ||V_V(,U) _[2n||2,
then ||Glls = 1, and W () = I, + ¢G. Since scaled primal-dual penalized function
fu=pC oW — uD e C — logdetW detW
is convex and minimized at W (u), where C' = W2CW 3,
G eV fu(In+\G) <0
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for 0 < A < p. But,
Vfu(Izn + AG) = uC — (I + AG) ™"
= puC — Iy, + \G(Ly, + AG’)’1
= Viu(Ion) + AG — NG? Iy, + A\G) 1.

Also,
~_ L (Pa(X(n) ~ In) >
PG =~ 5
q ( Quar (S(p) — I)
— 1 (X(lu’) - [n _ >
q S(p) = In
1 -
= E(W(u) = Irn)
=G.
Since (BA) e C = A ¢ (BC) for symmetric matrices A and B, and

|G d Vfu(IM

~

Therefore,
0> G o Vfu(In +AG)
=G o V(L) +|ING]]? — N3G ¢ G* (I, + A\G) ™
> —p+ X = N[G]l=lGI?
)\2
e A
Y

where the last equality uses the facts [|G||l. = 7, and [|G|| = 1. Thus,
)\2
O<p—A+—
Y
A2 5y
<X _a42
=5 + 1
(A -3)?
Y
for 0 < X < ¢, so ¢ < 3. This implies that
2
X o)
YTy T2

IN

for 0 < X < ¢, so (18) yields

A
—p+>\—§<0 for 0< A<y,

from which g < 2p follows.
To prove (17), we have
C o (W (k) = L))
_ pC e (qG)| _ |(uC — Ion) ® (¢G) + Irn @ 4G
1 [
_ |quu([2n) oG+ qlay, ® G|
i

q = 2p 2p 1
;(10+ 1 22][[|G]) < ;(p+ V2n) < —(

o4
5v/2 4
< TLB < p\/ﬁ < @’
2 p 1% 1%
where the last inequality uses the assumption p < i.

+Vv2n)

IN

Using lemma 3.1 we can prove the following main result of this section immediately.

= |PG o V fu(I2n)| < |GIIPV fu(Lzn)|| < p-

< %(Vﬁ(bn) e G + |y 0 G))

343
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Theorem 3.2. Let W € F, and let p = 45, where p=n++/n. Then

1
= > —.
p=lIp(z, 9l >
Proof. Assume p < %, then lemma 3.1 applies since v > 1, and we have
C oW - Catw| < I
Since
CoeW(n)—CeW =X(u)eS(n)—XeS5,
therefore by (15) and the fact that u = &= we have
“Xes= % = X(u) » S(p)

p
>X05—ﬁ
7
(p— )X S
p
nXeS

p )

a contradiction.
Theorem 3.2 shows that p(X,S) can be bounded away from zero. Therefore, we can give a
primal-dual potential reduction algorithm as follows.
Primal-Dual Potential Reduction Algorithm
Given X°,4°,S% € F set a=1,8=05,e>0and k=0;
while (Xk) e Sk >€ do
begin
Compute p(X*, S*) of (9), let
X = X B0 P (X, 59 (X4) P/ p(XE, 5]
SEHE = 8% — B(S*)Pps(X*, 5%)(S%) /lIp(X*, S¥)]].

end
k=k+1
end.

Of course the iteration complexity of the above algorithm is O(y/nlog X° ¢ S9/¢). In the
next section we try to increase the lower bound of ||p(z,s)|| by choosing a larger p in the
primal-dual potential function of (1).

4. The Length of Primal-Dual Projection with p = 2n + v/2n

In the last section we have shown that if p = n+/n, then ||p(X, S)|| > 1/4. Obviously, one
can see from (2), (3), and (9) that the length of p(X,.S) increases as the value of p increases.
Naturally one would ask whether it is possible to improve the lower bound of |[p(X, S)|| if we
choose a larger p in the potential function. We prove, in this section, that this is indeed possible.
That is ||p(X, S)|| > 1 if p = 2n + v/2n. We prove the following lemma first.

Lemma 4.1. Let {X,y,S} € Fy and px(X,95), ps(X,S) as given in (6), then for any
X' € F(PSP) and (S',y") € F(PSD), we have
px(X,5) e X 3(X' = X)X ™5 =V¢x(X,S) e (X' — X), (19)

ps(X,8) e S7(S" = 5)S™° = Vos(X,5) e (5" - S). (20)
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Proof. By (6) we have
px(X,S) e XP(X'— X)X~
=Py X Vpx(X,8)X?e X (X' —X)X~5
= X Vox(X,9) X% e PuX (X' —X)X 5
= X Vox(X,9)X e X (X' - X)X °
= Vox(X,S) e (X' - X)
since A(X' — X) = 0. Similarly,
ps(X,8) ¢ S77(S" —8)S°
= QS Vps(X,5)S"e S (S —S)S
= SV¢s(X,5)SP e Qu S (AT (Y —y))S—?
— S'SVQSS(X, 5)55 ° Q_A”(_A”T(y, _ y))
= 87VG5(X,6)S e (A (Y —y)
— Vos(X,5) e (5 - S).
since Q42 A” = A”.
Now we can prove the following theorem.
Theorem 4.2. Let p > 2n++/2n in (1), and X*,S* be the optimal solution for the (PSP) —
(PSD), then
Ip(z, s)|| = 1. (18)
Proof. Since X*eS*=0and 0= (X —X*)e(S—S5*)=X*eS+ S*e X — X oS implies
XeS=X*"eS+S5*eX. By Lemma 4.1 we have

X~5(X — X*)X P
p(X,S)O ( S_'5(S—S*)S_'5>

=px(X,S) e X 3(X — X*)X° + pg(X,S) e S™5(S — S*)S~5
= Vox(X,5) e (X — X*) + Vos(X,5) e (5 - 57)
(LS XY e (X =X ) + (=X — S e (S - 5%

XoS XeS
:XLS(QXOS—X*OS—S*OX)—2n+I0X*+I05’*
[ ]

=p—-2n+TeX*+TeS*
=p—2n+ Ly e W*,
where X* = X—5X*X—5, §* = §=55*§=5 and W* = W—SW*W—>. Hence,
Ip(@, $)I[|(L2n = W) > p— 21 + Iy ¢ W™
> p—2n+ W7

Therefore, ~ ~
p=2n+|W*|| _ p—2n+[W"
Ip(z, 8)| > — > =, (19)
1120, — W] Van + |[WH|
because

12 = WA < (| 2nll + W] = V20 + [W].
Now if p — 2n — v/2n > 0, then from (19) we obtain

—2n—2
Ip(X, )| > 1+ 2=V s
V2n + |||
Combining Lemma 1.1 and Theorem 4.2 we have the following potential reduction corollary.
Corollary 4.3. Let p > 2n++/2n, and (AX,AS) be defined as in (7), (8). Let X! = X +AX,

Sl =S+ AS, then
ﬂQ

(X", S") —p(X°,8%) < -8+ m
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Corollary 4.3 shows that the potential function achieves a larger reduction if we choose a larger
p > 2n++/2n, and we can take a larger step since the step length 3 can be larger. One drawback
of choosing a larger p is that the iteration complexity will increase to O(nlog X° ¢ S°/¢) since
the iteration complexity for potential reduction algorithms is O((p — n)log X° e S%/e).

5. Conclusions

In this paper, we introduced a primal-dual potential reduction algorithm for solving the
semi-definite programming. The value of ||p(X,S)|| takes an important role in analyzing the
complexity of the potential reduction algorithm, and of course is related to p parameter in
potential function. We have shown that ||p(z,s)|| > 1/4 for p = n + /n and ||p(z,s)|| > 1
if p > 2n + v/2n. Therefore the algorithm does not need to take the centering steps as some
primal potential reduction algorithms (e.g., [1], [13]) do. Hence the algorithm is much simpler.
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