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Abstract

This paper is concerned with spectral type of methods using Legendre polyno-
mials. Both Galerkin and collocation approximations for the Navier-Stokes equa-
tions are considered and their rates of convergence are obtained. As a consequence,
it is shown that these methods achieve spectral accuracy if the solutions to the
Navier-Stokes efjuations are smooth.

1. Introduction

In this paper we study spectral type of methods based on Legendre polynomials.
We prove stability and convergence results for these methods using energy estimates.
The convergence results we obtained are nearly optimal in the sense that the error
estimates for the numerical solution is of the same order as the error estimates in
approximation theory [7, 14]. A trivial consequence is that these methods are indeed
spectrally accurate.

Spectral methods have been used quite extensively in the past two decades. Be-
cause of their high resolution power, these methods receive particular attention in
simulating incompressible flows in high Reynolds number. We refer to [6] for a review
of applications of the spectral methods in the computation of fluid flows and for the
computational issues involved in these applications.

There has also been quite extensive work on the ‘analysis of these methods. The
basic stability and convergence results are summarized in [10] for linear hyperbolic
problems. The approximation theory in the setting of Sobolev spaces for projections
and interpolations using Fourier, Legendre and Chebyshev polynomials are presented
in {7]. For the steady Navier-Stokes equations on simple geometries, a complete theory
has been established by Canuto, Maday, Quarteroni and their co-workers [3, 4, 5, 6].
For the time-dependent Navier-Stokes equations, previous work has been restricted to
Fourier methods with periodic boundary conditions [8, 11, 12]. The present paper
extends these results to Legendre methods.

* Received May 12, 1994.
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The key to convergence results and error estimates is stability. Roughly speaking,
for the steady Navier-Stokes equations, the stability condition amounts to the inf-
sup condition; whereas for the unsteady problem, the stability condition amounts to
some unform (independent of the discretization parameter) a priori estimates for the
numerical solutions. If we have uniform a priori estimates under sufficiently strong
norms, e.g. the W1 norm, convergence and error estimates follow as a consequence
of the Gronwall inequality. If the numerical method is linearly stable, then we have a
uniform L? estimate. If the method is sufficiently accurate, then we also get uniform
control of higher norms and L*® norms using inverse inequality. If the method is
not accurate enough, we may still obtain these estimates by applying Strang’s trick.
Spectral methods are high order methods and Strang’s argument can be replaced by
standard smoothness assumptions on the exact solutions.

There is a link between the stability estimates for the steady and unsteady prob-
lems. This is explored in [9] for general parabolic equations. For the Navier-Stokes
equations, the idea can be summarized as follows. The inf-sup condition for the Stokes
equations usually implies some estimates for the resolvent of the Stokes equations.
These estimates ¢an then be used to prove stability for the time-dependent Stokes equa-
tions using semi-group formulations. Finally stability for the nonlinear time-dependent -
Navier-Stokes equations can be obtained using the ideas outlined in the last paragraph.

In this paper we more or less follow the argument indicated above, although we
will not use semi-group formulations explicitly. The important difference between this
work and the work of Canuto, Maday and Quarteroni is that we are concerned only
with the approximation of velocity, not pressure. For this purpase it is not necessary
to identify all the spurious modes in pressure, whereas in their work spurious modes In
pressure are directly linked to the inf-sup condition. | * |

This paper is organized as follows. In the next section we study the Legendre-
Galerkin method. After a brief introduction of the method, we summarize the results
on the Stokes problem. We then use these results to prove the error estimates for
the full time-dependent Navier-Stokes equations. Similar results are proved for the
Legendre-collocation method in section 3. |

2. The Legendre-Galerkin method
|

2.1. Preliminaries on the Legendre-Galerkin method

We will use standard notations for Sobolev spaces (see [1]). We use ||| p to denote
the W™? norm and || - ||,» to denote the H™ norm. A generic point in the plane R?
will be denoted by z = (z1,22). @ = (—1,1) x (—1,1). For u(z,t) € C([0,T], H*(Q)),
we let |

lluills = max {]ju(-,¢)|]s}- (2.1)

0<t<T
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We will work frequently with incompressible vector fields. Thus we define V to be
the closure of the set {v = (v1,v2), v € C§(Q), V - v = 0} in HH{Q).

Throughout this paper, we will use €' to denote generic constants which do not
depend on the norms of the data, and use K to denote constants which do depend
on the data (but is independent of the discretization parameter). K and C may have

different vatues in different appearance. ,
Let us now recall some basic facts about the Legendre polynonua.ls Denote by
Lu(x), m=0,1,.-., the Legendre polynomials normalized so that L,,(1) = 1, then we
have the following orthogonality property
| 2

(Lm(a‘:),Lk(ﬂ:)} = vy 1§m.k (2.2)

where (f,g) = f_11 f(z)g(z)dz, for f,g € L*(—1,1), and &,, % is the Kronecker symbol.
Let Px(—1,1) be the space of algebraic polynomials of degree < N in one variable,
restricted to (—1,1). We denote by Py(2) = Py(—1,1) x Py(—1,1) the space of
algebraic pulynomlals on R? having degree < N in each variable. We set P(Q) =
Pn(Q) N HA(Q), Xne= P(Q) x PR(N), X = HJ(Q) X H ().
The projection operator Py: L? — Py(Q) is defined by

(v — Pyv,¢) =0, for veL¥Q), ¢ € Pn(52).

It is proved in [7] that

lo — Pyoll, < CN“9jjo]|, (29
~ where X xa
Pl { Su-s  o<p<i
When p = 0, this result has béen impm;v.red bj' Maday [14j:
lv — Pnvllo £ CN7?||v][s. (2.3

We also denote by Py the obvious extension of the above projection npei'ator from
L3(D) x L2() to Py () x Pn(Q). i

We will be concerned with the full time-dependent Navier-Stokes equation written
in the following form

H-—&u-i-(u Vu)+Vp=f in Q
V-u=0 in £ (2.4)
u=>0 . on O}

with initial condition |
u(z,0) = up(z).

Here u, p stand for velocity and pressure respectively. For simplicity, we have normal-
ized the density and viscosity to be one. We refer to [19] for the basic results concerning
(2.4). |
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The semi-discrete version of the Legendre-Galerkin approximation can be formu-
lated as the following problem:
Find uN(') : [0: DD) BE: XN:PN(') : [ﬁa m) e PN(Q): such that
(%f[i ¢) & ﬂ‘(“’N: ¢) g i b(”N:“Nr ¢,) T (Vpﬁw d’) = (f:r ¢'): for any ‘?5 € Xn
(V-un,q) =0, forany q € Pn(f2)
at t = 0, Uy — PNug

(2.5)
where the bilinear form a(-,) and the tri-linear form b(:,-,+) are defined by
u(u,v) = / Vu - Vode, for u,v € X (2.6a)
{1 .
b(u, v, ¢) = f u- Vv - ddzx, for u,v,90 € X (2.6b)
: §l

with Vu - Vo = :?,j=1 %:%;—, u*Vv-tit:EfJ:lu,-g—E@.
" Remark 1. (2.5) is an ill-posed problem in terms of the computation of pres-
sure. ‘Spurious modes are included in the space Py(2) which make the solution py(?)
nonunique. Thefe are the functions ¢ in Py(Q2), which satisfy (¢, V - v) = 0, for any
v € Xn. A list of the spurious modes has been given in [5]. If a good approximation
for the pressure is desired, one has to filter out these spurious modes. However, these
spurious modes will not affect the computation af the velocity field which is our primary
concern in this paper. Once we have the estimates on the velocity fields, estimates of
the pressure can be obtained from using standard techniques for saddle-point problems.

We refer to [5] for some results in this direction.

2.2. The Stokes problem and the operator Sy
" The steady state Stokes problem is described by a set of linear equations

-Av+Vg=f Tnﬂ @7
Vv=20 in {2 |

with the boundary condition |
v = 0, on Ofl.

The Legendre-Galerkin approximation vy to v, is determined from the following
problem: Find (vy,qn) in X x Pn(£1) such that

{ for any ¢ € Xn, ﬂ(ﬂN:¢)+(vQN:¢)=(fa¢’)
for any ¢ € Py(2), (Vown,9)=0.

We mention that Remark 1 on the issue of spurious modes also applies here. How-
ever, it is proved in [4] (see also [5]) that there exists a unique function vy in Xy,
which, together with some (nonunique) gy € Pn(R2), satisfies (2.8). Moreover, the
following estimate holds |

(2.8)

lo — oxlls < CN*|jo]ls. 29
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A standard duality argument gives:

lo = vnllo < CN=*|[oll,. (2.10)

A maximum norm estimate is needed later in our proof of Theorem 1. Applying
Gagliardo-Nirenberg inequality, we get

1 3 |
o — Pavlloe < Cllo — Proll¥[lo — Pyell} < ON*|jo,

An inverse inequality can be proved easily:

16]l0..c < CN?||¢|lo for all ¢ € Pn(S). (2.11)
Using this, we get, .

v — onlloe < ||v — Pavllo,ce + || Py — varllo,e0
< |lv — Pyvllo.co + CN?||Pyv — vnllo
< ON**||u|l, + CN?(||v — Pyvllo + |lv = vvllo)
¢ £ GN8Nl (2.12)

In the sequel, we will denote vy by Syv. Sy is a well-defined linear operator from
V to V N X which enjoys the properties discussed above.

2.3. Error estimates for the Legendre-Galerkin method

Our main result in this section is the following theorem. |

Theorem 1.  Assume u,u: € C([0,T],H*(Q) N H}{(Q)), for T > 0, 8 > 2.
Then (2.5) has a unique solution un(t) up to time T'. Moreover, we have the following
estimates for 0 <t < T

u(e) = w(Bllo < KN=*(lfull + el (2.130)
[ 1Swu(t) — un(®llde < KN=*(lfull + el (2.135)
fu(t) — un (@l < KNl + el (2.13
Hun ()]]o,00 < K. . (2.134)

Some remarks are in order.

Remark 2. An immediate question is whether the regularity assumption in The-
orem 1 is realistic. The answer is “no” because we are working on a square, the usual
corner singularity may restrict the smoothness of the solutions no matter how smooth
the initial data is . For the Navier-Stokes equations, regularity also relies on some
non-local compatibility conditions for the data [13]. This apparent controversy seems
‘to appear also in many other works on the Navier-Stokes equations where regularity of
the solutions is simply assumed. It is of special importance for spectral methods be-
cause often times regularity alone determines the rate of convergence. Some work has
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- appeared recently to clarify this issue for finite element methods {2, 13]. We hope to be
able to address this issue in the context of spectral methods in our future publications.

Remark 3. Here only the simplest domain, namely a square, is treated. The
implementation of spectral methods on complicated geometry is a subtle issue and has
received considerable attention. Besides the domain decomposition techniqtfes [6] and
the spectral element methods [18], we also mention the work of Ba.buska et. al. on
p-version finite element method. .

Remark 4. In actual computations, (2.5) has to be coupled with ‘an ODE solver.
Implicit methods are usually preferred because of the severe time-step restriction for the
explicit methods. Based on Theorem 1, the fully discretized methods can be analyzed
by standard techniques.

Proof of the theorem. First observe that the following evolutionary equation is
satisfied by Syu

5
(N 8) + a(Swu, @) +b(u,u, @) + (Vp, @) + (£, 6)
, (353‘;{“ au,qﬁ) + a(Syu — u, @), for any ¢ € Xy. (2.14)

Let £ = Syu—uny, n=u— Syu,e=u—uy =€ + 7. Then from (2.10), we have
Inlle < CNT*]|ul]]s. (2.15)
Subtracting (2.5) from (2.14), we get

K8+ al€,6) +b(u,u,¢) - bun, un, ) + (Vp— Von,6)
= (3.‘2;1; ‘Z:’,qb) + a(Syu —u,d),for any ¢ € Xn . (2.16)

We set ¢ = £ in the above equation. Notice that

o€
E:g) 9 dt”‘f“ﬁ:
a(,€) < ol¢]lf,
(vp = VPN: ‘E) = 01
G(SN’H — U, E) = (.
Notice also that 258% = Sy(2%). Therefore,

(O — 2 6) < I e — 5w (25 lollello < CN el liE]lo

To treat the nonlinear term, we write
b(u, u, €) — b(un, un, €) = ble, u, €) + bun, e, £).

Integrating by parts gives us b(uy, ¢, £) = 0, and b(un, e,£) = b(un,n,£) = —b(un, &, n)-
Therefore,

|b(u‘: i, E) k> b(“N:’UrN:f) = ‘b(E,‘u, g) + B(UN:E: 6)'
< [[Vullo,oolleiol[€llo + {lunllo,coll€]l1Hnllo-
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Using Sobolev inequality, we have ||[Vu|loco < Cllulls < K. Let M(t) = |lunllo,
which may depend on N. Then from (2.16) we have

1d o '
“'d—t\lﬁ\lg +alle]} < CN72Jugl|? + |1€]13 + K(IENS + HnllolI€llo) + Ml lmlllo
. 4 4
< KN72([jul)? + [leel2) + KIEIZ + CM2(8)]Inll5 + §H€||§

or

d 2 |
—I1€llo + allel} < oMA(t)niif + KN"*R* + K|léllg (2.17)
where R = ||[u||ls + |}|ut]|s- This implies, - '

t
1E@)IE < ¥¥(€(0)]3 + ™ [U e ¥ (CM*(7)|Inll3 + KN~>*R?)dr.
Note that

11€(0)]lo = ||Snuo — Pruollo < fluo — Pruollo + lluo — Snuollo < CN™*{luolls.
From this and (2.15), we obtain, for 0 <t < T

t
IO < KN llll [ M(r)dr + KN, (218)
)

From the inverse inequality (2.11), we get

t
E(®)lo.co < CNIEIR < KN [u]||2 [0 M2(r)dr + KN R2.

Using (2.10) we have for s > 2 and 0 < ¢ < T, ||Syul|g~ < K. Since lun(t)]]o,00 <
1SN ullo,c0 + |HHH0,00, We have *

lun (@)} 0 < K + KN*2||ulll3 f M (r)dr + KN*#R? (2.19)
or , ’

M2(t) < K + KN*2°|||ul|? /ﬂ M*(r)dr + KN R2.
Let y(t) =1 + f(';' M?(1)dr, then for t > 0

| y/(t) < K + KN*2 R%y(t). (2.20)

Solving this differential inequality, we get for 0 <t < T
y(t) < K.
Substituting back in (2.18), we have
E(®)llo < KNT°R.

This, together with (2.15) , proves (2.13a).
Integrating (2.17), we get (2.13b).
Next, we prove (2.13c). Set ¢ = %? in (2. 16) we get

of 0O¢ o 3Snu ot o
< it
(at'! at) (gl w—— H at | ”0” ”0 lb(‘[&,ﬂ, at) b(uN!uN! at)l
aSyu 1 '3, -
<25 Ty 1% Kb — wnll + 515 B
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Therefore, we have

i e — ] < — 1
s 0l68) = alg, 32) < K(Jlu—un} + 1502 — ZX3)

By (2.3), we have a(€(0),£(0)) < C||€(0)|12 < |luoll,- From these, and (2.13b), we

obtain

€@l < Ca(€(t),€(t))F < CN~*+3R.

We get (2.13c) by combining this estimate and (2.9).

(2.13d) is a direct consequence of (2.19). The proof is now complete.

Remark 5. It can be seen from the proof that if, in our formulation of the
Legendre-Galerkin method, we use the initial condition uy = Syup instead of the one
in (2.5), then £(0) = 0, and we obtain an estimate bétter than (2.13c).

llu = unlls < CNT*Fi({llullls + [lluellls),  for ,0<t<T.

The other estimates are still valid.

§ 3. The Legendre-collocation method

3.1. Preliminaries on -the Legendre-collocation method

A more commonly used version of the Legendre methods is the collocation method
which will be discussed in this section. Especially when nonlinear terms or variable co-
efficients are involved, collocation type of methods are much more flexible than Galerkin
methods.

The stability issue for the collocation scheme is more subtle since the aliasing er-
ror introduced by the interpolation operator may cause what is called the “aliasing
instability”. For example the Galerkin method usually inherits an energy estimate
from the PDE. This is no longer the case for the collocation method. For this reason
smoothing techniques are introduced [16] and aliasing-free formulations are suggested
[17] to avoid instability. These techniques usually complicate the algorithms to certain
extend. For practical purposes it is important to identify the cases when the simplest
collocation scheme works. For the Fourier-collocation method stability and error esti-
mates has been proved in [15] for the KdV equation and in [8, 12] for the Navier-Stokes
equations. Here we will prove similar results for the Legendre-collocation method.

Let us denote by {£;}7_, the nodes in the Gauss-Lobatto integration formula with
weight function w(x) = 1, and {p;};=o0 the associated weights. We have

and for ¢ € Poy-1(—1,1),

i N
[ #@)dz = 3" 6(&)es . (3.1)

=0
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Our grid is defined by

Gn = {zjp = (£, &), 0=,k <N}

with the corresponding weights, w;x = pjpr. For ¢, ¥ € C(Q), we define a discrete
inner product by

- N
(%) = Z ¢(z k) P(Tj)w; k- (3.2)
. 3,k=0 '
The subscript ¢ stands for “collocation”. We also define the corresponding discrete
norm ||¢l|c = (¢, c;‘:)ii. This norm is defined for any function in C(). It is easy to show
for ¢ € Py(Q2) (see [T]),
19llo < [Ig]le < Cligllo. (3.3)
Finally for ¢ € C°(Q)), denote by P.¢ the unique polynomial in Py(f2) which interpo-
lates ¢ at the grid Gy, 1.e.

(Pep)(z) = ¢p(z), forxz € Gn.

P. can also be viewed as a projection operator under the inner product defined in (3.2}

(¢ — Pop,9) =0, for ¢ € Co(2),¥ € Pn(Q). (3.4)

The approximation properties of P, is studied in [14]. Following result was proved:
for s > 1, 0 €< pu < s, there exists a constant C such that

lu — Peully < CN¥"*|lulls, u=0,1. (3.5)

Assuming f(z) € C([0,7] x ), we consider the following version of the semi-
discrete Legendre-collocation approximation to (2.1): Find u.(-) € C([0,T}, Xn), pc(*)
€ C([|0,T], Pn(2)), such that

%uz‘(fﬂj,k) — Duc(zip) + (W Vuc)(zin) +(Voe)(zik) = f(@ik),
for z;, € GNNE

V- uc(mj,k) = 0, for Tk & Gy

at t = 0, uc(z,0) = (Poug)(z).

(3.6)

Here the time variable ¢ was suppressed for notational simplicity. The second equation
guarantees that the approximate velocity field is divergence free. The remark after
(2.5) on the issue of spurious modes also applies here.

We begin our analysis by putting (3.6) into a variational form. For this purpose, we
define the bilinear form a.: Xy X Xy — R and tri-linear form b, : Xy X Xy X Xy — R
by

ac(v,9) = —(Lv, @)c (3.7a)

bﬂ(u: v, ¢') — (HV”: ‘;b)c (3.7b)
where u, v, ¢ € Xn. Arguing as in [3], using (3.1) and integrating by parts, we obtain
ac(v,d) = (Vv,Ve). (3.8a)
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Now it is easy to see that (3.6) is equivalent to the fo]lowing problem |

{ (%‘;a e + acluc, @) + be(tc, e, @) + (Pe, V - b)e = (fy @)c for all ¢ € Xy
(V - 9)e =10 for all g € Px(§2).
. (3.9

3.2. Error estimates for the Legendre-collocation method

The convergence properties for the scheme (3.9) are summarized in the following
theorem. These are nearly optimal estimates in the sense that the error in the numerical
solution is of the same order as the error in the initial interpolation.

Theorem 2.  Assume u, u: € C([0,T], H*(Q) N H;(Q)), f € C([o, T}, H*1()),
Jor some T > 0, s > 3. Then there exist some constants Ny, and K, depending only
on T and R = |[[ull[2 + [llulll, + [l[uellls + [1f lls—1, such that for N > No, (3.9) or

equivalently (3.6), has a unique solution up to time T. Furthermore, the following
estimates hold on [0, T]

u(t) — we(®)flo < KN—**1R (3.10a)
| ]U " lSnult) — ug(t)|lhdé < KN—*HR (3.108)
u(t) = ue(t)||; < KN—**2R. (3.10¢)

Proof. As in [13], we will break the total error into two parts, the part due to

discretization and the part due to the presence of nonlinearity. Let (un_1,pn—1) be
the solution of (2.5) in the space Xn.-1 X Py_1(Q). By (3.1) and (2.5), we have,

(augt-l !qb)c it aﬂ(uﬁ-—la f;b) + b(uﬁ—liuﬁf—l: ¢)+ (pN-ls V- ‘;b)ﬂ — (f: ¢)?
for all ¢ € Xy (3.11)
V- UN_1 = 0.

Let (%.,p.) be the solution of the following auxiliary problem: #.(t): [0,00) —
Xn_1, f’ﬂ(t): [01 GG) — PN—l(Q)

(Q(‘%Q! ‘;t’)ﬂ -+ GC(ﬂca ';b) + b(HN—-Ia UN-—1, ‘i’)'l' (ﬁﬂ: V. Q{’)c == (.f: QS)G:
for all ¢ € Xn_1 (3.12)
(V  teq)e =0 for g € Py_1(02)
with initial condition %.(z,0) = Py_juo{z) = un—_1(z,0). Notice here we are still using
the discrete inner product defined in (3.2) with the grid Gy.

let E =uny_1 ~Uey N=Te—Ue, p=U—UN_1, €=U — U = p+ &+ 7. We have
from (2.13a)

: llolle < CNT2({|ullls + []]uell]s)- (3.13)
Taking the difference of (3.11) and (3.12), we get

%, B)c + ac(l, 8) + (PN—-1 = Per V - B)e = (£8) — (£ D). (3.19)
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Recall an inequality proved in|7):
(£, 0) — (f, ®)el < ClIgllo(llf — Pefllo + |If — Pr-1fllo)- (3.15)

We have
(£,€) = (£,6)el < [iE113 + CN"22| | F|I5-1.

Let ¢ = £ in (3.14). Since

ac(£,€) = (VE,VE): > || V€12 > oflélli
V-£=0,

we have 3
gt-IIEHﬁ + o |€]12 < |JEI1E + CN72H|£115 -,

This implies, for 0 < ¢t < T

1€llo < CNT" ] £lHls-1 (3.16)

T
([ ity < ON= £l (317

»

If we set ¢ = 9 in (3.14) we get

¢ ¢ ot
1218 +ac, 5) = (1 5) ~ (h 5

Since

(5, ) = (5, o)l < I B+ ON 2272

we obtain then

9

o
22 060 <11, 5) - (1. 5

Notice that £(0) =0. We obtainfor 0 <t < T

€@ < N7 fHe-1- (3.18)
Next we turn to the estimate of n. We first study the nonlinear term. Write

b(“N——lw UN—1, ‘;b) - bc('u't:: Uc, ¢’) —— b(uN—la UN-1, ¢') L b(u‘! u, ﬁb) - b(ui U, ¢’)
i C(ua u, ¢') + bﬂ(u’! U, ¢) i bc(ucr U,y ¢)'

Using Theorem 1 (more precisely the improved version stated in Remark 5) and (3.13),

we get

|b(uN—-l:ﬂ’N—1: 45) == b(u?u! ¢’)| E Ib(u’N-lspa ¢')‘ i+ |b(p,u, ‘;‘!’)l
< |luw—-1llo,e0l[Volloll¢llo + [ Vllo,col|ollol[#l]0
< KN"**({|lullls + [lfuellls)lllo,

|b(u, 4, $) — be(u, %, 9)| < |(uVu,4) — (uVu,4)| + {blo, u, 9)]
< CN~*H|[uVulls—1]|8]lo < ON~*F|ul[5]i#llo-
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Here we have used the fact that H® is a Banach algebra for s > 1,
[luv]ls < Cllufls||v]ls-
Let M(t) = ||uc(t)||o, 0o Which may depend on N, then
be(u,u, @) — be(ue, e, @) = (uVu, d)e — (U Ve, @),
= ((u — uc)Vu,¢)e — (4. V(u — u), )
< IVullo,eol e — ue|lellBllo + [[2e]lo,00/ [V = Vuse||cl[d]o
< Kl|gllo{|| Pev — un—1{lo + |[nllo + [I€][o)

+M(2)||@|lo(}1Pe(Vu) — Vun_1llo + |71 + |1€]]1)
< K(||¢llg + lolIg) + CN 22| ||l 112 + NIFNP_; + Hlwel|)?)

o
+M2(0)| 9113 + 21l
where in the last step, we have used (3.5), (3.14) , (3.16) and the fact that

1Pe(Vu) = Vun_allo < |[IVu~ P(Vu)llo + llu — un—1]lx
: < ONT"Fulls + CNT* (| []s + llrzell]s).

Taking the difference of (3.9) and (3.12), and setting ¢ = 1, we get

(%! 7?)c + ﬂ*c(’?w ??) + b(uN—la UN—1, ?7) = bc(uc} Ue, 'f]) = (.

Using the estimates we have just derived, we get,

d —2s
—lnlle + acllnllf < (CM*(t) + K)|nl|2 + CN~2+2R2, (3.19)
dt -

For notational simplicity, let B(¢) = CM?2(t) + K, z(t) = ef B(m4r - Solving the
above inequality, we obtain

In(IE < 2()(CRENT2+2 4 ||n(0)|12) < 2(t)CREN-2+2, (3.20)
From (2.11) and (2.13a), we have

MA(t) = |lucllp oo < 2(un—1 ~ ucllﬁ?m + Juv-1ll6.00) < CNHun—1 — u|ld + K
SCONT#H|f|12_, + CRAN"2%5,(t) + K = CREN~2%6,(4) + K

i'((:)) B(t) < K + CRN#15,(¢)
z(t) < Kz(t) + CREN~2462(3). (3.21)

We get here a nonlinear differential inequality instead of the linear one in (2.20). Solving
this inequality, we get |

Kt Kt
2(t) < g e L CR2N 0] < e 'l CRN-H:(¢). (8.92)
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If we choose Ny, such that

Kt

1
—CRNG ™ < 2, (3.23)

then for N > Ny, we get from (3.22) that for 0 < ¢ < T
2(t) < 2e¥7.
Substituting back in (3.20), we get
Inlle < KNT*T'R.

This, together with (3.13), (3.16), proves (3.10a).

The rest of the proof is the same as the proof of (2.13b) and (2.13c).

Remark 6.  Again if we replace the initial condition in (3.6) by u.(z,0) =
Snuo(z), then we can get an improved version of (3.10c)

lu(t) — ue(t)lls < CRENT*F

while the other estimpates remain unchanged.
A different version of the Legendre-collocation is often suggested and analyzed in
the literature. Instead of defining b.(u,v,¢) by (3.7b), one defines 1t by 3]
2
0
bc(u!ﬂ:' ¢) — e (amt
i,7=1

Pc(uiﬂj): qu )c*

For this problem, one can prove the same estimates as in Theorem 2 by the argument
presented in this section.
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