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Abstract

This paper is devoted to give a new proof of Korn’s inequality in L™ —norm (1 < r < 00).
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1. Introduction

Korn’s inequality is fundamental in the theory and the numerical analysis for the elasticity.
There have been many nice proofs of Korn’s inequality in the literatures(see [4] and the ref-
erences therein). The work [5] proposed an intuitive exposition and heuristic proof of Korn’s
inequality. And the works [2] and [7] give an interesting result, which is useful tool in the proof
of Korn’s inequality, as for example in the works [3], [6].

In this paper, we intend to show a new proof of Korn’s inequality in L"—norm (1 < r < 00),
in the plane, with the help of the heurisitc work [4] and the result of [2], [7].

2. Notation and Preliminaries

We begin with some notation. Let Q@ C R"(n = 2,3) denote the bounded domain with
smoothly boundary 9 or the polygon. Let ¢ be the n-dimensional vector valued function
defined in 2, and
o 8’Ui
= B_:nj’
And in this paper, the notation in Sobolev spaces [1] will be used.

Korn’s inequality, in L? version, can be stated as follows: There exists C=Const. > 0, such
that

1<, j<n. (2.1)

1
€ij (17) = 5(6]"[)1' + aivj), 6]'”@'

> e @50 + 1730 > ClloIE o Vv € E, (2.2)
ij
where
E = {w e (L*(Q))* : € (@) € L*(Q)Vi, j}. (2.3)

Korn’s inequality (2.2) means that the following cotaining relationship holds:
E C (H'(Q))". (2.4)
The relation (2.4) seems to be unexpected at the first glance, because, for the case n = 3, only
six independent linear combinations of partial derivatives of @ € (H*(2))® belong to L*(Q).
However when we consider it in depth, as in [5], we find that all second order partial derivatives

e .

of ¥ can be presented by the partial derivatives of €;;(7)

821}i 0 . 0 . o .
Or;0m; a_xje“f(”) + 52, i1 () = e (D) (2.5)

* Received July 10, 2000, final evised October 20, 2000.
1) The propject supported by Natural Science Foundation of China.



322 L.H. WANG

Thus if ¥ € E, then

8 avi -1 . .
6716(6%_) c HY(Q) Y i, j, k, (2.6)

which, roughly speaking, can be seen (the rigorous proof can be found in [5], added by dv;/dz; €
H=1(Q)Vi, j) as
v

2 ..
oz, € L*(0) Y i,j. (2.7)

This means that v € (H*(Q2))".

3. The Proof of Korn’s Inequality

In this section, we present a new proof of Korn’s inequality in L" version, 1 < r < oo, in
the plane (n = 2), which can be stated in the following;:
Theorem 1 (Korn’s Inequality). There exists a positive constant o, such that

Z leij (@llo.r + 10llore > allflire Vo€ @ (Q)* (3.1)

In order to prove Theorem 1, we need some lemmas.
Lemma 1. For all w € L"(Q),
lwll-1,r.0 < llwllo,rq;
(3.2)

||Vw||—1,r,§l < ||w||0,r,Q-

Lemma 1 can be proved easily by the definition of the W =17 (Q)—norm.
Lemma 2 (c.f.[2],[6]). Assume that Q C R? be a bounded smoothly domain or polygon. Let

L5(Q) = {pe L'(Q) /Q pdz = 0} (3.3)

Then for any given p € LS’ (), 1<r" =r/(r—1) < oo, r' the conjugate number of r, there
exists go € (WX (€2))2, such that

divgo =pin Q, ||gollL.r e < Clipllo.r o, (3.4)

with a constant C independent of 50 and p.
Lemma 3. For every function v € L™(2), 1 < r < oo,

9l < 55 IVelosro + | [ v, (33)
with the same C' = Const. as in (3.4) and |Q| = [, 1dx.
Proof. For any given v € L"(Q) let
. 1 /
v=v— — | vdz,
9] Jo
then
N 1
vl < 9l + 7| [ o] (3.5
And
lollora = sup [0 - wdz — Jo 0(b + & [, wdy)dz 1 sup fo 0 wda
v weL™ (Q) llwllo,r e weL™ (Q) llwllo,r e T2 WweLY ( ||w||o ra’
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since @ = w — ﬁ Jowdz, and ||i|o,.o < 2|lwlloo. And b € Li (Q), then by Lemma 2, it
can be seen that

1 [y 0 - divgoda

2C scowr @z ool

IN
|

l1ollo,r.0

1 Jo Vo - God
u 9 - T
doewr @y ool e
= 26’ Sup J}Z_’io = %HVU”*LT,Q' (37)
Foe(We™ ()2 lgoll1,r,0

By the inequalities (3.6) and (3.7), the Lemma 3 is proved.
Lemma 4 (c.f.[5]).

lvllo,r < Cil|Vl|—1,r0 + Co||v]| 1,0 YV v €L (Q), (3.8)

with the constants Cy, and Cy independent of v.
Proof. There exists a function p € Wy (), such that

1= pllo.r.a < 121", (3.9)
since the space C5°(Q) is dense in L" (Q). Then

| [ vaa| < | [ vpda] | [ (1= preds] < Woll-snsllplhra + 11 = ploralivlons
Q Q Q
from which and Lemma 3, it can be seen that

Iollore < 5 lIVoll-100 + 1ol alloll 1m0

=90 |Q|1/r

1
+ Wlll = pllo,~ ellvllo,r,o- (3.10)

Thus, since the function p is found with (3.9) independent of v, then from (3.9) and (3.10), the
proof is completed.

Proof of Theorem 1. Let v = Ov;/0x; in (3.8), taking into account Lemma 1 and the
relation (2.5), then

10vi/0z]l0,r,0 < C1||V(0vi/0zj)||-1,r0 + Cal|0vi/ 0Tl -1 ,r0
< C1lIV(0vi/0x5)||-1,r.0 + Cal| VUil -1 r0

<C Z |0€ik () /02 + Deij (7)) Dk, — Dejn(F))0xil| -1.r.0 + Callvillo.r.a-

Thus
71,0 < O ZHV% =10 + C2||T]o,r0

< CIZHGU No,re + Cal|Tllo,r0;

from which, the proof is completed.

Remark 1. Let r = 2, our result (3.1) is weaker than the result (2.2) of [5].
As a corollary of Theorem 1, we have the following second Korn’s inequality.
Firstly we introduce some spaces. Let T'g be a part of the bondary 99 of 2, and

(WrT(Q)? = {7 e (W'(Q)*: =0 on To}. (3.11)
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And
(W (@)? = (7 e (W () - /

ddx = 0, / rotvde = 0}, (3.12)
Q Q

where
rott = —0vy /0xs + Qv /0. (3.13)

Then we have
Theorem 2 (Second Korn’s Inequality) (c.f.[8], [9] and [10]). There exists a positive
constant 3, such that

> lleii @)llo,ra > BllTl1,rm0, (3.14)
i

for both cases: Foe all & € (Wp.'(Q))? with masure (To) > 0, or & € (WL ()2,
Proof. Assume that inequality (3.14) is not true. Then there is a sequence (@,) such that

L . 1
1Tnll1,re =1, ; lleij (@) ll1,re < n Vn>1
Hence, there is a subsequence, again denoted by (%), and @ € (W' (Q))2, such that
Ty — 0 weakly in (W ()%, strongly in L"()?,

and

lleij (Tn)llo.r@ — 0,
from which and Theorem 1 (Korn’s inequality), it can be seen that the subsequence (@) is
Cauchy sequence in (W"(2))%, and then

#, — 7 strongly in (WH"(Q))%

Thus €;;(¢) = 0, which means that ¢ is infinitesimal rigid motion:

7 =a+b(zy, —21)",
and @,b are constants. Then due to @ € (WFI[’)T(Q))Q, meas (Io) > 0, or & € (WH"(Q))2, we
have ¥ = 0, which is a contradiction with 1 = || ]|1,r,0 — [|¥]|1,r,0- This completes the proof.
Remark 2. In fact, let

RM = {#: ¢;(#) =0 Vi, j} ={#:7=a+b(vz2,—1)", @€ R, b€ R}, (3.15)
then second Korn’s inequality (3.14) holds for all 7 € W, if
WNRM = 0. (3.16)
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