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Abstract

In this paper we test different conjugate gradient (CG) methods for solving large-
scale unconstrained optimization problems. The methods are divided in two groups: the
first group includes five basic CG methods and the second five hybrid CG methods. A
collection of medium-scale and large-scale test problems are drawn from a standard code
of test problems, CUTE. The conjugate gradient methods are ranked according to the
numerical results. Some remarks are given.
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1. Introduction

We consider the unconstrained optimization problem
min f(z), =z € R", (1)
where f is smooth and its gradient g is available. The line search method for solving (1) is of

the form
Tht1 = Tk + apdy, (2)

where z; is a given initial point, dj is a search direction, and «y, is a stepsize obtained by a
1-dimensional line search. In the steepest descent method [4], the search direction is defined as
the negative gradient direction,

dr, = — Gk, (3)
and the stepsize is chosen to be the 1-dimensional minimizer
ap = argmin f(:l?k + Oékdk). (4)
a>0

In practical computations, however, the steepest descent method performs poorly, and is badly
affected by ill-conditioning [2]. Another class of methods are quasi-Newton methods (see [23]
for example), where

dr = —Bugr, (5)

and where By € R™™ " is updated at each iteration to capture the already-obtained second
derivative information. They are very efficient for medium-scale problems, but can not be used
to solve large-scale problems because of its storage of matrices. The conjugate gradient (CG)
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method [13] uses the negative gradient direction and the previous search direction to form the
current search direction, namely,

di = =gk + Brdr—1, (6)
where d; = —¢g; and f is a scalar. In the case when f is a strictly convex quadratic
1
f(z) = §mTAa: + o'z, (7)

and ay, is obtained via an exact line search (4), the search directions generated by the CG
method are conjugate to one another. As a result, the method gives the least value of (7) in at
most n iterations. The CG method was extended by Fletcher and Reeves [11] to solve general
nonconvex unconstrained optimization problem (1). Since it only requires storage of several
vectors and is more rapid than the steepest descent method, the introduction of nonlinear CG
method by Fletcher and Reeves marks the beginning of the field of large scale unconstrained
optimization. Although the recent development of limited memory and discrete Newton meth-
ods have narrowed the class of problems for which CG methods are recommended, CG methods
are still the best choice for solving very large problems with relatively inexpensive objective
functions [16].

The purpose of this paper is to test and rank different nonlinear CG methods over a collection
of standard test problems. As is known, for general nonconvex functions, there are many
different choices for the scalar 8y, in (6) and the properties of their corresponding CG methods
may be very different. Another important reason is as follows. Usually, in the analyses and
implementations of CG methods, the stepsize ay, is chosen by the strong Wolfe line search:

flzg +ardy) — f(zr) < Sorgfdy, (8)
lg(zk + axdp)Tdr| < —ogi di, 9)

where 0 < § < 0 < 1. Recently, however, [8] proposed a new nonlinear CG method in which
Bk is given by (15). The descent property and global convergence of the method can be shown
provided that the stepsize is obtained by the weak Wolfe line search, namely, (8) and

g(a:k + akdk)Tdk > Ug{dk. (10)

The hybrid methods related to this method are studied in [9], and the initial numerical results
in [9] suggested an efficient hybrid CG algorithm that uses the weak Wolfe line search. Conse-
quently, an overall assessment for the basic CG methods and hybrid CG methods is imperative
to be done.

This paper is organized as follows. In the next section, we will give a description to the
collection of test problems that are drawn from a standard code of test problems, CUTE.
Other details of our numerical experiments are also provided in Section 2. In Section 3, we
briefly review the five basic CG methods and report their numerical results. In Section 4,
we briefly review the hybrid CG methods and report the numerical results of five hybrid CG
methods. The numerical results made in Sections 3 and 4 show that the PRP, HS and DYHS2
are most efficient algorithms among all the tested CG algorithms. For the purpose of further
comparisons, we draw in Section 5 some numerical results of the three efficient CG algorithms
for difficult problems and listed them into a table. The table shows that one hybrid method,
namely, DYHS2, outperforms the PRP and HS methods for difficult problems. Concluding
remarks are given in the last section.

2. Preliminaries

Twenty-five sets of test problems are drawn from a standard code of test problems, CUTE
[3]. A description of these test problems is given in Table 1, where “Name” denotes the name
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Table 1. List of test problems

Problem | Name Description n

1 BRYBND Broyden banded system 500, 5000
2 CRAGGLVY | Extended Cragg-Levy problem 100

3 DIXMAANA | Dixon-Maany problem (A) 300, 3000
4 DIXMAANB | Dixon-Maany problem (B) 6000

5 DIXMAANC | Dixon-Maany problem (C) 300, 3000
6 DIXMAAND | Dixon-Maany problem (D) 300, 1500
7 DIXMAANF | Dixon-Maany problem (F) 600, 3000
8 DIXMAANH | Dixon-Maany problem (H) 120, 1500
9 DIXMAANI | Dixon-Maany problem (I) 120

10 DIXMAANK | Dixon-Maany problem (K) 600

11 DQDRTIC diagonal quadratic 500, 5000
12 DQRTIC diagonal quartic 500, 5000
13 ENGVAL1 ENGVALTI problem 100

14 FLETCBV2 Boundary Value problem 100

15 LIARWHD simplified NONDIA problem 500, 2000
16 MANCINO Mancino’s function 100

17 NONDIA nondiagonal extension of Rosenbrock | 100, 1000
18 POWELLSG | Powell singular problem 100, 1000
19 POWER Power problem by Oren 100, 1000
20 SROSENBR | separable extension of Rosenbrock 100, 1000
21 TOINTGSS Toint’s Gaussian problem 1000, 10000
22 TQUARTIC | special quartic function 100, 1000
23 TRIDIA quadratic tridiagonal problem 100

24 VAREIGVL variational eigenvalue 500

25 WOODS extended Woods problem 100, 1000
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of the test problem in CUTE, “Description” gives a simple description of the problem, and n is
the number of variables. Because the purpose of this paper is to test different CG methods for
large-scale problems, the value of n is at least set to 100. The largest value of n is set to 10000.
Our computations are carried out on an SGI Indigo R4000 XS workstation. All codes are
written in FORTRAN with double precisions. For each CG method, either the strong Wolfe
line search (8)—(9) or the weak Wolfe line search (8) and (10) is used. In either case, the values
of 4 and o are set to 0.01 and 0.1, respectively. The initial trial value for the line search is
determined according to the rule in [22]. More exactly, we set it to 1/||g1]| for the first iteration
and ap_; d{ilgk,l/d,{gk for k > 2. For each test problem, the used termination condition is

llgkll2 < 107°. (11)

In order to rank the CG methods, we compute the total number of function and gradient
evaluations by the formula
Ntotal:Nf+m*Ng) (12)

where N¢, N, denote the number of function evaluations and gradient evaluations, respectively,
and m is some integer. According to the results on automatic differentiation (see [12]), the value
of m can be set to m = 5. That is to say, one gradient evaluation is equivalent to m number
of function evaluations if by automatic differentiation. Here we should point out that, in the
case when the technique of automatic differentiation is not used, such a way to compute N¢otq;
favors the algorithms that use the strong Wolfe line search, because in this case one gradient
evaluation is equivalent to n number of functions evaluations, and the ratio N,/N; for the
strong Wolfe line search is normally greater than the one for the weak Wolfe line search.
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3. Testing Five Basic CG Methods

3.1. Five Basic CG Methods

As once mentioned in Section 1, different choices for the scalar gy result in different nonlinear
conjugate gradient methods. Some formulae for 3, are called as the Fletcher-Reeves [11],
conjugate descent [10], Dai-Yuan [8], Polak-Ribiere-Polyak [18, 19] and Hestenes-Stiefel [13]
ones, and are given by

FR

p = ekl llge—ll?, (13)

2P = =Nl /i gk, (14)

= okl /i yr-a, (15)

C = gy /llgkll, (16)

0= glyr—r/di_yyr, (17)

when || - || means the 2-norm and ygx_1 = gr — gr—1, respectively. Their corresponding CG

methods are abbreviated as FR, CD, DY, PRP and HS methods. Although all these methods
reduce to the linear CG method in the case when f is given by (7) and a4 is chosen by (4),
their behaviors for general objective functions may be far different.

Assume that the strong Wolfe line search (8)—(9) is used. Then the FR method converges
globally if the scalar in (9) is chosen such that o < 0.5 (see [1, 15, 6]). If o > 0.5, the FR
method may fail due to producing an uphill search direction [6]. Although for any o < 1, the
CD method using the strong Wolfe line search ensures a descent direction at each iteration,
its global convergence can only be proved [7] when the stepsize ay, satisfies the line search
conditions (8) and

ogldy < g(xy + ol dy)dy, <0. (18)

Unlike the FR and CD methods, the DY method can be proved to generate a descent direction
at each iteration and converge globally provided that the weak Wolfe line search (8) and (10)
is used [8].

Powell [20] analyzed a major numerical drawback of the FR method using exact line searches,
namely, if a small step is generated away from the solution point, the subsequent steps may
be also very short. These analyses are also efficient for the CD and DY methods since all the
three methods are the same in case of exact line searches. In spite of this fact, we will test and
rank the three methods so that one can have a glimpse into the behaviors of themselves and
the methods related to them.

In the case when a small step occurs, the search direction generated by the PRP and
HS methods will automatically be close to the negative gradient direction, thus avoiding the
numerical drawback mentioned in the above paragraph. However, the PRP and HS methods
using exact line searches may cycle near several non-stationary points, see the counter-example
in Powell [21]. Gilbert and Nocedal [17] was able to establish the global convergence result of
the PRP and HS methods by restricting the scalar 3 to be nonnegative and using a complicated
line search. The resulting PRP and HS algorithms perform almost all the same as the original
PRP and HS algorithms, respectively.

3.2. Numerical Results

In Tables 2 and 3 list the numerical results of five basic CG methods for medium-scale
problems and large-scale problems, respectively. For each method, our line search subroutine
computes a stepsize ay, for which (8)—(9) hold with 6 = 0.01 and o = 0.1. In Tables 2 and 3,
the numerical results are written in the form of Njc./N¢ /Ny, where Njer, Ny and Ny denote
the numbers of iterations, function evaluations and gradient evaluations, respectively.

Since the average performances of the PRP method are the best among the five basic CG
methods, we compare the other four CG methods with the PRP method. For each of the other
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Table 2. Test results on five basic CG methods (medium-scale problems)

P n FR CD DY PRP HS
1 500 40/131/50 40/131/55 30/128/54 30/129/58 30/129/60
2 100 111/222/201 116/237/215 104/225/211 106/206/190 118/281/263
3 300 7/15/9 8/17/11 7/15/9 7/15/9 7/15/9
5 300 8/20/12 8/20/12 8/20/12 8/21/13 8/23/15
6 300 9/32/15 9/32/15 9/32/15 11/40/21 9/33/16
7 600 114/214/204 5993/7957/7922 113/213/203 146,/270/260 138/261/251
8 120 | 110/203/194 144/265 /256 117/214/205 66/137/127 | 62/133/119
9 120 488/764/759 2669/3786/3781 396/621/614 678/1065/1055 | 596/906/900
11 500 51/115/83 36/88/56 19/51/31 16/46/25 33/80/51
12 500 22/92/65 20/79/50 20/88/60 21/71/45 18/58/34
13 100 25/58,/32 25/87/53 25/87/56 25/96/60 26/69,/42
14 100 222/408/408 348/676/662 168/299/299 296/433/433 183/275/275
15 500 |  45/122/80 66/162/109 21/67/40 16/49/28 12/35/21
16 100 11/56/12 12/61/13 12/61/13 11/56/12 11/56/12
17 100 18/56/32 31/92/58 30/86/54 9/30/13 14/60/38
18 100 | 2477/4825/4075 | 683/1309/1242 | 2538/4328/4294 274/631/487 142/318/238
19 100 | 57/123/108 59/127/115 58/126/114 38/89/60 37/84/57
20 100 24/71/45 25/74/46 20/84/54 9/33/19 8/30/18
21 1000 6/21/10 6/21/10 6/21/10 7/26/14 7/25/15
22 100 | 97/237/183 74/198/145 113/255/194 11/34/20 8/26/18
23 100 | 198/350/345 257/451/444 185/330/324 | 300/526/524 | 243/425/422
25 100 56/123/88 51/114/84 64/132/100 58/132/96 77/173/132
Table 3. Test results on five basic CG methods (large-scale problems)

Prob n FR CD DY PRP HS
1 1000 | 51/170/66 55/186/75 77/259/103 31/117/72 27/103/65
3 3000 8/28/14 8/28/14 8/28/14 6/23/11 7/25/13
4 6000 7/27/14 7/27/14 7/27/14 7/25/13 9/34/18
5 3000 6/23/11 6/23/11 6/23/11 6/21/10 6/21/10
6 1500 7/28/13 7/28/13 7/28/13 10/37/20 13/43/24
7 3000 223/459/456 227/463/462 220/449/446 197/402/399 196,/403/399
8 1500 |2616/5259/2693 | 3366/9989/6693 | 2658/5374/2740 | 171/341/338 218/443/438
10 600 |1208/1617/1606 | 5343/6911/6900 | 959/1175/1165 |3423/5172/5163 | 2379/2925/2917
11 5000 |  40/96/66 40/94/63 19/52/32 16/47/26 33/79/50
12 5000 | 29/164/121 32/193/140 20/174/124 33/179/114 30/150/96
15 2000 | 57/155/103 65/179/122 39/115/76 18/56/38 11/34/21
17 1000 |  14/54/33 11/42/22 11/42/22 9/29/14 12/53/31
18 1000 |3741/7389/5943 | 904/1744/1530 |4206/6933/6916 | 95/205/156 | 160/387/307
19 1000 182/331/305 210/430/418 194/397/386 135/268 /254 133/265/252
20 1000 |  34/94/58 18/55/36 14/46/26 10/32/16 8/25/13
21 10000 4/18/8 4/18/8 4/18/8 5/26/15 4/22/13
22 1000 | 385/766/606 | 357/719/557 | 547/1078/864 11/36/24 10/36/22
24 500 | 273/441/432 | 841/1195/1187 | 256/407/399 | 289/468/459 | 278/439/429
95 1000 | 45/106/74 40/99/66 36/89/60 37/92/59 56/126/90
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Table 4. Relative efficiency of five basic CG methods

PRP | HS | DY | FR | CD
1 1.01 | 1.13 | 1.18 | 1.36

four CG methods, we evaluate its efficiency with respect to the PRP method as follows: for
each problem i, compute the total numbers of function evaluations and gradient evaluations
required by the evaluated method and the PRP method by formula (12), and denote them by
Niotat,i(EM) and Nioiqr,;(PRP); then calculate the ratio

Ntotal,i (EM)

ri(EM) = —————— 19
( ) Ntotal,i(PRP) ( )
and the geometric mean of these ratios over all the test problems:

r(EM) = ([] ri(BM)/19, (20)

€S
where S denotes the set of the test problems and | S| the number of elements in S. One advantage
of the above rule is that, the comparison is relative and hence does not be dominated by a
few problems for which the method requires a great deal of function evaluations and gradient
functions.

According to the above rule, it is clear that »(PRP) = 1. The values of r(FR), r(CD),
(DY) and r(HS) are listed in Table 4. From Table 4, one can see that the HS method performs
similarly to the PRP method, whereas the performances of the FR, CD and DY methods are
relatively bad. Among the latter three methods, the DY method seems the best and the CD
method the worst, as accords with the rank list of their convergence properties mentioned in
§3.1. This can partly explain why the DYHS1 method outperforms the FRPRP1 method, as
shown in Table 7, because in the case when

9k 91 <0, (21)
the DYHS1 and FRPRP1 methods reduce to DY and FR, respectively.

4. Testing Five Hybrid CG Methods

4.1. Five Hybrid CG Methods

To combine the nice global convergence properties of the FR method and the good numerical
performances of the PRP method, Hu and Storey [14] considered the hybrid method (2) and
(6) with

B = max{0, min{BE Y, GE ). (22)
Gilbert and Nocedal [17] further considered the method
Br € [=B 7, BT (23)

Both the methods (22) and (23) are globally convergent under the same condition as that
required for the FR method [14, 17], whereas they have the advantage of avoiding the propensity
of short steps. Along this line, Dai and Yuan [9] studied methods related the DY method. They
proved that under the weak Wolfe line search, any method (2) and (6) with

oc—1
B e -0 a7 P e

produces a descent direction at every iteration and converges globally. Dai and Yuan [9] tested
the following two hybrid methods of the DY method and the HS method:

Br = max{0, min{B{’°, 3P 1} (25)
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Table 5. Test results on five hybrid cg methods (medium-scale problems)

P n FRPRP1 FRPRP2 DYHS1 DYHS2 DYHS3
1 | 500 | 27/65/38 27/65/38 30/72/42 67/117/80 | 75/136/94
2 | 100 | 112/223/212 | 105/213/194 | 105/220/207 | 103/167/123 | 108/170/126
3 | 300 6/21/10 6/25/11 6/23/11 8/25/12 8/25/11
5 | 300 7/27/14 7/27/13 7/27/14 8/29/13 9/31/14
6 | 300 8/32/16 8/29/14 8/32/16 8/29/14 11/37/20
7 600 114/215/205 | 114/217/207 113/213/203 152/202/163 | 144/203/162
8 | 120 | 72/139/127 | 73/145/134 74/150/140 73/119/85 | 78/125/90
9 | 120 | 602/898/893 | 565/878/873 | 494/775/770 | 713/867/800 | 687/834/769
11 | 500 | 28/74/47 28/74/47 20/52/31 21/53/31 21/53/31
12 | 500 | 17/61/35 14/50/27 16/51/26 18/57/32 16/51/26
13 | 100 | 24/55/30 24/55/30 24/56/31 26/56/31 26/107/70
14 | 100 | 236/387/384 | 236/387/384 | 213/361/357 | 333/405/368 | 410/527/479
15 | 500 | 122/258/200 | 23/66/41 181/357/282 61/130/88 | 61/130/88
16 | 100 | 11/38/15 11/36/15 11/38/15 11/36/15 11/38/15
17 | 100 | 16/52/30 10/37/21 15/49/30 12/36/20 61/123/87
18 | 100 | 208/450/352 | 167/365/283 | 3975/6382/6373 | 239/437/340 | 206/370/290
19 | 100 | 58/126/116 | 58/124/109 58/126/114 47/93/61 42/80/54
20 | 100 | 25/73/46 25/73/46 24/71/44 23/62/39 31/78/49
21 | 1000 | 6/21/10 6/21/10 6/21/10 8/24/11 8/24/11
22 100 179/362/283 | 209/421/334 380/741/629 12/34/22 17/54/33
23 | 100 | 274/475/473 | 274/475/473 | 208/381/378 | 273/360/302 | 347/455/391
25 | 100 | 38/86/57 | 63/136/108 22/59/35 54/101/70 34/76/48
and
o —
B = max{——— P min{B{%, 87V 1)
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(26)

In this paper, we will test the hybrid method (25) using the strong Wolfe line search or the
weak Wolfe line search, and (26) using the weak Wolfe line search. The five hybrid CG methods

to be tested are simply described as follows:

FRPRP1:
FRPRP2:

DYHS1:
DYHS2:
DYHS3:

4.2. Numerical Results

22) with the strong Wolfe line search;
23) with the strong Wolfe line search;

25) with the weak Wolfe line search;

(22)
(23)
(25) with the strong Wolfe line search;
(25)
)

(26) with the weak Wolfe line search.

In Tables 5 and 6 list the numerical results of five hybrid CG methods for medium-scale
problems and large-scale problems, respectively. Note that the weak Wolfe line search is used
for the DYHS2 and DYHS3 methods, whereas the strong Wolfe line search for the other three
hybrid CG methods. Nevertheless, the parameters § and o are always set to 6 = 0.01 and
o = 0.1. As is the same as before, the numerical results are written in the form of Ny.,./Ny /Ny,
where Njier, Ny and N, denote the numbers of iterations, function evaluations and gradient
evaluations, respectively.
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Table 6. Test results on five hybrid CG methods (large-scale problems)

Prob| n FRPRP1 FRPRP2 DYHSI DYHS?2 DYHS3
5000 | 31/74/45 31/74/45 47/105/75 47/103/64 34/81/50
3 3000 7/27/14 6/24/13 7/26/14 7/26/12 7/26/12
4 6000 7/27/13 7/30/16 7/27/13 9/30/14 9/30/14
5 3000 6/23/11 6/23/11 6/23/11 8/25/11 8/25/11
6 1500 7/28/13 6/25/12 7/28/13 12/36/18 11/34/17
7 3000 | 270/430/421 | 270/430/421 | 225/391/382 | 356/441/391 | 356/441/391
8 1500 | 173/309/298 | 169/303/292 | 155/288/277 | 208/282/237 | 218/290/247
10 | 600 |2653/3445/3434 | 2477/3184/3172 | 1619/1950/1940 | 2941/3371/3246 | 2181/2537/2423
11 | 5000 | 29/76/48 29/76/48 20/53/32 21/54/32 21/54/32
12 | 5000 | 21/60/35 17/60/32 20/66/37 18/60/32 38/110/73
15 | 2000 | 39/112/77 22/62/43 117/268/200 25/69/45 43/110/73
17 | 1000 14/54/33 14/54/33 11/42/22 16/51/30 21/63/38
18 | 1000 | 714/1357/1249 | 714/1357/1249 |4805/7726/7693 | 289/541/427 | 252/485/376
19 | 1000 | 177/323/290 | 183/333/304 | 194/398/386 | 169/254/201 | 163/246/197
20 | 1000 | 25/71/44 25/72/44 18/57/35 11/39/22 115/225/169
21 10000 4/18/8 4/18/8 4/18/8 4/18/8 4/18/8
22 | 1000 | 263/532/409 | 263/532/409 | 439/867/683 | 189/374/284 | 189/374/284
24 | 500 | 266/428/419 | 266/428/419 | 256/407/399 | 290/388/336 | 265/337/295
25 | 1000 | 76/156/120 84/162/125 74/158/126 37/72/47 40/85/54

Under the comparison rule in §3.2, we compare the relative performances of the five hybrid
CG methods with the PRP method. See Table 7. From the Table, one can see that the
performances of the DYHS2 method are the best; they are comparable to those of the PRP
method. Note that the weak Wolfe line search is used in the DYHS2 method instead of the
strong Wolfe line search. Thus it is now safe to say that efficient CG algorithms can all the
same be designed based on the weak Wolfe line search, not necessarily the strong Wolfe line
search. Another point we should point out here is that, the global convergence studies can
also lead to efficient hybrid CG algorithms. In the next section, we will find that the DYHS2
method is superior to the PRP and HS methods for difficult problems.

Another hybrid method that uses the weak Wolfe line search is DYHS3. It ranks the second
in Table 7. In addition, one can also see that the hybrid methods of the FR and PRP methods
are worse than those of the DY and HS methods.

Table 7. Relative efficiency of five hybrid CG methods

DYHS2 | DYHS3 | FRPRP2 | DYHS1 | FRPRP1
1 1.09 1.10 1.13 1.16

5. Comparing PRP, HS and DYHS2 for Difficult Problems

From Tables 4 and 7, we can see that the PRP, HS and DYHS2 methods perform similarly
for the given medium-scale and large-scale problems. For the purpose of further comparisons,
we draw the numerical results of the three methods for the difficult problems from Tables 2-3
and 5-6 and list them into Table 8. Here we say that a problem is “difficult” if the number of
function evaluations required by any of the PRP, HS and DYHS2 methods is greater than or
equal to 100.

From Table 8, we see that the DYHS2 method outperforms the PRP and HS methods for
most of the 18 difficult problems. Therefore comparing with the PRP and HS methods, the
DYHS2 method are more efficient for difficult problems.
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Table 8. Comparing PRP, HS and DYHS2

P n PRP HS DYHS2
1 | 500 39/129/58 39/129/60 67/117/30

1 | 1000 31/117/72 27/103/65 47/103/64

2 | 100 | 106/206/190 118/281/263 103/167/123
7 | 600 | 146/270/260 138/261/251 152/202/163
7 | 3000 | 197/402/399 196,/403/399 356,/441/391
8 | 120 | 66/137/127 62/133/119 73/119/85

8 | 1500 | 171/341/338 218/443/438 208/282/237
9 | 120 | 678/1065/1055 | 596/906/900 713/867/800
10 | 600 | 3423/5172/5163 | 2379/2925/2917 | 2181/2537/2423
12 | 5000 | 33/179/114 30/150/96 18/60/32

14 | 100 | 296/433/433 183/275/275 333/405/368
18 | 100 | 274/631/487 142/318/238 239/437/340
18 | 1000 | 95/205/156 160/387/307 280/541/427
19 | 1000 | 135/268/254 133/265/252 169/254/201
22 | 1000 11/36/24 10/36/22 189/374/284
23 | 100 | 309/526/524 243/425/422 273/360/302
24 | 500 | 289/468/459 278/439/429 290/388/336
25 | 100 58/132/96 77/173/132 54/101/70
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6. Concluding Remarks

We have tested and ranked different nonlinear CG methods over a collection of standard
test problems in CUTE. The methods can be divided into two groups: the first group includes
five basic CG methods and the second five hybrid CG methods. From the numerical results,
we can come to a conclusion that conjugate gradient methods are efficient for solving large-
scale unconstrained optimization problems, where the PRP, HS and DYHS2 methods are most
efficient. For difficult problems, however, the DYHS2 method outperforms the PRP and HS
methods.

Since the weak Wolfe line search is used in the DYHS2 method instead of the strong Wolfe
line search, it is safe to say that efficient CG algorithms can all the same be designed based on
the weak Wolfe line search. In addition, although the global convergence studies in [14] failed
to give a hybrid algorithm more efficient than the PRP method, we finally find an efficient CG
algorithm, namely, DYHS2, along the line. Besides the superiority of the DYHS2 method over
the PRP method for difficult problems, another advantage of the DYHS2 method is that, it is
globally convergent for general nonconvex functions, as mentioned in §4.1, whereas the PRP
method with exact line searches needs not converge [21].

However, we should see that for some problems (though small), the PRP and HS methods
perform much better than the DYHS2. An illustrative example is Problem 22 with n = 1000,
see Table 8. Therefore it still remains under study how to design a more efficient algorithm by
combining the PRP and/or HS methods and the DYHS2 method.
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