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Abstract. We present some applications of the geometry of Banach spaces in the ap-
proximation theory and in the theory of generalized inverses. We also give some new
results, on Orlicz sequence spaces, related to the fixed point theory. After a short in-
troduction, in Section 2 we consider the best approximation projection from a Banach
space X onto its non-empty subset and proximinality of the subspaces of order con-
tinuous elements in various classes of Köthe spaces. We present formulas for the dis-
tance to these subspaces of the elements exterior to them. In Section 3 we recall some
results and definitions concerning generalized inverses of operators (metric general-
ized inverses and Moore-Penrose generalized inverses). We also recall some results
on the perturbation analysis of generalized inverses in Banach spaces. The last part of
this section concerns generalized inverses of multivalued linear operators (their defini-
tions and representations). The last section starts with a formula for modulus of nearly
uniform smoothness of Orlicz sequence spaces ℓΦ equipped with the Amemiya-Orlicz
norm. From this result a criterion for nearly uniform smoothness of these spaces is de-
duced. A formula for the Domı́nguez-Benavides coefficient R(a,lΦ) is also presented,
whence a sufficient condition for the weak fixed point property of the space ℓΦ is ob-
tained.
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1 Introduction

The paper is divided into four sections. The first is an Introduction. In Section 2 some
applications of the geometry of Banach spaces to the approximation problems are pre-
sented. This section contains 9 subsections. The first two deal with the best approxima-
tion problems such as non-emptiness of PA(x), its uniqueness, proximinal subspaces as
well as formulas for the distance of any element of a Köthe space from its subspace of
order continuous elements. Subsection 2.3 recalls the necessary and sufficient conditions
for approximative compactness in arbitrary Banach spaces and some definitions of the
notions that are used further. Subsection 2.4 contains criteria for approximative compact-
ness and full rotundity of Musielak-Orlicz spaces. In Subsections 2.5 and 2.6 criteria for
approximative compactness of Orlicz and Orlicz-Lorentz spaces are presented, respec-
tively. Short Subsection 2.7 focuses on monotonicity properties of Banach lattices and
their relationships to the dominated best approximation problems. Subsection 2.8 deals
with the problem of proximinality in Calderón-Lozanovskiı̆ spaces Eϕ of some their sub-
spaces while in the last Subsection some interpretations of theorems from Subsection 2.8
in the class of Orlicz spaces are given.

Section 3 is devoted to the applications of geometry of Banach spaces to some prob-
lems in the theory of generalized inverses. At the beginning generalized inverses of linear
operators were constructed only in Hilbert spaces which have the best possible geomet-
ric properties (both rotundity and smoothness types). In order to generalize those results
to Banach spaces it was necessary to select these geometric properties of Banach spaces
which give also a possibility of constructing various generalized inverses in much more
general class of Banach spaces than their subclass of Hilbert spaces. Algorithms and per-
turbation analysis for some general inverses in Banach spaces with suitable geometric
properties are also presented.

In the last section some new results on the modulus of nearly uniform smoothness in
Orlicz sequence spaces equipped with the Amemiya-Orlicz norm and some its applica-
tion to the fixed point theory are presented. Some useful formulas for this modulus are
presented and their usefulness on some examples is illustrated.

Notions and definitions are established in any section separately; some of them are
even repeated for the convenience of the readers.
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2 Applications of geometry of Banach spaces to best approxima-

tion problems

2.1 Projections from a Banach space onto its subspace, their existence, unique-
ness and properties

Let X = (X,‖.‖) be a Banach space and let A be a non-empty subset of X. A function
d : X→ [0,∞) defined by

d(x,A) := inf{‖x−y‖ : y∈A}

is called the distance of an element x∈X from the set A. If A is a closed subspace of X,
then d(x,A) is the norm in the quotient space X/A and the quotient space X/A equipped
with this norm is a Banach space. For arbitrary x∈X, the set

PA(x)={y∈A : d(x,A)=‖x−y‖}

is called the metric projection of an element x∈X onto the set A, and its elements, if the
set is non-empty, are called the best approximation elements in the set A for the element
x (see [77], [87] and [88]). A set A is said to be a proximinal set in X if PA(x) is nonempty
for any x ∈ X and PA(x) is called a Chebyshev set in X if PA(x) is a singleton for each
x∈X.

It seems to be natural to raise the question, for what kind of sets A⊂ X, A 6=∅, the
condition PA(x) 6= 0 holds for any x∈X (equivalently for any x∈X\A)? Natural is also
the question, in which Banach spaces X, taking any non-empty convex and closed subset
A of the space X and arbitrary x∈X, we have that PA(x) contains at most one element,
that is, PA(x)=∅ or PA(x) is a singleton.

Let us now present two useful theorems which are presented below as lemmas.

Lemma 2.1. ([33], Godini theorem) Let (X,‖.‖) be a normed linear space and let M be its
closed linear subspace. Then M is a proximinal subspace of X if and only if B(X/M)=q(B(X)),
where X/M is a quotient space of X modulo M and q is the canonical mapping of X on X/M
given for any x∈X by the formula:

q(x)= [x] :={y∈X : x−y∈M}.

Lemma 2.2 (Mazur theorem). If (X,‖.‖) is a normed space, xn ∈X for any n∈N, x0∈X and
xn → x0 weakly in X, then there exists a sequence (yn)∞

n=1 of convex combinations of elements of
the sequence (xn)∞

n=1, namely, yn =∑
n
k=1αnk

xk, where αnk
≥ 0 for n∈N, k∈{1,2,3,...,n} and

∑
n
k=1αnk

=1, that is strongly convergent to some x0 in X.

In order to get sufficient conditions for non-emptiness of the set PA(x) for any x∈X
and for the sets A from the quite wide class of weakly compact subsets of a Banach space
X, the following theorem would be helpful.



328 Y. Cui, H. Hudzik, R. Kaczmarek, et al. / J. Math. Study, 49 (2016), pp. 325-378

Theorem 2.1. In any Banach space (X,‖.‖) the norm ‖.‖ is a lower semi-continuous function
under the weak topology, that is, if (xn)∞

n=1 is a sequence of elements of X which is weakly con-

vergent to x∈X (shortly xn
w
→ x), then

‖x‖≤ liminf
n→∞

‖xn‖.

Proof. From the Hahn-Banach theorem it is known that there exists x∗ ∈ X∗ such that
‖x∗‖= 1 and x∗(x) = ‖x‖. Moreover, x∗(x)≤ ‖x∗‖‖x‖ for any x ∈ X. In virtue of the

assumption that xn
w
→ x, we have also that x∗(xn)→ x∗(x)=‖x‖. Hence

‖x‖= x∗(x)= x∗
(

lim
n→∞

xn

)

= lim
n→∞

x∗(xn)= liminf
n→∞

x∗(xn)≤ liminf
n→∞

‖x∗‖‖xn‖

= liminf
n→∞

‖xn‖,

which finishes the proof.

Remark 2.1. Notice that there is only a few spaces in which a norm is upper semi-
continuous under the weak topology, that is,

‖x‖≥ limsup
n→∞

‖xn‖

if the sequence (xn)∞
n=1 in X is weakly convergent to x ∈ X. The spaces possessing this

property have, the so called Schur property, that is, weak convergence of sequences co-

incides with the strong convergence. Indeed, if xn
w
→ x, then xn−x

w
→ 0, so the upper

semi-continuity of the norm under the weak topology gives

limsup
n→∞

‖xn−x‖≤‖0‖≤ liminf
n→∞

‖xn−x‖,

which means that ‖xn−x‖→0. It is known that ℓ1 space is an example of the space with
the Schur property.

It is obvious that every set A⊂ X, which is weakly closed in X, is also closed in X
under the norm topology (norm convergence implies weak convergence). Although the
opposite relation does not hold in general, the following theorem is true.

Theorem 2.2. If A is a convex and norm closed set in X, then A is also weakly closed in X.

Proof. Assume that x∈X, (xn)∞
n=1 is a sequence of elements of the set A and xn

w
→x. By the

Mazur theorem (Lemma 2.2), there exists a sequence (yn)∞
n=1 of a convex combinations

of elements of the sequence (xn)∞
n=1 such that ‖yn−x‖→ 0 (see [23]). In virtue of the

assumption that A is norm closed, we get that x∈A, which finishes the proof.

Although Theorems 2.5, 2.6 and Corollaries 2.3 and 2.4 from this subsection were
already presented together with their proofs in [37], they are also recalled below with
proofs for the sake of completeness.
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Theorem 2.3. Let us assume that A is a non-empty subset of a Banach space X such that its
intersection with an arbitrary closed ball in X having its center at the point 0, is a weakly compact
set. Then PA(x) 6=∅ for any x∈X.

Proof. It is enough to show only that PA(x) 6=∅ for an arbitrary x ∈X\A. Assume that
x ∈ X\A and let (xn)∞

n=1 be a minimizing sequence in A, that is, such a sequence that
d(x,A)= lim

n→∞
‖x−xn‖. Since

‖xn‖= ‖xn−x+x‖≤‖xn−x‖+‖x‖

≤ d(x,A)+1+‖x‖,

for n large enough, so the sequence (‖xn‖)∞
n=1 is bounded, that is, there exists K > 0

such that ‖xn‖ ≤ K for all n ∈ N. Therefore, the sequence (xn)∞
n=1 is contained in the

set A∩B(0,K), where B(0,K) is a norm-closed ball of radius K and centered at 0. By the
assumption, we have that A∩B(0,K) is a weakly compact set, so there exist a subsequence

of the sequence (xn)∞
n=1 and an element y∈A∩B(0,K) such that xnk

w
→y, whence x−xnk

w
→

x−y. By the lower semi-continuity of the norm under the weak topology, we have

‖x−y‖≤ liminf
k→∞

‖x−xnk
‖= lim

n→∞
‖x−xn‖=d(x,A).

Since y∈A, then the inequality d(x,A)≤‖x−y‖ is obvious, whence d(x,A)=‖x−y‖, that
is, y∈PA(x). This finishes the proof.

From the last theorem, we can conclude the following three corollaries.

Corollary 2.1. If X is a Banach space and A is a finite dimensional subspace of X, then PA(x) 6=∅

for any x∈X.

Proof. For any K> 0 the set A∩B(0,K) is bounded closed and convex. In virtue of The-
orem 2.2, we conclude that this set is weakly closed. Since the set A∩B(0,K) is compact
under the norm topology, it is also (in virtue of the weak closedness showed in Theorem
2.2) a weakly compact set. Now it is enough to apply Theorem 2.3.

Corollary 2.2. If X is a Banach space and A is a non-empty convex and compact subset of X,
then PA(x) 6=∅ for any x∈X.

Proof. Notice that the set A∩B(0,K) is convex and compact for any ball B(0,K) with
0< k<∞. In virtue of Theorem 2.2 we conclude that this set is weakly compact. In order
to finish the proof, it is enough to apply Theorem 2.3.

Corollary 2.3. [37] If X is a reflexive Banach space and A is a non-empty convex and closed
subset of X, then PA(x) 6=∅ for any x∈X.
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Proof. Notice that a minimizing sequence (xn)∞
n=1 for the element x, that is, a sequence of

the elements of the set A satisfying condition d(x,A)= lim
n→∞

‖x−xn‖ is contained in some

norm closed ball B(0,K), K > 0. Hence, (xn)∞
n=1 ⊂ A∩B(0,K). By the reflexivity of the

space X as well as by the convexity and closedness of the set A∩B(0,K), we conclude
that this set is weakly compact. Next the proof can be proceeded in the same way as the
suitable part of the proof of Theorem 2.3.

Lemma 2.3. If f ∗∈X∗, ‖ f ∗‖=1, V=Ker( f ∗) :={x∈X : f ∗(x)=0}, then for any x0 ∈X, we
have

dist(x0,V)= | f ∗(x0)|. (2.1)

Proof. If x0∈V, then | f ∗(x0)|=dist(x0,V)=0, so inequality (2.1) holds. Assume now that
x0∈X\V. Then

‖x0−v‖≥| f ∗(x0−v)|= | f ∗(x0)− f ∗(v)|= | f ∗(x0)|

for any v∈V, whence

d(x0,V)= inf
v∈V

‖x0−v‖≥| f ∗(x0)|. (2.2)

On the other hand, there exists a sequence (xn)∞
n=1 in S(X) such that f ∗(xn)→‖ f ∗‖= 1.

Define a new sequence (vn)∞
n=1 by

vn = x0−
f ∗(x0)xn

f ∗(xn)
.

We will show that vn ∈Ker( f ∗) for any n∈N. We have

f ∗(vn)= f ∗(x0)− f ∗(x0)
f ∗(xn)

f ∗(xn)
= f ∗(x0)− f ∗(x0)=0,

so the condition vn ∈Ker( f ∗) for any n∈N is proved. Moreover,

‖x0−vn‖=

∥
∥
∥
∥

x0−x0+
f ∗(x0)xn

f ∗(xn)

∥
∥
∥
∥
=

∥
∥
∥
∥

f ∗(x0)xn

f ∗(xn)

∥
∥
∥
∥
= | f ∗(x0)|

‖xn‖

| f ∗(xn)|

=
| f ∗(x0)|

| f ∗(xn)|
→| f ∗(x0)|

as n→∞. Consequently,

d(x,V)≤| f ∗(x0)|,

which together with inequality (2.2) gives the equality d(x,V)= | f ∗(x0)|.

Theorem 2.4. If X is a nonreflexive Banach space, then there exists in X a convex and closed
subset V such that d(x,V)<‖x−v‖ for any x∈X\V and v∈V.



Y. Cui, H. Hudzik, R. Kaczmarek, et al. / J. Math. Study, 49 (2016), pp. 325-378 331

Proof. By the James theorem there exists a functional f ∗ ∈ S(X∗) such that f ∗ does not
attain its norm on the unit sphere S(X). Let us define V=Ker( f ∗) and let us assume for
the contrary that there are x0∈X\V and v0∈V such that

d(x0,V)=‖x0−v0‖.

We have by Lemma 2.3 that

‖x−v0‖=d(x0,V)= | f ∗(x0)|= | f ∗(x0−v0)|,

whence
∣
∣
∣ f ∗
(

x0−v0

‖x0−v0‖

)∣
∣
∣=1,

which means that f ∗ attains its norm on the element x0−v0

‖x0−v0‖
∈S(X), a contradiction, which

finishes the proof.

Let us consider now the problem of the uniqueness of the best approximation ele-
ment. We will need the concept of a rotund (or strictly convex) Banach space.

A Banach space (X,‖.‖) is said to be rotund if for any x,y∈X such that ‖x‖=‖y‖=1

and x 6= y, the inequality
∥
∥
∥

x+y
2

∥
∥
∥<1 holds (see [9] and [23]). Since any norm ‖.‖ is a con-

vex function of X, it is easy to see that if for any x,y∈S(X) condition ‖λx+(1−λ)y‖=1
holds for some λ∈(0,1), then ‖λx+(1−λ)y‖=1 holds for any λ∈(0,1), that is, the whole
segment [x,y] belongs to the unit sphere of X. This means that rotund Banach spaces
are exactly these spaces which do not contain on their unit spheres segments of positive
length.

Theorem 2.5. ([37], Theorem 1) For any non-empty convex and closed set A contained in a
Banach space X and for any x∈X, we have that Card(PA(x))≤1 if and only if X is rotund.

Proof. Sufficiency. Assume that X is rotund and that for some non-empty closed and
convex set A⊂ X and for some x ∈ X, we have that y,z∈ PA(x). We need to show that
y= z. We have

‖x−y‖=‖x−z‖=d(x,A).

Moreover, denoting w= y+z
2 , we have

‖x−w‖=

∥
∥
∥
∥

x−
y+z

2

∥
∥
∥
∥
=

∥
∥
∥
∥

x+x

2
−

y+z

2

∥
∥
∥
∥

=
1

2
‖(x−y)+(x−z)‖≤

1

2

(

‖x−y‖+‖x−z‖
)

=
1

2

(

d(x,A)+d(x,A)
)

=d(x,A).

Denoting

ȳ=
x−y

d(x,A)
, z̄=

x−z

d(x,A)
, w̄=

x−w

d(x,A)
,
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Figure 1: PA(x) and PB(x).

we have ȳ, z̄,w̄∈S(X) and
ȳ+z̄

2 = w̄. Hence, by the assumption that X is rotund, we have
w̄= ȳ= z̄, whence we get w=y= z. This finishes the proof of the sufficiency.

Necessity. Suppose that X is not rotund. Then there exist two elements x,y∈S(X) such
that x 6= y and

x+y
2 ∈S(X). In virtue of the remark preceding Theorem 2.5, we have that

‖λx+(1−λ)y‖=1 for any λ∈ [0,1], which means that the whole segment [x,y] belongs to
the unit sphere S(X). The segment is a non-empty convex and closed set. Denoting it by
A, we have

1=‖z‖=‖z−0‖=d(0,A)

for all z∈ A. Consequently, the set PA(0) contains a continuum of elements, which ends
the proof.

Remark 2.2. It may happen that even if a Banach space X is not rotund, the set PA(x) can
be a singleton for any x∈X and for some (not for all) sets A of X.
Indeed, PA(x) is the intersection of a subspace A and a ball with radius x tangent to this
subspace. Let us take X=R

2 equipped with the taxi norm ‖x‖=|x1|+|x2| for x=(x1,x2)∈
X. We will consider two subspaces of X:

A={(u,u) : u∈R}, B={(u,2u) : u∈R}.

Then, PA(x) for any x ∈ X\A is a segment with different endpoints and PB(x) is a
singleton for any x∈X (see Figure 1).

We will show now an example of a Banach space X and its subspace M which is not
proximinal in X, that is, there exists x∈X\M such that PA(x)=∅.

Example 2.1. (See [91] and [18]). Let C[0,1] be the space of continuous functions on the
compact segment [0,1]. Let us define

X=

{

x∈C[0,1] : x(0)=0

}

and M=

{

x∈X :

1∫

0

x(t)dt=0

}

,
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and let X be endowed with the norm induced from the space C[0,1], that is, ‖x‖∞ =
sup

0≤t≤1

|x(t)|. Then X is the closed subspace of C[0,1], so it also is a Banach space. However,

M is a closed subspace of X (because for any x∈C[0,1] and (xn)∞
n=1⊂C[0,1], the uniform

convergence xn⇉x implies that
∫ 1

0 xn(t)dt→
∫ 1

0 x(t)dt). Therefore, if xn∈M for any n∈N

and xn → x in X, that is, xn ⇉ x, then x∈M, which means the closedness of the subspace
M in X.

Suppose for the contrary that M is proximinal in X. By Lemma 2.1 this means that
there exists an element x∈S(X) such that d(x,M)=1. Hence, there exists x1∈S(X) such
that ‖x1−y‖∞ ≥1 for every y∈M. Let us take any element x∈X\M and define

α=
∫ 1

0
x1(t)dt

/∫ 1

0
x(t)dt.

Then

∫ 1

0
(x1(t)−αx(t))dt

=
∫ 1

0
x1(t)dt−α

∫ 1

0
x(t))dt=

∫ 1

0
x1(t)dt−

∫ 1

0
x1(t)dt=0.

Hence, x1−αx∈M. Therefore, in virtue of the earlier observation, we have

‖x1−(x1−αx)‖∞ =‖αx‖∞ = |α|‖x‖∞ ≥1,

whence

∣
∣
∣

∫ 1

0
x1(t)dt

∣
∣
∣≥

1

‖x‖∞

∣
∣
∣

∫ 1

0
x(t)dt

∣
∣
∣ (2.3)

for all x∈X\M. Let us define yn(t)= t1/n for n∈N. Then ‖yn‖∞ =1 and
∫ 1

0
yn(t)dt= n

n+1
for all n∈N, which means that yn ∈X\M for all n∈N. Inequality (2.3) gives us (by its

application to the function yn instead of x) that |
∫ 1

0
x1(t)dt|≥ n

n+1 for all n∈N, whence

∣
∣
∣

∫ 1

0
x1(t)dt

∣
∣
∣≥1. (2.4)

Since |x1(t)|≤‖x1‖∞ =1 for any t, x1(0)=0 and x1 is continuous, we get
∫ 1

0 |x1(t)|dt<1.

Consequently, |
∫ 1

0 x1(t)dt|<1, which contradicts inequality (2.4), ending the proof. �

Remark 2.3. The problem of proximinality in Orlicz spaces and other modular spaces
(for the information about the modular spaces we refere for example to [70]) is considered
in [36].
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An important geometrical property in Banach spaces, which implies both rotundity
and reflexivity (see [67]) and therefore, plays an important and crucial role in the ap-
proximation theory, is uniform rotundity (called also uniform convexity), introduced by
Clarkson in [15].

A normed space (X,‖.‖) is said to be uniformly rotund if δX(ε)> 0 for any ε∈ (0,2],
where δX(.) is the modulus of convexity in a Banach space X defined as (see [23])

δX(ε) := inf

{

1−

∥
∥
∥
∥

x+y

2

∥
∥
∥
∥

:‖x‖≤1,‖y‖≤1∧‖x−y‖≥ ε

}

.

It is easy to see that a Banach space (X,‖.‖) is uniformly rotund if and only if for any

ε∈(0,2], we can find δ(ε)∈(0,1) such that if x,y∈B(X) and ‖x−y‖≥ε, then
∥
∥
∥

x+y
2

∥
∥
∥≤1−δ(ε).

Uniform rotundity can also be characterized in terms of sequences. Namely, a Banach
space X is uniformly rotund if and only if for any two sequences (xn)∞

n=1,(yn)∞
n=1 from

the unit ball B(X) such that
∥
∥
∥

xn+yn

2

∥
∥
∥→1, the condition ‖xn−yn‖→0 holds.

Theorem 2.6. ([67]) Every uniformly rotund Banach space is rotund and reflexive.

Proof. Assume that x,y∈S(X) and x 6= y. Then ‖x−y‖>0. By virtue of the definition of
the modulus of convexity δX(.) as well as by the assumption that X is uniformly rotund,
we get

∥
∥
∥
∥

x+y

2

∥
∥
∥
∥
≤1−δ(‖x−y‖),

which finishes the proof of rotundity of the space X. In order to prove the reflexivity
of X, we will use the theorem of R. C. James, which says that X is reflexive if and only
if for any functional x∗ ∈X∗\{0} there exists an element x∈S(X) such that x∗(x)= ‖x‖
(see [23]). It is clear that it is enough to know that every functional x∗∈S(X∗) attains his
norm on S(X). Let us take any x∗∈S(X∗). We can find a sequence (xn)∞

n=1 in S(X) such
that ‖x∗‖= lim

n→∞
x∗(xn). Then, for any two subsequences (yn) and (zn) of the sequence

(xn) we have
x∗(yn+zn)= x∗(yn)+x∗(zn)→2‖x∗‖=2.

Hence, we have ‖yn+zn‖→2 and, by uniform rotundity of X, we get ‖yn−zn‖→0. We
showed, in fact, that (xn)∞

n=1 is a Cauchy sequence in X. Therefore, there exists x∈X such
that ‖xn−x‖→0 as n→∞. By the inequalities |‖xn‖−‖x‖|≤‖xn−x‖ and by the fact that
‖xn‖=1 for any n∈N, we get ‖x‖=1. Moreover, by continuity of the functional x∗, we
have

x∗(x)= lim
n→∞

x∗(xn)=‖x∗‖,

which finishes the proof.

Corollary 2.4. ([37]) For any uniformly rotund Banach space X and for any non-empty
convex and closed set A⊂X, the set PA(x) is a singleton for every x∈X.
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Proof. By Corollary 2.3 we obtain that PA(x) 6=∅ for every x ∈X. In virtue of Theorem
2.5, PA(x) is a singleton for every x∈X.

Recall that a Köthe space E (for the definition we refer, for example, to [41]) is called
order continuous (see for instance [51]) if for any element x∈E and any sequence (xn) in
E+ with 0≤ xn ≤|x| for any n∈N and xn →0 µ-a.e., there holds ‖xn‖E →0.

Remark 2.4. If we restrict the problem of the best approximation to the special class
of Banach spaces, namely, to Banach lattices and to the special subsets A of lattices X,
namely, to the sets closed under the finite infima and suprema, then the role of reflexivity
will be played by another property, called order continuity and the notion of rotundity
will be replaced in this case by strict monotonicity of Banach lattices. For the general
lattice theory we refer to the monograph [3], while for the best approximation problems
in Banach lattices we refer to the papers [43, 51].

2.2 Distance to some subspaces in Köthe spaces

Let E be a Köthe space (for the definition we refer, for example, to [41]) over a σ−finite
complete measure space (Ω,Σ,µ) endowed with a norm ‖.‖ which is not order continu-
ous. Denote by Ea the subspace of order continuous elements of E, that is,

Ea=
{

x∈E : for any 0≤ xn ≤|x|,xn ↑ |x|, we have ‖|x|−xn‖→0
}

.

Let us assume that suppEa=Ω. We can find an ascending sequence of sets (An)∞
n=1 such

that
⋃

n An = Ω and L∞(An) →֒ E(An) →֒ L1(An) and L∞(An) →֒ Ea(An) for any n ∈ N

(see [47]). Define d(x,Ea)= inf{‖x−y‖ : y∈Ea}. It is obvious that d(x,Ea)=0 if and only
if x∈Ea, because Ea is the closed subset of Köthe space E.

The result of the next Theorem is certainly known in the literature, however the pre-
sented below proof is a joint unpublished proof of the second name author and Professor
A. S. Granero.

Theorem 2.7. Let E be a Köthe space over σ−finite measure space (Ω,Σ,µ) endowed with the
norm ‖.‖ which is not order continuous. Then

d(x,Ea)= lim
n→∞

‖x−xn‖ (2.5)

for any x∈E such that suppEa =Ω, where

xn(t)=

{

x(t), when |x(t)|≤n and t∈An

0, in the opposite case,

and where An, n∈N are the sets described in the paragraph proceeding this theorem.
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Proof. Notice that it is enough to show the proof of formula (2.5) only in the case when
x∈E\Ea. Since xn ∈Ea for any n∈N, we get lim

n→∞
‖x−xn‖≥d(x,Ea).

We will show now the opposite inequality. Without loss of generality, we can assume
that x≥ 0. Hence, in the definition of d(x,Ea) we can restrict ourselves to the functions
y such that 0 ≤ y ≤ x, that is, d(x,Ea) = inf{‖x−y‖ : 0 ≤ y ≤ x,y ∈ Ea}. Indeed, defining
ȳ=(y∨0)∧x for any y∈ Ea, we get that ȳ∈ Ea, 0≤ ȳ≤ x and |x− ȳ| ≤ |x−y|. Therefore,
by the definition of d(x,Ea), for any ε > 0 we can find y ∈ Ea such that 0 ≤ y ≤ x and
‖x−y‖ ≤ d(x,Ea)+

ε
2 . Let us define yn(t) in the similar way as xn(t) were defined. We

have yn↑y, so under y∈Ea we obtain ‖y−yn‖ց0. Since 0≤yn≤xn≤x, so 0≤x−xn≤x−yn

and, consequently,

‖x−xn‖≤‖x−yn‖≤‖x−y‖+‖y−yn‖≤d(x,Ea)+
ε

2
+‖y−yn‖,

whence ‖x−xn‖≤ d(x,Ea)+ε whenever n≥ n0 and n0 is large enough. This shows that
the inequality

lim
n→∞

‖x−xn‖≤d(x,Ea)

is true. Combining this inequality with lim
n→∞

‖x−xn‖≥d(x,Ea), we get that

lim
n→∞

‖x−xn‖=d(x,Ea),

which ends the proof of the theorem.

Remark 2.5. In the case of modular function spaces the formula for the distance d can be
simplified and calculated in another easier way (see [36]). We will present below how to
get this formula in the case of Orlicz spaces only.

Denote by (Ω,Σ,µ) a positive, complete and σ−finite measure space and by L0 =
L0(Ω,Σ,µ) the space of all (equivalence classes of) real-valued and Σ−measurable func-
tions defined on Ω.

In this subsection we will use the following definition of an Orlicz function. Namely,
a function Φ :R→ [0,∞) which is even, convex, Φ(0)=0 and Φ is not identically equal to
zero is said to be an Orlicz function (see [50, 60, 69, 81]).

Given any Orlicz function Φ we define on L0 a convex semimodular (see [9,50,60,66,
69, 81]) IΦ by

IΦ(x)=
∫

Ω

Φ(x(ω))dµ.

The Orlicz space LΦ= LΦ(Ω,Σ,µ) generated by an Orlicz function Φ is defined as

LΦ=

{

x∈L0 : IΦ(λx)<+∞ for some λ>0

}

.
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We will consider Orlicz spaces LΦ equipped with the Luxemburg norm

‖x‖Φ = inf

{

λ>0 : IΦ

( x

λ

)

≤1

}

.

Although the result, which we will present below, can be easily deduced from The-
orem 2.1 from [36], however for the sake of completeness we present its another easy
proof.

Theorem 2.8. Let (LΦ,‖.‖Φ) be an Orlicz space over a non-atomic and σ−finite measure space
(Ω,Σ,µ) generated by the Orlicz function Φ having finite values only and let (LΦ,‖.‖Φ) be
equipped with the Luxemburg norm ‖.‖Φ. Let EΦ be the subspace of LΦ of all order continuous
elements from LΦ. Then, for any x ∈ LΦ, the distance d(x,EΦ) of the element x from LΦ to its
subspace EΦ is defined by the formula

d(x,EΦ) := inf

{

λ>0 : IΦ

( x

λ

)

<∞

}

.

Proof. We have by definition d(x,EΦ)=inf{‖x−y‖Φ :y∈EΦ} for any x∈LΦ. Let us denote

λ(x)=

{

λ>0 : IΦ

( x

λ

)

<∞

}

for any x∈ LΦ. First, we will show that d(x,EΦ)≤λ(x) for any x∈ LΦ. Taking any x∈ LΦ

and ε>0, we get IΦ

(
x

λ(x)+ε

)

<∞. Let (Tn)∞
n=1 be a sequence in Σ such that 0<µ(Tn)<∞

for any n∈N, T1 ⊂T2 ⊂ ...⊂Tn ⊂Tn+1 ⊂ ... and
⋃∞

n=1 Tn =Ω. Let us take any x∈ LΦ and
define the sequence (xn)∞

n=1 in EΦ by the formula

xn(t)=

{

x(t), when t∈Tn and |xn(t)|≤n

0, in the opposite case.

Then (|xn|)∞
n=1 is a non-decreasing sequence in EΦ and (|x−xn|)∞

n=1 is a non-increasing
sequence in EΦ which is convergent µ−a.e. in Ω to the function θ(t) = 0 for all t ∈ Ω.
Moreover, |x(t)−xn(t)|≤ |x(t)| for µ−a.e. t∈Ω, whence

|x(t)−xn(t)|

λ(x)+ε
≤

|x(t)|

λ(x)+ε
(2.6)

for µ−a.e. t∈Ω. Since the Orlicz function Φ is non-decreasing on R+ and Φ(u)→ 0 as
u→0, from inequality (2.6), we obtain that

Φ

(
|x(t)−xn(t)|

λ(x)+ε

)

≤Φ

(
|x(t)|

λ(x)+ε

)
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and Φ
(
|x(t)−xn(t)|

λ(x)+ε

)

→0 µ−a.e. in Ω as n→∞. Hence, by the fact that IΦ

(
|x|

λ(x)+ε

)

<∞ and

by the Lebesgue dominated convergence theorem, we get the equality

lim
n→∞

IΦ

(
x−xn

λ(x)+ε

)

=0.

Consequently, there exists m∈N such that the inequality ‖x−xn‖≤λ(x)+ε holds for any
n≥m. By the fact that xm ∈EΦ, we conclude that

d(x,EΦ)≤‖x−xm‖≤λ(x)+ε.

By the arbitrariness of ε>0, we obtain that

d(x,EΦ)≤λ(x) (2.7)

for any x∈LΦ.
Now we will prove the opposite inequality. In order to do this, we will show first that

for any x∈LΦ\EΦ, any y∈EΦ and any ε∈ (0,λ(x)), we have

IΦ

(
x−y

λ(x)−ε

)

=∞. (2.8)

Indeed, if there existed x∈LΦ\EΦ, y∈EΦ and ε∈(0,λ(x)) such that IΦ

(
x−y

λ(x)−ε

)

<∞, then

taking α= λ(x)−ε
λ(x)− ε

2
, we would have

∞= IΦ

(
x

λ(x)− ε
2

)

= IΦ

(

α
x−y

λ(x)−ε
+(1−α)

α

(1−α)(λ(x)−ε)
y

)

≤ αIΦ

(
x−y

λ(x)−ε

)

+(1−α)IΦ

(
α

(1−α)(λ(x)−ε)
y

)

<∞,

a contradiction, which finishes the proof of (2.8). Condition (2.8) implies that

∥
∥
∥
∥

x−y

λ(x)−ε

∥
∥
∥
∥

Φ

≥1,

that is, ‖x−y‖≥λ(x)−ε for any x∈LΦ\EΦ, y∈EΦ and ε∈(0,λ(x)). Fixing x∈LΦ\EΦ, we
obtain

d(x,EΦ)= inf{‖x−y‖ : y∈EΦ}≥λ(x)−ε.

By the arbitrariness of ε∈ (0,λ(x)), we get d(x,y)≥λ(x). Combining this inequality with
inequality (2.7), we get d(x,y)=λ(x), which finishes the proof.
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2.3 Approximative compactness in general Banach spaces

Let us now present another important property called approximative compactness.
A nonempty set C⊂ X, where X denotes a real Banach space, is said to be approxima-
tively compact if for any sequence (xn)∞

n=1 in C and any y∈X such that ‖xn−y‖→d(y,C),
it follows that (xn)∞

n=1 has a Cauchy subsequence. X is called approximatively compact
if any nonempty closed and convex set in X is approximatively compact (see [26]).

Recall that approximative compactness was introduced by Efimov and Stečkin in [26].
This property for a Banach space X is strongly related to the approximation theory
(see [4]). Namely, approximative compactness implies that any element in x∈X has the
best approximant in any nonempty closed and convex subset A of X. Recall that y∈A is
the best approximant for x∈X if ‖x−y‖=d(x,A). Moreover, approximative compactness
of a rotund Banach space X guarantees continuity of the function x→ PA(x), called the
metric projection onto A, for any nonempty convex and closed subset A of X and any
x∈X.

It is worth mentioning that every uniformly rotund Banach space is approximatively
compact and that approximative compactness implies reflexivity (see [4]).

A Banach space X is said to have the Kadec-Klee property (or property H for short) if
for any sequence (xn)⊂X and x∈X such that ‖xn‖=‖x‖=1, we have ‖xn−x‖→0 pro-
vided xn → x weakly. Recall that this property was oryginally considered by Radon [80]
and next by Riesz ( [83], [84]), where it has been proven that Lp-spaces (1< p<∞) have
property H, although L1[0,1] has not.

A Banach space X is said to be fully k-rotund (k≥2, k∈N) if every sequence (xn) in
S(X) such that

‖x
(1)
n +x

(2)
n +...+x

(k)
n ‖→ k as n→∞

for all its subsequences (x
(1)
n ), (x

(2)
n ),...,(x

(k)
n ), is a Cauchy sequence. Moreover, 2-fully

rotund Banach spaces are called simply fully rotund spaces. Recall that the notion of
full rotundity was introduced by K. Fan and I. Glicksberg [29]. It is known that k-fully
rotund Banach spaces (k≥2) are approximatively compact (see [45], Corollary 1).

Let us now present an important theorem giving a characterization of approximative
compactness in Banach spaces.

Theorem 2.9. ([42], Theorem 3) A Banach space X is approximatively compact if and only
if X is reflexive and X has the Kadec-Klee property.

Although the proof of this theorem can be found in [42], for the convenience of the
reader we will present it below.

Proof. It is well known (see [89], Corollary 2.4, p. 99) that if all closed subspaces are prox-
iminal, then all linear functionals attain their norm (so X is reflexive). Since approxima-
tive compactness of X implies that all closed subspaces of X are proximinal, the necessity
of reflexivity follows.
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Now we will prove the necessity of the Kadec-Klee property. Suppose that X is ap-
proximatively compact and X has not the Kadec-Klee property. Then there is a sequence
(xn) in X and x∈X such that ‖xn‖=‖x‖=1, xn→x weakly and (xn) does not converge to
x. Passing to a subsequence, if necessary, we can assume that there exists d>0 such that
‖xn−x‖≥ d for any natural number n. Let f ∈X∗ be a norming functional for x, that is,
1= f (x)= ‖ f‖. Set C= {z∈X : f (z)≥1}. Obviously C is a nonempty closed and convex
subset of X. Since ‖ f‖=1, ‖z‖≥1 for any z∈C. Hence d(0,C)=1=‖x−0‖. Since xn → x
weakly, f (xn)→ f (x)=1. Setting zn=xn/ f (xn), we have that zn∈C, because f (zn)=1 for
any n∈N. Moreover, since f (xn)→1 and ‖xn‖=1, we have

‖zn‖=‖zn−0‖→1=d(0,C).

Since X is approximatively compact, (zn) has a Cauchy subsequence (we will denote
it again as (zn)). Since X is a Banach space, ‖zn−z‖→ 0 for some z∈ X. Hence zn → z
weakly. But zn→x weakly, since xn→x weakly and f (xn)→1. Consequently, z=x. Hence
‖zn−x‖→0, which gives immediately that ‖xn−x‖→0, a contradiction. This shows that
approximative compactness implies the Kadec-Klee property.

Sufficiency. Suppose that X is reflexive and X has the Kadec-Klee property. Let C⊂X
be a nonempty, closed and convex set. Assume y∈X and (xn)⊂C is chosen in such a way
that ‖xn−y‖→d(y,C). If d(y,C)=0, then ‖xn−y‖→0 and (xn) is a Cauchy sequence. So
suppose that d(y,C)= d> 0. Since X is reflexive, passing to a subsequence, if necessary,
we can assume that (xn) converges weakly to some x∈X. Since C is closed and convex,
C is weakly closed. Hence x∈C. Moreover,

d=d(y,C)≤‖x−y‖≤ liminf
n→∞

‖xn−y‖=d,

which shows that ‖x−y‖=d. Set zn=(xn−y)/‖xn−y‖ and z=(x−y)/d. Then ‖zn‖=‖z‖=
1 and zn → z weakly, since ‖xn−y‖→ d and xn → x weakly. By the Kadec-Klee property
of X, ‖zn−z‖→ 0 and consequently, ‖xn−x‖→ 0. Hence (xn) is a Cauchy sequence as
required.

Remark 2.6. Let us note here that Rolewicz [85] introduced the notions of the drop in a
Banach space and the drop property for Banach spaces (for any x ∈ X\B(X) the drop
determined by x is the set D(x,B(X)) = conv({x}∪B(X)) and X is said to have the
drop property if for any closed set C, disjoint with B(X), there exists x ∈ C such that
D(x,B(X))∩C = {x}). Montesinos showed in [68] that a Banach space X has the drop
property if and only if X is reflexive and it has property H. Hence, and by virtue of
Thereom 2.9, the drop property and approximative compactness coincide.

Remark 2.7. ([42], Remark 1) Let X be an approximatively compact Banach space and V
be a nonempty, closed and convex subset of X. Suppose x∈X and card(PV(x))=1, where
PV(x)= {v∈V : ‖x−v‖= d(x,V)}. Then for any vn ∈V with ‖x−vn‖→ d(x,V), we have
‖vn−v‖→0, where {v}=PV (x).
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Proof. (See also [42]) Suppose for the contrary that ‖vnk
−v‖≥d>0 for some subsequence

(vnk
) of (vn). Since X is approximatively compact, there exist z∈PV(x) and a subsequence

of (vnk
) (we will also denote it again by (vnk

)) such that ‖vnk
−z‖→0. Since cardPV(x)=1,

we have z=v, which leads to a contradiction.

2.4 Approximative compactness and full rotundity of Musielak-Orlicz spaces

We will present here the criteria for approximative compactness in the class of Musielak-
Orlicz function as well as sequence spaces for the Luxemburg and for the Amemiya
norm. Moreover, we will present criteria for full k-rotundity of Musielak-Orlicz spaces
equipped with the Luxemburg norm in the case of a non-atomic finite measure space.

Let us start with some notations and definitions. Let (Ω,Σ,µ) be a measure space
with a non-atomic and σ−finite measure µ. A function Φ :Ω×R→R+∪{+∞} is called a
Musielak-Orlicz function if

(a) Φ(.,u) is a Σ−measurable function for any u∈R,

(b) the function Φ(t,.) is convex, even, continuous at zero and left-continuous on
(0,+∞) for µ−almost all t ∈ Ω, which means that limu→(bΦ(t))−Φ(t,u) = Φ(t,bΦ(t))
for µ−almost all t∈Ω, where bΦ(t)=sup{u>0 : Φ(t,u)<∞},

(c) Φ(t,0)=0, Φ(t,ut)<+∞ for some ut∈(0,+∞) and Φ(t,u)→∞ as u→∞ for almost
all t∈Ω.

In the case when Ω=N and µ is the counting measure on 2N, we can state that a function
Φ=(Φi)

∞
i=1 is called a Musielak-Orlicz function if

(a) Φi : R → R+∪{+∞} is convex, even, continuous at zero and left-continuous on
(0,+∞) for all i∈N,

(b) Φi(0)=0, Φi(ui)<+∞ for some ui∈ (0,+∞) and Φi(u)→∞ as u→∞ for all i∈N.

Given a Musielak-Orlicz function Φ, we define ρΦ : L0→R+∪{+∞} by

ρΦ( f )=
∫

Ω
Φ(t,| f (t)|)dµ(t).

Then ρΦ is called the modular generated by Φ and the space

LΦ=
{

f ∈L0 : ρΦ(λ f )<+∞ for some λ>0
}

is called the Musielak-Orlicz space generated by Φ. Analogously, for any real sequence
x = (xi)

∞
i=1 (the space of such sequences is denoted by ℓ0) the modular ρΦ at x has the

form

ρΦ(x)=
∞

∑
i=1

Φi(|xi|),



342 Y. Cui, H. Hudzik, R. Kaczmarek, et al. / J. Math. Study, 49 (2016), pp. 325-378

and then the space

ℓΦ =
{

x∈ ℓ
0 : ρΦ(λx)<+∞ for some λ>0

}

is called the Musielak-Orlicz sequence space.
We consider two classical norms in Musielak-Orlicz spaces LΦ (resp. ℓΦ): the Luxem-

burg norm

‖x‖Φ = inf
{

λ>0 : ρΦ

( x

λ

)

≤1
}

and the Amemiya norm

‖x‖A
Φ = inf

{

k>0 :
1+ρΦ(kx)

k

}

(see [9, 69]). In the first case the Musielak-Orlicz space is denoted by LΦ and in the second
case by LA

Φ. Analogously, the respective sequence spaces are denoted by ℓΦ and ℓA
Φ.

A Musielak-Orlicz function Φ : Ω×R+ → R+∪{+∞} is said to satisfy the
∆2−condition (Φ ∈ ∆2) if for any d > 1 there exist k > 1 and c ∈ L1(Ω), c ≥ 0, such that
for any u∈R+ and µ−a.e. t∈Ω, we have

Φ(t,du)≤ kΦ(t,u)+c(t).

A Musielak-Orlicz function Φ=(Φi)
∞
i=1 is said to satisfy the δ2−condition (Φ∈ δ2) if for

any d>1 there exist a>0, k>1, i0∈N and a non-negative sequence (ci)∈ℓ1 such that the
inequality

Φi(du)≤ kΦi(u)+ci

holds for all i > i0 and u ∈ R+ satisfying Φi(u)≤ a. For some equivalent forms of the
∆2−condition and the δ2−condition see [40] and [69].

Let us denote by Φ∗ the function complementary to Φ in the sense of Young, i.e.,
Φ∗(t,u) = supv>0{vu−Φ(t,v)} for any u ≥ 0 and µ−a.e. t ∈Ω (analogously Φ∗ = (Φ∗

n),
where Φ∗

n(u)=supv>0{vu−Φn(v)} for any u≥0 and all n∈N in the sequence case).
For any non-zero x∈LA

Φ or x∈ ℓA
Φ, we define

k∗(x)= inf{k≥0 : IΦ∗ (p◦k|x|)≥1}

k∗∗(x)=sup{k≥0 : IΦ∗ (p◦k|x|)≤1},

where p(t,.) is the right hand side derivative of Φ(t,.) on R+ and p◦k|x|(t) := p(t,k|x(t)|)
for µ−a.e. t ∈ Ω. Next we define K(x) = [k∗(x),k∗∗(x)], if k∗∗(x)< ∞. Recall that this
interval has the property that ‖x‖A

Φ = 1
k (1+ρΦ(kx)) if and only if k∈K(x). If k∗(x)<∞

and k∗∗(x)=∞, we have ‖x‖A
Φ = 1

k (1+ρΦ(kx)) for any k∈ [k∗(x),k∗∗(x)) and also

‖x‖A
Φ = lim

k→∞

1

k
(1+ρΦ(kx))=

∫

Ω
A(t)|x(t)|dµ,

where A(t)= lim
k→∞

1
u Φ(t,u).
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Since, by Theorem 2.9, in Banach spaces reflexivity and the Kadec-Klee property are
strictly connected with an approximative compactness, let us start from recalling the fol-
lowing results:

Lemma 2.4. ([42], Theorem 4)

(i) A Musielak-Orlicz space LΦ is reflexive (with respect to the Luxemburg and
Amemiya norms) if and only if Φ∈∆2 and Φ∗∈∆2.

(ii) A Musielak-Orlicz sequence space ℓΦ is reflexive (with respect to the Luxemburg
and Amemiya norms) if and only if Φ∈δ2 and Φ∗={Φ∗

i : i∈N}∈δ2.

Lemma 2.5. ([22]) Let Φ = (Φi) be a Musielak-Orlicz function. Set, for any i ∈ N, bi =
sup{u> 0 : Φi(u)<+∞}. Then the Musielak-Orlicz space (lΦ,‖.‖A

Φ) has the Kadec-Klee

property if and only if Φ∈δ2 or
∞

∑
i=1

Φ∗
i (ci)≤1, where for any i∈N,

ci =

{

bi, if Φ∗
i (bi)<1

(Φ∗
i )

−1(1), if Φ∗
i (bi)≥1.

Lemma 2.6. ([19]) The Orlicz space LA
Φ is rotund if and only if

(i) Φ is strictly convex,

(ii) lim
u→∞

R(u)=∞, where R(u)=A|u|−Φ(u) and A= lim
u→∞

Φ(u)
u .

Theorem 2.10. ([42], Theorem 9) Let Φ = (Φi)
∞
i=1 be a Musielak-Orlicz function. Then

the Musielak-Orlicz space ℓΦ endowed with the Luxemburg norm has the Kadec-Klee
property with respect to the coordinatewise convergence if and only if Φ satisfies the
δ2−condition and for every i∈N there is ui>0 such that Φi(ui)=1.

Let us now present the main theorems.

Corollary 2.5. ( [42], Corollary 2) Suppose that Φ=(Φi)
∞
i=1 be a Musielak-Orlicz function

such that for any i ∈N there exists ui > 0 with Φi(ui) = 1. Then ℓΦ is approximatively
compact if and only if ℓΦ is reflexive.

Proof. The proof follows immediately from Theorems 2.9 and 2.10.

Theorem 2.11. ([42], Theorem 10) The Musielak-Orlicz space ℓA
Φ equipped with the Amemiya

norm is approximatively compact if and only if it is reflexive, that is, if and only if Φ∈ δ2 and
Φ∗∈δ2.

Theorem 2.12. ([42], Theorem 11) Let X= LA
Φ. The following conditions are equivalent:

(i) X is approximatively compact,
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(ii) X is reflexive and rotund,

(iii) Φ,Φ∗∈∆2 and Φ(t,.) is strictly convex on R for µ−a.e. t∈Ω.

Theorem 2.13. ([42], Theorem 12) Let X=LΦ, where µ is σ−finite, atomless measure. Then X
is approximatively compact if and only if X is reflexive and rotund.

Theorem 2.14. ([42], Theorem 13) Let µ be non-atomic, µ(Ω)<∞ and Φ be a Musielak-Orlicz

function such that
Φ(t,u)

u → 0 as u→ 0 for µ−a.e. t∈Ω. Then the Musielak-Orlicz space LΦ is
fully k-rotund if and only if Φ(t,.) are strictly convex functions for µ−a.e. t∈Ω and Φ∈∆2,
Φ∗∈∆2.

2.5 Approximative compactness of Orlicz spaces

Now we will present some criteria for approximative compactness of Orlicz function
spaces and Orlicz sequence spaces generated by N-functions Φ for both: the Luxem-
burg ‖.‖Φ and the Amemiya norm ‖.‖o

Φ. Recall that Orlicz spaces are the special case of
Musielak-Orlicz spaces.

In what follows, let us take the Lebesgue measure space (Ω,Σ,m), where Ω⊂R and
m(Ω)<∞ and let us define, for any t∈Ω and u∈R, the Musielak-Orlicz function Ψ(t,u):=
Φ(u), where Φ is an N-function on R (for the definition of the N-function we refer to
[50]). Then LΨ= LΦ or LA

Ψ = LΦ
A =(LΦ,‖.‖o

Φ) is, in fact, an Orlicz space equipped with the
Luxemburg or the Amemiya norm (which is equal to the Orlicz norm in general, that is,
not only for the N-functions -see [44]), respectively.

Recall that Φ∈∆2(0) [resp. Φ∈∆2(∞)] iff limsup
Φ(2u)
Φ(u)

<∞ as u→ 0 [resp. u→∞].

Φ∈∆2(R+) if Φ∈∆2(0) and Φ∈∆2(∞). Φ is said to be strictly convex if for all u,v∈R

with u 6=v it holds that

Φ

(
u+v

2

)

<
Φ(u)+Φ(v)

2
.

Let us denote by Φ∗ the function complementary to Φ in the sense of Young.

Theorem 2.15. ([45], Theorem 1) The Orlicz sequence space (ℓΦ,‖.‖Φ) is approximatively com-
pact if and only if Φ∈∆2(0) and Φ∗∈∆2(0).

Theorem 2.16. ([45], Theorem 2 and Remark 1) The Orlicz function space (LΦ,‖.‖Φ)
equipped with the Luxemburg norm is approximatively compact if and only if Φ is strictly convex
on R and Φ∈∆2(∞) and Φ∗∈∆2(∞) in the case of a non-atomic finite Lebesgue measure space
while Φ∈∆2(R+) and Φ∗∈∆2(R+) in the case of a non-atomic infinite Lebesgue measure space.

Theorem 2.17. ([45], Theorem 3 and Remark 1) The Orlicz function space (LΦ,‖.‖o
Φ)

equipped with the Amemiya norm is approximatively compact if and only if Φ is strictly con-
vex on R and Φ∈∆2(∞) and Φ∗ ∈∆2(∞) in the case of a non-atomic finite Lebesgue measure
space while Φ∈∆2(R+) and Φ∗∈∆2(R+) in the case of a non-atomic infinite Lebesgue measure
space.
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2.6 Approximative compactness of Orlicz-Lorentz spaces

Let (I,Σ,m) be the Lebesgue measure space with I=(0,1) or I=(0,∞). Let Φ:[0,∞]→[0,∞]
be an Orlicz function (i.e. a Musielak-Orlicz function which does not depend on the
parameter t) and ω : I → (0,∞) be a weight function (i.e. a nonincreasing and locally
integrable function with respect to the measure m and such that

∫ ∞

0
ωdm=∞ if I=(0,∞)).

For any x∈L0, x∗ denotes the nonincreasing rearrangement of |x| defined by

x∗(t)= inf{λ>0 : µx(λ)≤ t}

for any t> 0. (by convention inf(∅)=∞), where µx(λ)= µ({s∈Ω : |x(s)|>λ}) for any
λ>0. The Orlicz-Lorentz function space ΛΦ,ω is defined by

ΛΦ,ω =

{

x∈L0(m) :
∫

I
Φ(λx∗)ωdm<∞ for some λ>0

}

.

In the case of counting measure on 2N the Orlicz-Lorentz sequence space λΦ,ω is defined
by

λΦ,ω =

{

x=(x(k))∈ ℓ
0 :

∞

∑
k=1

Φ(λx∗(k))ω(k)<∞ for some λ>0

}

.

Here ω=(ω(k)) is a weight sequence, that is, a nonincreasing sequence of positive reals
such that Σ∞

k=1ω(k) =∞. In this case x∗ is nothing else but the permutation of |x| such
that x∗ is nondecreasing sequence if suppx=N.

The Orlicz-Lorentz function (resp. sequence) space is a symmetric function (resp.
sequence) space with the Fatou property, if it is equipped with with the norm

‖x‖ω
Φ = inf

{

λ>0 : ρω
Φ

( x

λ

)

≤1
}

,

where ρω
Φ(x)=

∫

Ω
Φ(x∗(t))ω(t)dµ (resp. ρω

Φ(x)=
∞

∑
n=1

Φ(x∗(n))ω(n) in the sequence case).

The symmetry of the space means the fact that if x and y are equi-measurable, that is,
µx =µy, then ‖x‖Φ,ω =‖y‖Φ,ω .

We say that an Orlicz function Φ satisfies condition ∆2(R+) (Φ∈∆2(R+) for short) if
there is a positive constant K such that the inequality Φ(2u)≤KΦ(u) holds for all u>0.
We say that an Orlicz function Φ satisfies condition ∆2 at zero (Φ∈∆2(0) for short) [resp.
∆2 at infinity (Φ ∈ ∆2(∞) for short)] if there are positive constants K and a such that
Φ(a)>0 [resp. Φ(a)<∞] and the inequality Φ(2u)≤KΦ(u) holds for all u∈ [0,a] [resp.
for all u≥ a].

Theorem 2.18. ([42], Theorem 15)

(i) If Φ is an Orlicz function vanishing only at zero and ω : I→R+ is a weighted function that
is strictly decreasing on I, then the Orlicz-Lorentz space ΛΦ,ω is approximatively compact
if and only if ΛΦ,ω is reflexive, that is, Φ and Φ∗ satisfy condition ∆2(∞) if m(I)<∞ and
condition ∆2(R+) if m(I)=∞, and

∫

I ω(t)dm=∞ if m(I)=∞.
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(ii) If Φ is an Orlicz function vanishing only at zero and (ωn) is a weighted sequence from
c0, then the Orlicz-Lorentz space λΦ,ω is approximatively compact if and only if Φ and Φ∗

satisfy condition ∆2(0) and
∞

∑
n=1

ωn=∞.

Recall also the following characterization of the Kadec-Klee property in the Orlicz-
Lorentz sequence spaces.

Theorem 2.19. ([42], Theorem 14) Suppose that Φ : R+→R+ is a convex function. Then the
Orlicz-Lorentz sequence space λΦ,ω has the Kadec-Klee property if and only if

a(Φ) :=sup{u>0 : Φ(u)=0}=0, Φ∈∆2(0),
∞

∑
n=1

ωn =+∞.

2.7 Monotonicity properties of Banach lattices and their relationships to
dominated best approximation problems

Let us come back to the best approximation problems from the beginning of Section 2.
If X = (X,‖.‖) is a Banach lattice, A ⊂ X, A 6= ∅, x ∈ X and x ≤ A (that is x ≤ y for any
y ∈ A) or x ≥ A, then the projection PA : X → A can be called the dominated projection
and the problems of the existence of PA(x) for any x∈X, its non-emptiness as well as its
uniqueness can be called dominated best approximation problems.

It is worth noticing that in this special case, the role of rotundity of Banach spaces
plays the notion of strict monotonicity of Banach lattices X and the role of reflexivity of
Banach spaces plays the notion of order continuity of Banach lattices of X.

Also uniform rotundity and local uniform rotundity of Banach spaces have their
counterparts in Banach lattices. The counterpart of uniform rotundity is the uniform
monotonicity and local uniform rotundity have two different counterparts called lower
local uniform monotonicity and upper local uniform monotonicity. Also these notions
are useful in the dominated best approximation problems.

We refer the readers interested in these problems to the original papers, like for ex-
ample: [10, 11, 13, 14, 20, 30, 31, 38, 39, 41, 43, 49, 51] and to the survey paper [32].

2.8 Proximinality of some subspaces of Calderón-Lozanovskiı̆ spaces Eϕ

In the sequel of this subsection, (Ω,Σ,µ) is a complete σ−finite measure space and
L0=L0(Ω,Σ,µ) denotes the space of all (equivalence classes of) Σ−measurable real func-
tions defined on Ω. Recall that L0 is a complete vector lattice with the order x≤ y if and
only if x(t)≤y(t), µ−a.e. in Ω.

In this subsection, by a Banach function space (Köthe space) over (Ω,Σ,µ) we under-
stand a Banach space (E,‖.‖) with E⊂L0(Ω,Σ,µ) satisfying the following two conditions:

1. EjL0 and if x∈E, y∈L0 and |y|≤ |x| µ−a.e., then y∈E and ‖y‖E ≤‖x‖E.
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2. If A∈Σ with 0<µ(A)<+∞ then 1A ∈E\{0}.

We say that x∈E is order continuous (o-continuous for short) if for every downward
directed set {xi}i∈I in E such that xi↓0 and xi≤|x| µ−a.e., we have ‖xi‖E↓0. Denote by Ea

the closed ideal of o-continuous elements of E. If E=Ea, then E is called o-continuous. We
say that E has the Fatou property if xn ∈E, x∈L0, 0≤ xn ↑x, in order, and supn‖xn‖E <∞

imply x∈ E and ‖x‖E = lim
n→∞

‖xn‖E. In the sequel we assume that E is order continuous

and that it has the Fatou property.
Although considerations in [36] were led not only for convex functions ϕ, we re-

strict ourselves within this and the next subsection to convex Orlicz functions ϕ only
(i.e. ϕ :R→ [0,+∞] is called in this subsection and the next one an Orlicz function if ϕ
is even, convex, non-decreasing and left continuous for x>0, Φ(0)=0 and Φ(x)→∞ as
x→∞). Since on any open interval every convex and finite-valued function is continuous,
the left continuity of the Orlicz function ϕ means that limu→b(ϕ)− ϕ(u)= ϕ(b(ϕ)).

For an Orlicz function ϕ, let us define

a(ϕ) :=sup{t≥0 : ϕ(t)=0}, b(ϕ) :=sup{t≥0 : ϕ(t)<∞}.

If b(ϕ)= 0, we say that ϕ is degenerated. Unless stated otherwise, we assume that ϕ is
not degenerated. Consider on L0 the modular

ρ(x) :=

{

‖ϕ(x)‖E, if ϕ(x)∈E

∞, otherwise

(see [36]) and define

Eϕ ={x∈L0 : ϕ(λx)∈E for some λ>0}.

Let us notice that if b(ϕ) = 0, then Eϕ = {0}. The space Eϕ is considered as a Banach
function lattice under the Luxemburg norm ‖.‖L as well as under the Amemiya norm,
denoted in this subsection, following [36], by ‖.‖o. These norms are defined analogously
as in the previous subsections of this section.

Remark 2.8. It is known that the space (Eϕ,‖.‖L) is isometric to the Calderón-Lozanovskiı̆
space Ψ(L∞(Ω,Σ,µ),E), with Ψ(s,t)= sϕ−1(t/s), s,t∈R+, ϕ−1 being the generalized in-
verse of ϕ. Recall that, if Ψ:[0,+∞)2→[0,+∞) is a homogeneous function, separately con-
cave and such that both functions Ψ(x,.), Ψ(.,y) vanish only at 0, to any couple (E0,E1) of
Banach function lattices on Ω we can associate the Calderón-Lozanovskiı̆ space Ψ(E0,E1)
(see [6], [59]). It is the Banach function lattice that consists of all x∈L0 such that

|x|≤λΨ(|x0 |,|x1|) (2.9)

holds µ−a.e. for some λ> 0 and x0 ∈ BE0
, x1 ∈ BE1

with the norm ‖x‖Ψ(E0,E1)= infimum
of the set of λ > 0 for which there exists xi ∈ BEi

, i = 0,1, such that the inequality (2.9)
holds true. In the case when E0 = L∞(Ω,Σ,µ) and E1 = E, this norm coincides with the
Luxemburg norm generated by the modular ρ.
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For the Calderón-Lozanovskiı̆ space Eϕ and an ideal S in Eϕ let us define

H(S) :=

{

x∈Eϕ :∀λ>0∃s∈S such that ρ

(
x−s

λ

)

<+∞

}

.

A function f ∈ L0 is said to be a real simple function if f =∑
n
i=1 xi ·1Ai

, where xi ∈R

and Ai ∈ Σ with µ(Ai)< ∞. Denote by So the ideal generated in L0 by the real simple
functions (which in the sequence case means that So consists of all sequences having the
finite number of coordinates different from 0).

Theorem 2.20. ([36], Theorem 3.2) Let (Ω,Σ,µ) be a σ-finite complete measure space, E a
Banach function lattice over Ω which is order continuous and has the Fatou property, So the ideal
in L0 generated by the real simple functions from L0 and let ϕ be an Orlicz function. Then

1. If ϕ is finite (i.e. ϕ(R)⊂ [0,∞)), then (Eϕ)a = H({0}) and H({0}) is proximinal in
(Eϕ,‖.‖L).

2. If ϕ is infinite, then H(So) is proximinal in (Eϕ,‖.‖L).

If f : Ω→R is a function and ε>0, define for any t∈Ω,

fε(t)=

{

f (t), if f (t)≥ ε

0, otherwise.

If ϕ is an Orlicz function, then we say that ((Ω,Σ,µ),E,ϕ) satisfies the ∆∞
2 So-condition

whenever for any f ∈Eϕ and any ε>0, we have that fε ∈Hϕ(So) := {x∈Eϕ :∀λ>0, ∃s∈
So such that ρϕ

(
x−s

λ

)
<+∞}. If ϕ is degenerated, then the ∆∞

2 So-condition is always sat-
isfied.

In the following theorem we characterize the ∆∞
2 So-condition.

Theorem 2.21. ([36], Theorem 3.4) Let (Ω,Σ,µ) be a σ-finite complete measure space, E a
Banach function lattice over Ω which is order continuous and has the Fatou property, So the ideal
in L0 generated by the real simple functions from L0 and let ϕ be a finite Orlicz function such that
a(ϕ)=0. Then, we have

(a) If µ is not purely atomic, the ∆∞
2 So-condition is satisfied if and only if ϕ∈∆∞

2 .

(b) If µ is purely atomic and there exists c>0 such that, for each atom A, we have ‖1A‖E ≥ c,
the ∆∞

2 So-condition is always satisfied.

Theorem 2.22. ([36], Theorem 3.3) Let (Ω,Σ,µ) be a σ-finite complete measure space, E a
Banach function lattice over Ω which is order continuous and has the Fatou property, So the ideal
in L0 generated by the real simple functions from L0 and let ϕ be an Orlicz function. Then the
following are equivalent:

1. H(So) is proximinal in (Eϕ,‖.‖o).
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2. One of the following two conditions holds: H(So) is trivially proximinal (i.e. H(So)=Eϕ)
or a(ϕ)> 0 and, if φ is the Orlicz function (possibly degenerated) such that φ(t)= ϕ(t+
a(ϕ)), t>0, then the triple ((Ω,Σ,µ),E,φ) satisfies the ∆∞

2 So-condition.

Corollary 2.6. ([36], Corollary 3.1) Let (Ω,Σ,µ) be a σ-finite complete measure space, E
a Banach function lattice over Ω which is order continuous and has the Fatou property
and let ϕ be a finite Orlicz function. Then, we have:

(a) If µ is not purely atomic, H(So) is proximinal in (Eϕ,‖.‖o) if and only if H(So) is
trivially proximinal or a(ϕ)>0 and ϕ∈∆∞

2 .

(b) If µ is purely atomic and there exists c > 0 such that for each atom A, we have
‖1A‖E≥ c, H(So) is proximinal in (Eϕ,‖.‖o) if and only if H(So) is trivially proximi-
nal or a(ϕ)>0.

Theorem 2.23. ([36], Theorem 3.5) Let (Ω,Σ,µ) be a σ-finite complete measure space, E a
Banach function lattice over Ω which is order continuous and has the Fatou property and let ϕ be
an Orlicz function with 0= a(ϕ)<b(ϕ)<∞. The following are equivalent:

1. The condition ∆∞
2 So is satisfied.

2. If A∈Σ and 1A ∈Eϕ, then µ(A)<∞.

3. For any ε>0 and any h∈Eϕ we have that hε ∈So.

Hence, if µ(Ω)<∞, the condition ∆∞
2 So is satisfied.

Corollary 2.7. ([36], Corollary 3.2) Let (Ω,Σ,µ) be a σ-finite complete measure space, E
a Banach function lattice over Ω which is order continuous and has the Fatou property
and let ϕ be an Orlicz function with b(ϕ)<∞. Then the following are equivalent:

1. H(S0) is proximinal in (Eϕ,‖.‖o).

2. One of the following two conditions are satisfied: (a) or (b), where

(a) H(So) is trivially proximinal.

(b) a(ϕ)>0 and one of the following two conditions are satisfied: 1A ∈Eφ, A∈Σ,
implies that µ(A)<∞, or φ is degenerated, φ being the Orlicz function such
that φ(t)= ϕ(t+a(ϕ)), t>0.

Remark 2.9. In this subsection we have assumed that the Banach function lattice E satis-
fies the condition 1A∈E\{0} whenever A∈Σ and 0<µ(A)<∞. This condition makes the
proofs presented in [36] easier, but it is not necessary. Namely, we can drop it and prove
all the results using, instead of So, the ideal of L0 generated by the real simple functions
of E.
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2.9 Proximinality of some subspaces of Orlicz spaces

In this subsection we will present the interpretation of main results of the previous
subsection in the case when E = L1(Ω,Σ,µ). Recall that if ϕ is an Orlicz function and
E= L1(Ω,Σ,µ), then the space Eϕ is exactly the Orlicz space Lϕ(Ω,Σ,µ).

Theorem 2.24. ([36], Corollary 4.2) Let (Ω,Σ,µ) be a σ−finite complete measure space and ϕ
be an Orlicz function. Then:

1. If ϕ is finite, then (Lϕ)a=H({0}) and H({0}) is proximinal in (Lϕ,‖.‖L).

2. If ϕ is infinite, then H(So) is proximinal in (Lϕ,‖.‖L).

Proof. This is consequence of Theorem 2.20.

Theorem 2.25. ([36], Corollary 4.3) Let (Ω,Σ,µ) be a σ−finite complete measure space and ϕ
be a finite Orlicz function. Then

(a) If µ is not purely atomic, then H({0}) is proximinal in (Lϕ,‖.‖o) if and only if H({0}) is
trivially proximinal or a(ϕ)>0 and ϕ∈∆∞

2 .

(b) If µ is purely atomic and there exists c> 0 such that for each atom A we have µ(A)≥ c,
H({0}) is proximinal in (Lϕ,‖.‖o) if and only if H({0}) is trivially proximinal or a(ϕ)>0.

Proof. This is a consequence of Corollary 2.6.

Remark 2.10. Concerning Corollary 2.6 and Theorem 2.25, when µ is purely atomic and
there exists a sequence of atoms {An}n≥1 such that µ(An)→0, it is difficult to express the
condition ∆∞

2 So in terms of a suitable requirement on ϕ. Of course, the condition ϕ∈∆2

is sufficient but not necessary in general in order that the condition ∆∞
2 So be satisfied.

Theorem 2.26. ([36], Corollary 4.4) Let (Ω,Σ,µ) be a σ−finite complete measure space and ϕ
be an Orlicz function with b(ϕ)<∞. Then the following are equivalent:

(A) H(So) is proximinal in (Lϕ,‖.‖o).

(B) H(So) is trivially proximinal or a(ϕ)>0.

Proof. This follows from Corollary 2.7 and the fact that if 1A ∈L1 then µ(A)<∞.

Consider the space L1+L∞ with the norm

‖x‖= inf
{

‖x1‖1+‖x2‖∞ : x= x1+x2, x1∈L1, x2∈L∞
}

,

for any x∈L1+L∞. It is known that if ϕ :R→ [0,∞) is defined as

ϕ(t)=

{

0, if |t|≤1

|t|−1, if |t|>1,
(2.10)
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then (L1+L∞,‖.‖) is exactly the Orlicz space (Lϕ,‖.‖o). Also, the space L1∩L∞ with
the norm ‖x‖ = max{‖x‖1,‖x‖∞} for any x ∈ L1∩L∞, coincides with the Orlicz space
(Lψ,‖.‖L), where

ψ(t)=

{

|t|, if |t|≤1

∞, if |t|>1.
(2.11)

Theorem 2.27. ([36], Corollary 4.5) Let (Ω,Σ,µ) be a σ−finite complete measure space. Then

(A) If ϕ is defined as in (2.10), then:

1. H({0})={x∈Lϕ :∀λ>0,
∫

|x|>λ
(|x|−λ)<∞}.

2. H({0}) is proximinal in (Lϕ,‖.‖L) and in (Lϕ,‖.‖o).

(B) If ψ is defined as in (2.11), then H(So) is trivially proximinal in Lψ, i.e. H(So)= Lψ.

Theorem 2.28. ([36], Corollary 4.6) Let (Ω,Σ,µ) be a σ−finite complete measure space. Then
H(So)=So is proximinal in (L∞,‖.‖∞).

Proof. This is a consequence of Theorem 2.20 or Corollary 2.7 (because in L∞= Lψ with ψ
defined in (2.11), and the norms ‖.‖L and ‖.‖o coincide in Lψ).

If ϕ is an Orlicz function and I a set, let us denote by ℓϕ(I) the Orlicz space

ℓϕ(I)=

{

x∈R
I : ∃λ>0, ∑

i∈I

ϕ(xi/λ)<∞

}

.

Theorem 2.29. ([36], Corollary 4.8) Let I be a set and ϕ be a convex Orlicz function. Then the
Orlicz space ℓϕ(I) satisfies:

(A) H(So) is proximinal in (ℓϕ,‖.‖L).

(B) H(So) is proximinal in (ℓϕ,‖.‖o) if and only if H(So) is trivially proximinal or a(ϕ)>0.

Proof. (A) is the consequence of Theorem 2.24 and (B) follows from Theorems 2.25 and
2.26.

Remark 2.11. The main results of Subsection 2.8 can be also applied to other inter-
esting classes of spaces, like for example, the Orlicz-Lorentz spaces and the Calderón-
Lozanovskiı̆-Musielak spaces Eϕ (where ϕ is now a Musielak-Orlicz function).
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3 Applications of geometry of Banach spaces in some problems

of generalized inverses

The observation that generalized inverses are like prose (Good Heavens! For more than
forty years I have been speaking prose without knowing it - Molière, Le Bourgois Gentil-
homme) is nowhere truer than in the literature of linear operators. Generalized inverses
of integral and differential operators have been studied by Fredholm, Hilbert, Schmidt,
Bounitzky, Hurwitz, and others, before E. H. Moore introduced formally the concept of
generalized inverses in an algebraic setting, see, e.g., the historical survey by Reid [82].

The theory of generalized inverses has its genetic roots essentially in the context of
so called ”ill-posed” linear problems. It is well known that if A is a nonsingular (square)
matrix, then there exists a unique matrix B, which is called the inverse of A, such that
AB= BA= I, where I is the identity matrix. If A is a singular or a rectangular (but not
square) matrix, no such matrix B exists. If A−1 exists, then the system of linear equations
Ax=b has the unique solution x=A−1b for each b. On the other hand, in many cases, so-
lutions of a system of linear equations exist even when the inverse of the matrix defining
these equations does not exist. Also in the case when the equations are inconsistent, we
are often interested in a least-squares solution, i.e., vectors that minimize the sum of the
squares of the residuals. These problems, along with many other problems in numerical
analysis, numerical linear algebra, linear programming, optimization, optimal control,
statistics, game theory, inverse problems, differential equations, and other areas of analy-
sis and applied mathematics, are readily handled via the concept of a generalized inverse
(or pseudo inverse) of a matrix or a linear operator [2].

3.1 Geometric properties of Banach spaces related to generalized inverses

The concept of the duality mapping is one of the most important geometric concepts in
Banach spaces. Certain geometric or topological properties in some Banach spaces can
be characterized by this mapping.

Definition 3.1. ([94]) If X is a Banach space, then the set-valued mapping FX : X⇉X∗ defined
by

FX(x)=
{

x∗∈X∗ : 〈x∗,x〉=‖x‖2=‖x∗‖2
}

, ∀x∈X

is called the duality mapping of X.

It is well known that FX(x) 6= ∅. Namely, it is well known that for any x ∈ X there
exists x∗ ∈ X∗ such that ‖x∗‖= 1 and x∗(x) = ‖x‖. Let us note that if y∗ := ‖x‖x∗ then
‖y∗‖=‖x‖ and y∗(x)=‖x‖x∗(x)=‖x‖2 =‖y∗‖2, that is, y∗∈FX(x).

Remark 3.1. (1) FX is a homogeneous set-valued mapping;
(2) FX is injective if and only if X is strictly convex;
(3) FX is surjective if and only if X is reflexive;
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(4) FX is single-valued if and only if X is smooth;
(5) FX is additive if and only if X is Hilbert space.

Definition 3.2. ([89]) Let X be a Banach space, K ⊂ X, the set-valued mapping PK : X⇉K
defined by

PK(x)={y∈K :‖x−y‖=dK(x)}, ∀x∈X,

where dK(x)= infy∈K‖x−y‖ is called the metric projection.

Let us recall the following definitions and fix some notations for any K⊂X, K 6=∅:

1. K is said to be proximinal if PK(x) 6=∅ for any x∈X;

2. K is said to be semi-Chebyshev if PK(x) is at most a single point set for each x∈X;

3. K is called a Chebyshev set if it is both proximinal and semi-Chebyshev;

4. When K is a Chebyshev set, we denote PK(x) by πK(x) for x∈X.

The metric projection from X onto K⊂X has some relationships to the structure of the
Banach spaces X.

Lemma 3.1. ([94]) If X is a Banach space, then:

(1) For any closed convex non-empty set C⊂X, we have that PC(x) 6=∅ for each x∈X if and
only if X is reflexive.

(2) For any closed convex set C⊂X, the set PC(x) is at most a singleton for each x∈X if and
only if X is strictly convex.

In 2001 and 2005, Y. W. Wang, H. Wang, H. Hudzik and W. Song generalized the fa-
mous Riesz orthogonal decomposition theorem in Hilbert spaces to generalized orthog-
onal decomposition theorem in Banach spaces, by applying the duality mapping and the
metric projection. It is one of key tools for the research on generalized inverse of opera-
tors in Banach spaces (see [46], [90]).

Theorem 3.1. ([46]) Let L be a proximinal subspace of X. Then for any x ∈ X, we have the
decomposition

x= x1+x2,

where x1 ∈ L and x2 ∈ F−1
X

(
L⊥
)
, where L⊥= {x∗ ∈X∗ : 〈x∗,x〉=0∀x∈ L} and F−1

X (L⊥) is the

counter-image of L⊥, so in this case we have X= L+F−1
X (L⊥). If L is a Chebyshev subspace of

X, then the decomposition is unique and

x=πL(x)+x2, x2∈F−1
X (L⊥).

In this case we have X=πL(x)∔F−1
X (L⊥).
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Metric projection is a nonlinear and homogeneous operator in general, which have
the following linear and quasi-linear characterizations.

Lemma 3.2. ([94]) If L is a closed subspace of X, then the following statements are equivalent:

(i) πL is a linear operator;

(ii) π−1
L (θ) is a linear subspace of X;

(iii) π−1
L (y) is a linear manifold of X for every y∈L .

Lemma 3.3. ([94]) If X is a normed linear space, and L is a subspace of X, then:

(i) π2
L(x)=πL(x) for all x∈D(πL), i.e. πL is idempotent;

(ii) ‖x−πL(x) ‖≤‖x‖ for all x∈D(πL).

Furthermore, if L is a semi-Chebyshev subspace, then:

(iii) πL(αx)=απL(x) for all x∈X and α∈ R, i.e. πL is homogeneous;

(iv) πL(x+y)=πL(x)+πL(y)=πL(x)+y for all x∈D(πL) and y∈L, i.e. πL is quasi-

additive.

Although single valued metric projection is, as we saw above, nonlinear, it is idempo-
tent, bounded, homogeneous and quasi-additive. These linear characterizations motivate
introducing the following definition.

Definition 3.3. ([57]) Let V be a linear space. A mapping S : V → V is called a quasi-linear
projector on V, if S satisfies the following conditions:

(1) S is homogeneous;

(2) S is idempotent, i.e. S2=S;

(3) S is quasi-additive with respect to L=R(S), where

R(S)={v∈V : v=S(u),u∈V}

is the range of S. In this case, we may denote S=SL.

Definition 3.4. ([26]) A nonempty subset C of X is said to be approximatively compact, if for
any sequence {xn} in C and any y∈X such that

||xn−y||→dist(y,C) := inf{||y−z|| : z∈C} ,

we have that {xn} has a Cauchy subsequence. X is called approximatively compact if any
nonempty closed and convex subset of X is approximatively compact.

If a semi-Chebyshev closed subset C ⊂ X is approximatively compact, then C is a
Chebyshev subset and the metric projector πC is continuous (see [12]). This is the con-
tinuity characteristic, which plays a role in building selections of metric generalized in-
verses.
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3.2 Generalized inverses in Banach spaces

The first result for a generalization from finite dimensional spaces to infinite-dimensional
spaces for the theory of generalized inverses was done by Y. Y. Tseng. He studied the gen-
eralized inverses of unbounded linear operators in Hilbert spaces via orthogonal projec-
tor, which was later named the Tseng inverse (see [92]).

There are many research achievements regarding generalized inverses of operators in
Hilbert spaces, such as the optimal approximation solution of two-point boundary value
problems of linear differential equations, singular integral equations and the singular op-
timal control problems in Hilbert spaces, ect. ([2, 54, 58, 62]).

Throughout this section, X and Y will denote two real Banach spaces. Let D(T),
R(T) and N(T) be the domain, the range and the null space of an operator T, respec-
tively. The space of all bounded linear operators from X to Y is denoted by B(X,Y). We
write H(X,Y),L(X,Y) for the space of all bounded homogeneous operators and all linear
operators from X to Y, respectively.

3.2.1 Linear generalized inverses of operators in Banach spaces

An operator T+ ∈ B(Y,X) is said to be a generalized inverse of an operator T ∈ B(X,Y)
provided that TT+T=T and T+TT+=T+, which is a generalization of the inverse T−1

of T. It is known that T+ is a linear operator.
In general, an operator T ∈ B(X,Y) has a generalized inverse in B(Y,X) if and only

if N(T) and R(T) are both split, that is, there exist linear subspaces R+⊂X and N+⊂Y
such that the following decompositions of X and Y hold:

X=N(T)⊕R+, Y=R(T)⊕N+.

The linear subspaces R+ and N+ which appeared in the last equalities are called topo-
logical complements of N(T) and R(T), respectively.

Since 1970 it was natural and important to extend the notion of generalized inverses
of linear operators from Hilbert spaces to Banach spaces due to the applications of the
generalized inverses.

With this aim, an advanced seminar was sponsored by the Mathematics Research
Center at the University of Wisconsin, Madison, October 8–10, 1973, edited by M. Z.
Nashed. Nashed and Votruba [75] present the most comprehensive treatment to date of
the general theory of generalized inverses of linear operators. A number of new concepts
and results concerning generalized inverses in abstract spaces and related projectional,
extremal and proximal properties are discussed themselves in details. A unique algebraic
generalized inverse which depends on a choice of projectors with ranges, which are com-
plementary to the range and null space of a given linear transformation, is introduced.
Various types of generalized inverses are investigated when the domain space, the range
space, or both of them are linear topological spaces. The discussion begins with some
helpful advice on the sources and types of difficulties which may arise together with the
introduction of topologies. For linear transformations which take a vector space into a
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topological vector space and which have a range whose closure is topologically comple-
mented, the concept of a right-topological inner inverse is introduced and investigated.
When the domain space supports a vector space topology and the range space is an al-
gebraic vector space, a left-topological inner inverse is defined under the assumption
that the domain of the transformation satisfies a certain “decomposability” condition. A
topological generalized inverse of a linear transformation mapping one topological vec-
tor space into another is defined to be a linear transformation which is at the same time
an algebraic outer inverse and a left- and right-topological inner inverse. Various types
of algebraic generalized inverses, including the Moore-Penrose inverse, the oblique gen-
eralized inverse, the weighted generalized inverse and the group generalized inverse are
then investigated. Next, generalized inverses of topological homomorphisms in linear
topological spaces and generalized inverses in Banach and Hilbert spaces are discussed.
Then follows a very nice exposition of generalized inverses in Hilbert spaces put forward
by Tseng, Arghiriade, Hestenes and Erdélyi, all of which are subsumed by the unified
approach to generalized inverses. The authors of [75] also presented a very general the-
ory of generalized inverses of linear operators between two linear (or linear topological)
spaces. New results include an explicit transformation of generalized inverses under
change of projectors.

3.2.2 Nonlinear generalized inverses of operators in Banach spaces

For any T∈ L(X,Y), an element x0 ∈X is said to be an extremal solution of the equation
Tx=y, if x=x0 minimizes the functional ||T(x)−y|| on X, that is, inf{‖T(x)−y‖:x∈X} =
‖T(x0)−y‖. Any extremal solution with the minimal norm is called the best approximate
solution (b.a.s. for short). In 1974, M. Z. Nashed and G. F. Votruba introduced the concept
of the metric generalized inverse for linear operators between Banach spaces, which are
set-valued operators in general.

Definition 3.5. ([76]) Let T ∈ L(X,Y) and consider y ∈Y such that T(x) = y has a b.a.s. in
D(T). We define

T∂(y)={x∈D(T) : x is a b.a.s. to T(x)=y} ,

and call the set-valued mapping y 7→T∂(y) the metric generalized inverse of T. Let

D(T∂)={y∈Y : T(x)=y has a b.a.s. in D(T)}.

A function Tσ : D(T∂)→D(T) (in general, nonlinear) such that

Tσ(y)∈T∂(y), ∀y∈D(T∂),

is called a selection for the metric generalized inverse.

It is well known that the metric generalized inverses themselves satisfy requirements
of the approximate and semi-Chebyshev property which come from the research on the
geometric properties of Banach spaces.
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Since the nineteen eighties, deep and systematical research on the metric generalized
inverses of linear operators in Banach spaces has been conducted by Y. W. Wang and
his students. The metric generalized inverses, which are nonlinear generalized inverses,
have been investigated, and many useful results were obtained (see [94–96]). For exam-
ple, the existence of the Tseng metric generalized inverses of linear operators in Banach
spaces, characteristic of Moore-Penrose metric generalized inverses and projective left
and right inverses of bounded linear operators in Banach spaces were given.

M. Z. Nashed and G. F. Votruba in [76] said that obtaining selections with nice prop-
erties for metric generalized inverses merits further study. Bounded homogeneous selec-
tions for the set-valued metric generalized inverses of linear operators in Banach spaces
were given by H. Hudzik, Y. W. Wang and W. J. Zheng in [46]. In 2012, some continuous
homogeneous selections for the set-valued metric generalized inverses of linear operators
in Banach spaces by using the methods of geometry of Banach spaces were investigated
by H. F. Ma, H. Hudzik and Y. W. Wang in [61].

3.2.3 Perturbation analysis of generalized inverses in Banach spaces

Perturbation analysis of generalized inverses of linear operators in Banach spaces plays
an important role in many applications, such as computational mathematics, control the-
ory, optimization frame theory and nonlinear analysis and so on (see [1,8,64,65,74,86,94,
100, 101]).

In the case of nonlinear generalized inverses different research methods are needed
then in the case of linear generalized inverses. In 2013, perturbation analysis of bounded
homogeneous generalized inverses in Banach spaces was introduced by J. B. Cao, Y. F.
Xue in [7]. In 2014, using the continuity of the metric projection operators and quasi-
additivity of metric generalized inverses, H. F. Ma and Y. W. Wang et al. in [63] gave
a perturbation analysis of single-valued Moore-Penrose metric generalized inverses for
operators between Banach spaces.

In order to give a characterization of the set of all extremal solutions or least–extremal
solutions of the linear inclusions, the definition of Moore-Penrose bounded quasi-linear
projection generalized inverses in Banach spaces was introduced by P. Liu and Y. W.
Wang in [57]. There are bounded quasi-linear projection generalized inverses of bounded
linear operators between two reflexive Banach space, which are not only linear but also
metric generalized inverses.

In 2016, Z. Wang, B. Y. Wu and Y. Y. Wang obtained a perturbation analysis of Moore-
Penrose quasi-linear projection generalized inverses of closed linear operators in Banach
spaces (see [98]).

Definition 3.6. ([98]) Let T ∈ L(X,Y) be a linear operator from X into Y, and there exist two

bounded quasi-linear projectors S
N(T)

,S
R(T)

from X,Y onto N(T),R(T), respectively. An opera-

tor Th ∈H(Y,X), which is quasi-additive with respect to R(T)⊂Y, is called the Moore-Penrose
bounded quasi-linear projection generalized inverse of T, if the following four equations hold:

1. TThT=T on D(T);
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2. ThTTh=Th on D
(
Th
)
;

3. ThT= IX−S
N(T)

on D(T);

4. TTh =SR(T) on D
(
Th
)
, where D

(
Th
)
=R(T)∔S−1

R(T)
(θ) .

Theorem 3.2. ([98]) Let X,Y be Banach spaces, T∈C(X,Y) with D(T)=X be a closed linear
operator with closed range R(T) such that the Moore-Penrose bounded quasi-linear projection
generalized inverse Th of T exists, Th∈H(Y,X), and δT∈L(X,Y) with D(T)=D(δT), N(T)⊂
N(δT), R(δT)⊂R(T), δT being T−bounded, i.e.

||δTu||≤ a||u||+b||Tu|| ∀u∈D(T),

with some nonnegative a,b. Suppose also that the inequality

a‖Th‖+b‖SR(T)‖<1

holds, where SR(T) is the bounded quasi-linear projection onto R(T) . Let T=T+δT be the per-
turbation operator. Then we have the following:

1. The perturbation is stable, i.e., T=T+δT is closed, and R
(
T
)
=R(T), N

(
T
)
=N(T);

2. The bounded quasi-linear operator Ψ = Th
(

IY+δTTh
)−1

=
(

ID(T)+ThδT
)−1

Th is the

Moore-Penrose bounded quasi-linear projection generalized inverse T
h

of T,i.e.,

T
h
=Th

(

IY+δTTh
)−1

=
(

ID(T)+ThδT
)−1

Th.

3. There hold the following two inequalities

||T
h
|| ≤

∣
∣
∣
∣Th
∣
∣
∣
∣

1−||δTTh||
≤

∣
∣
∣
∣Th
∣
∣
∣
∣

1−a||Th||−b‖SR(T)‖
, (3.1)

||T
h
−Th|| ≤

||Th||||δTTh |

1−‖δTTh‖
≤

||Th||(a||Th ||+b‖SR(T)‖)

1−a||Th ||−b‖SR(T)‖
. (3.2)

From the main perturbation theorem, we may get the perturbation theorem for the
oblique projection generalized inverse under the conditions that δT is T−bounded with
a||T+||+b||Q||<1, N(T) ⊂ N(δT) and R(δT)⊂R(T):

Corollary 3.1. ([99]) Let X,Y be Banach spaces, let T ∈ C(X,Y) with D(T) = X, be a closed
linear operator such that the bounded oblique generalized inverse T+ of T exists, T+∈ B(Y,X),
and δT∈L(X,Y) with D(T)=D(δT), N(T)⊂N(δT), δT be T−bounded, i.e.

||δTu||≤ a||u||+b||Tu|| ∀u∈D(T)
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with some nonnegative a,b. Under these assumptions, if

a
∣
∣
∣
∣T+

∣
∣
∣
∣+b||Q||<1 ,

where Q is the continuous linear projection of Y onto R(T) and if T=T+δT is the perturbation
operator, then

(i) T=T+δT is closed, and R
(
T
)
=R(T), N

(
T
)
=N(T);

(ii) T
+

∈ B(Y,X), the oblique projection generalized inverse of T exists, T
+

=

T+ (IY+δTT+)
−1

, as well as

||T
+
|| ≤

||T+||

1−a||T+||−b|Q|
,

||T
h
−Th||

Th
≤

a||T+ ||+b||Q||

1−a||T+ ||−b||Q||
.

Definition 3.7. ([93]) Let T ∈ L(X,Y), N(T) and R(T) be Chebyshev subspaces of X and Y,
respectively. If there exists a homogeneous operator TM : D(TM)→D(T) such that:

1. TTMT=T on D(T).

2. TMTTM =TM on D(TM).

3. TMT= ID(T)−π
N(T) on D(T).

4. TTM =π
R(T) on D(TM),

then TM is called the Moore-Penrose metric generalized inverse of T, where ID(T) is the identity

operator on D(T) and D(TM)=R(T)∔F−1
Y (R(T)⊥).

Corollary 3.2. ([63]) Let X,Y be Banach spaces, T∈B(X,Y), δT∈B(X,Y) and T=T+δT. As-
sume that N(T) is a Chebyshev subspace of X, R(T) is a Chebyshev subspace of Y, if ||TM||||δT||
<1, N(T)⊂N(δT), R(δT)⊂R(T). Then

(1) R
(
T
)
=R(T), N

(
T
)
=N(T);

(2) T
M
=TM

(
IY+δTTM

)−1
=
(

ID(T)+TMδT
)−1

TM;

(3) The following inequalities hold:

||T
M
||≤

∣
∣
∣
∣TM

∣
∣
∣
∣

1−||δTTM||
≤

∣
∣
∣
∣TM

∣
∣
∣
∣

1−||δT||||TM ||
,

||T
M
−TM|| ≤

||TM||
∣
∣
∣
∣δTTM

∣
∣
∣
∣

1−||δTTM||
≤

||TM||2 ||δT||

1−||δT||||TM ||
.
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The main perturbation theorem extended the result of Ma and Wang [63]. Some well-
known results from [101] can be obtained from the following Corollary.

Corollary 3.3. ([98]) Let T ∈ B(Xs,Y) satisfy the equality D(T) = X and let the oblique
projection generalized inverse T+ belong to B(Y,X). Let δT ∈ B(X,Y) satisfy the in-
equality ||δT||·||T+||< 1 and let N(T)⊂ N(δT). Then R

(
T
)

is closed and the operator

B=T+(I+δTT+)
−1

is an oblique projection generalized inverse of T.

3.2.4 Extremal solutions and optimal approximation solutions of multi-valued linear

operators

From the beginning of nineteen eighties to the end of the nineteen nineties of the previous
century, linear operators and orthogonal generalized inverses of multi-valued operators
in Hilbert spaces and some applications in nonlinear ill-posed operator equations and
numerical approximation were systematically studied by Nashed, Lee, Chen, Engle and
Craven et al. (see [16, 27, 28, 72–74]).

In 1989, some structural properties of the solution sets of constrained minimization
problems and a characteristic of their existence in Hilbert spaces were investigated by Lee
and Nashed in [54]. However, these research could not be extended to Banach spaces.
The main difficulty to do this in Banach spaces is the nonlinearity of the metric general-
ized inverses. In 2001, the extremal solution and the best-approximate solution of linear
operator equations in Banach spaces were investigated by Wang and Wang in [93]. In
2005, Wang and Liu introduced the metric generalized inverses of multi-valued linear
operators in Banach spaces. Next, the extremal solution of linear inclusions in Banach
spaces was described in [96]. In 2012, criteria for the single-valued metric generalized in-
verses of multi-valued linear operators in Banach spaces were established by Wang and
Zhang.

In 2016, extremal solutions of multi-valued linear inclusions in Banach spaces were
first constrained by Wang, Wu and Wang in [97]. By using the extremal solution of some
interrelated multi-valued linear inclusions in the same spaces, the constrained extremal
solution of multi-valued linear inclusions could be given, which include a class of con-
strained extremal problems and optimal control problems subject to generalized bound-
ary conditions.

Definition 3.8. ([96]) Let X and Y be Banach spaces, A⊂X×Y be a linear manifold, N(A) and
R(A) be Chebyshev subspaces of X and Y, respectively, πN(A) :X→N(A) and πR(A) :Y→R(A)

be the metric projectors. The metric generalized inverse A# of A is defined by

A#=
{{

y,
(

ID(A)−πN(A)

)

(g)
}

: y∈Y and
{

g,πR(A) (y)
}

∈M
}

.

If both X and Y are Hilbert spaces, the metric generalized inverse A# of A is just the
orthogonal generalized inverse (see [52–55]). If X and Y are Banach spaces, T : X→Y is a
linear operator, and N(T), R(T) are Chebyshev subspaces in X and Y, respectively, then
T# is just the Moore-Penrose metric generalized inverse of T, denoted by TM.
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Theorem 3.3. ([97]) Let X and Y be Banach spaces, L⊂X×Y be a multi-valued linear operator
from X to Y, N be a subspace of X, P be an algebraic projector from Y onto the subspace L(θ),LS,P

be any fixed algebraic operator part of L with respect to the projector P. Let

S= g+N and A := L|N,

where g ∈ D(L). Suppose also that N(A) and R(A) are Chebyshev subspaces of X and Y,
respectively. Then for any y∈Y, the set of all constrained extremal solutions of the linear inclusion
y∈L(x) with respect to S, denoted by Ωy, is not empty and is given by

Ωy=
{

g−A# [LS,P(g)−y]
}
∔N(A), (3.3)

where A# is the metric generalized inverse of the multi-valued linear operator A, A= L|N and
S= g+N.

Corollary 3.4. ([54]) Let H1 and H2 be Hilbert spaces and let L⊂H1×H2 and N⊂H1 be linear
manifolds. Let LS,P be an arbitrary, but fixed algebraic operator part of L, corresponding to an
algebraic projector P of H1 onto L(θ) and let

S := g∔N and M := L|N ,

where g∈D(L). Then we have the following

I. for a fixed h∈H2, the following statements are equivalent:

(i) w is a restricted least-squares solution (LSS) of the linear inclusion y ∈ L(x) with
respect to S.

(ii) k := g−w is an LSS of

LS,P(g)−h∈M(x).

(iii) w∈S∩D(L) and
LS,P(g)−h∈L(θ)+N(M∗),

where M∗ :=
{
(x,y) : (−y,x)∈M⊥

}
is the adjoint subspace of the linear manifold

M⊂H1×H2, and M⊥ is the orthogonal complement of M in the Hilbert space H1×
H2.

(iv) g∈D(L) is such that

LS,P(g)−h∈R(M)∔N(M∗).

In particular, if R(M) is closed, then for each h∈H2 a restricted LSS exists.

II. the set of all restricted LSS of the linear inclusion y∈ L(x) with respect to S, denoted by
Ωy, is not empty and is given by

Ωy=
{

g−M# [LS,P(g)−y]
}
∔N(M).
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4 On the modulus of nearly uniform smoothness in Orlicz

sequence spaces and application to fixed point property

Through the last century, the fixed point property has been studied by many scholars.
Recall that a Banach space X is said to have the fixed point property (FPP, for short) if
every nonexpansive mapping T : C→C, i.e. a mapping T such that

‖Tx−Ty‖≤‖x−y‖,∀x,y∈C,

acting from a nonempty bounded closed and convex subset C of X into itself has a fixed
point. A natural generalization of FPP is the weak fixed point property (WFPP, for short).
A Banach space X is said to have the WFPP, whenever it satisfies the above condition from
the definition of FPP with“weakly compact” in place of “bounded closed”. In 1965, Brow-
der [5] and Göhde [35] proved independently that every nonexpansive self-mapping of a
closed convex and bounded subset of a uniformly convex Banach space has a fixed point.
This result was also obtained by Kirk [48], under a slightly weaker in a technical sense as-
sumptions. Another, more geometric and elementary in its nature proof, has been given
by Goebel [34]. In 1965, Kirk [48] proved that any reflexive Banach space with the normal
structure has the FPP and he also asserts that a Banach space with the weak normal struc-
ture has the WFPP. In 1989, S. Prus [79] introduced the geometric property of a Banach
space X, called nearly uniform smoothness and he proved that a Banach space is nearly
uniformly convex if and only if its dual space X∗ is nearly uniformly smooth. In 1992, S.
Prus [78] also proved that weakly nearly uniformly smooth Banach spaces with the weak
Opial property have the FPP. In [24], Domı́nguez-Benavides proved an important result
on the existence of fixed points for nonexpansive mappings. In order to do this, for a
Banach space X and a nonnegative real number a, he defined the parameter

R(a,X) :=sup
{

liminf
n→∞

‖xn+x‖
}

,

where the supremum is taken over all x ∈X with ‖x‖≤ a and all weakly null sequences
(xn) in B(X) such that [(xn)] := limsup

n→∞,m→∞

‖xn−xm‖≤1. He also defined the coefficient

M(X) :=sup

{
1+a

R(a,X)
: a≥0

}

.

The result that a Banach space X has the WFPP, whenever M(X)> 1 was also obtained
in [24], by using of an embedding of l∞(X)/c0(X).

4.1 Preliminaries

Throughout this section, X is a Banach space which is assumed not to have the Schur
property because in such a space there exists a weakly convergent sequence that is not



Y. Cui, H. Hudzik, R. Kaczmarek, et al. / J. Math. Study, 49 (2016), pp. 325-378 363

norm convergent. By S(X) and B(X) we denote the unit sphere and the unit ball of X,
respectively, and l0 denotes the set of all real sequences.

Inspired by the underlying ideas from the definition of nearly uniformly smooth
Banach spaces given by Prus [79] as well as on the modulus of uniform smoothness,
Domı́nguez-Benavides defined in [25] the modulus of nearly uniform smoothness.

We start with some definitions which are used in this section.

Definition 4.1. ([56]) A sequence (xn)∞
n=1 in a Banach space X is called a Schauder basis of X if

for every x∈X there is a unique sequence of scalars (an)∞
n=1 so that x=∑

∞
n=1 anxn. A sequence

(xn)∞
n=1 which is a Schauder basis of its closed linear span is called a basic sequence.

Definition 4.2. The modulus of nearly uniform smoothness is defined by

ΓX (t) :=sup

{

inf
n>1

(
‖x1+txn‖+‖x1−txn‖

2
−1

)}

,

where the supremum is taken over all basic sequences (xn) in B(X).

It is shown also in [25] that a Banach space X is nearly uniformly smooth if and only
if X is reflexive and

Γ
′

X (0)= lim
t→0+

ΓX (t)

t
=0,

where

ΓX (t) :=sup

{

inf
n>1

(
‖x1+txn‖+‖x1−txn‖

2
−1

)}

,

with the supremum taken over all weak null sequences (xn) in B(X).

In this section we will use Orlicz functions Φ that have only finite values and satisfy
additionally the following conditions: Φ vanishes only at zero, i.e.,

lim
u→0

Φ(u)

u
=0, lim

u→∞

Φ(u)

u
=∞.

Such Orlicz functions are called N-functions (see [9, 50, 66, 69, 81]).

Definition 4.3. For any Orlicz function Φ we define its complementary function Ψ :R→ [0,∞)
by the formula

Ψ(v) :=sup
u>0

{u|v|−Φ(u)}

for any v∈R.
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Definition 4.4. We say an Orlicz function Φ satisfies the δ2-condition (Φ∈δ2 for short) if there
exist k>0 and u0>0 such that the inequality

Φ(2u)≤ kΦ(u)

holds whenever |u|≤u0. We say that an Orlicz function Φ satisfies the δ2-condition (Φ∈ δ2 for
short) if its complementary function Ψ satisfies the δ2-condition.

The Orlicz sequence space lΦ is defined in the following way

ℓΦ :=

{

x∈ ℓ
0 : IΦ(λx)=

∞

∑
i=1

Φ(λx(i))<∞ for some λ>0

}

and it will be assumed in this paper that it is equipped with the Amemiya-Orlicz norm

‖x‖o := inf

{

k>0 :
1

k
(1+ IΦ(kx))

}

.

The space

hΦ =
{

x∈ ℓ
0 : IΦ(λx)=

∞

∑
i=1

Φ(λx(i))<∞ forall λ>0
}

equipped with the Amemiya-Orlicz norm induced from ℓΦ, is also a Banach space and it
is a closed subspace of ℓΦ.

It is well known that

K(x)=

{

k>0 :
1

k
(1+ IΦ(kx))=‖x‖o

}

6=∅

for any nonzero element x∈ ℓΦ (see [9]).

More basic information about Orlicz spaces can be found in [9, 17, 50, 66, 69, 81].

Recall also that a Köthe sequence space X is said to have the semi-Fatou property if
for every sequence (xn) in X and x∈X such that 0≤ xn ↑x, we have ‖xn‖→‖x‖.

4.2 Results

In what follows, the Amemiya-Orlicz norm in Orlicz sequence spaces will be denoted for
simplicity by ‖.‖ instead of ‖.‖o. Now, we start to present some results.

Theorem 4.1. If Φ /∈ δ2 and ℓΦ is equipped with the Amemiya-Orlicz norm, then ΓℓΦ
(t)= t for

any t>0.
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Proof. If Φ /∈ δ2 then hΦ is a proper closed subspace of ℓΦ. By the Riesz Lemma, for any
ε∈ (0,1) there exists x∈S(ℓΦ) such that

d(x,hΦ)= inf{‖x−y‖ : y∈hΦ}>1−ε.

Using Theorem 1.43 in [9] (see also Theorem 2.7 in Section 2), we have

d(x,hΦ)= lim‖(0,··· ,0,x(n+1),x(n+2),···)‖,

so by the semi-Fatou property, there are natural numbers n1<n2< ··· , such that

∥
∥
∥
∥
∥

nj+1−nj

∑
i=1

x(nj+i)ei

∥
∥
∥
∥
∥
≥1−ε

for each j∈N. Put

xj =
nj+1−nj

∑
i=1

x(nj+i)ei−
nj+2−nj+1

∑
i=1

x(nj+i)ei.

Then for any f ∈ l(Ψ), we have

f (xj)=
nj+1−nj

∑
i=1

x(nj+i) f (i)→0

thanks to

f (x)=
∞

∑
i=1

x(i) f (i)<∞

as well as to the fact that

ϕ
(

xj

)
=0

for any singular functional ϕ∈ (ℓΦ)
∗ because singular functionals from (ℓΦ)

∗ vanish on
the subspace hΦ and xj ∈hΦ for any j∈N. This shows that (xj) is a weakly null sequence
in lΦ. Moreover,

∥
∥x+txj

∥
∥≥ (1+t)

∥
∥
∥
∥
∥

nj+1−nj

∑
i=1

x(nj+i)ei

∥
∥
∥
∥
∥
≥ (1+t)(1−ε) ,

∥
∥x−txj

∥
∥≥ (1+t)

∥
∥
∥
∥
∥

nj+2−nj+1

∑
i=1

x(nj+i)ei

∥
∥
∥
∥
∥
≥ (1+t)(1−ε) ,

whence

ΓℓΦ
(t)= t

for any t>0.
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Now, we will define the numbers cx(t), which will play a crucial role in Theorem 4.2.
For any x,y ∈ S(ℓΦ) with supp(x)∩supp(y) =∅, where supp(x) = {i∈N : x(i) 6=0} and
any t>0, there exits k>0 such that

‖x+ty‖=
1

k
(1+ IΦ(k(x+ty)).

Assuming additionally that x,y∈hΦ, by continuity of the function

f (c)= IΦ

(
kx

c

)

+ IΦ

(
kty

c

)

,

for any k>1, there exists cx,y,k,t>0, such that f (cx,y,t,k)= k−1. Put

cx,y,t= inf
{

cx,y,t,k : k>1
}

.

From the equality

k−1= IΦ

(
kx

cx,y,t,k

)

+ IΦ

(
kty

cx,y,t,k

)

,

we obtain

1=
1

k

(

1+ IΦ

(
kx

cx,y,t,k

)

+ IΦ

(
kty

cx,y,t,k

))

≥ inf
k>0

1

k

(

1+ IΦ

(
kx

cx,y,t,k

)

+ IΦ

(
kty

cx,y,t,k

))

=

∥
∥
∥
∥

x+ty

cx,y,t,k

∥
∥
∥
∥

,

whence cx,y,t,k≥‖x+ty‖ . Using m≤1, there is a kx,y,t>1 such that

1=
1

kx,y,t

(

1+ IΦ

(
kx,y,t(x+ty)

‖x+ty‖

))

=
1

kx,y,t

(

1+ IΦ

(
kx,y,tx

‖x+ty‖

)

+ IΦ

(
kx,y,tty

‖x+ty‖

))

or equivalently

kx,y,t−1= IΦ

(
kx,y,tx

‖x+ty‖

)

+ IΦ

(
kx,y,tty

‖x+ty‖

)

,

so cx,y,t,kx,y,t
=‖x+ty‖ .Therefore, cx,y,t≤‖x+ty‖, which together with the opposite inequal-

ity proved already gives the equality cx,y,t=‖x+ty‖ for any couple x,y∈hΦ .
For any x∈S(hΦ) with max(supp(x))<∞, we define for any n∈N the number cx,n(t)

as follows

cx,n(t)=sup
{

cx,y,t>0 : y∈S(hΦ) with n≤min(supp(y))<∞
}

.

Since hΦ is a symmetric space, it is clear that cx,n(t)= cx,1(t) for any n∈N. Put cx(t)=
cx,1(t).
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Theorem 4.2. If Φ is an Orlicz function satisfying the δ2−condition and its complementary
function Ψ satisfies the δ2−condition, then for the Orlicz sequence space ℓΦ equipped with the
Amemiya-Orlicz norm there holds the equality

ΓℓΦ
(t)=sup{cx(t) : x∈S(ℓΦ) with max(supp(x))<∞}−1.

Proof. Let
dΦ :=sup{cx(t) : x∈S(ℓΦ) with max(supp(x))<∞} .

The number dΦ is well-defined because the numbers cx(t) exist by the fact that if
max(supp(x)) < ∞, then x ∈ hΦ. Then for any ε ∈ (0,dΦ), there exists ‖x‖Φ = 1 with
max(supp(x))<∞ such that

cx(t)>dΦ−ε.

By the definition of cx(t) there exists n1∈N such that

cx,n1
(t)>dΦ−ε.

By the definition of cx,n1
(t), there exists y1 ∈ S(ℓΦ) with min(supp(y1))≥ n1 such that

cx,y1,t>dΦ−ε. Hence, for all k>1 we have

cx,y1,t,k>dΦ−ε.

Put

yn =





ln times
︷ ︸︸ ︷

0,··· ,0,y1(min(supp(y1))),··· ,y1(max(supp(y1))),0,···





for n=2,3,··· , where ln =min(supp(y1))−1+(n−1)·card(supp(y1)). By

lim
λ→0

sup
n

IΦ(λyn)

λ
= lim

λ→0

IΦ(λy1)

λ
=0,

we have yn
w
→0 (see [21]). Since ‖yn‖=‖y1‖=1 for any n∈N, there exists a subsequence

(yni
) of (yn) which is a basic sequence. We may assume, without loss of generality, that

this subsequence is just the sequence (yn).
For any n∈N, we have

k−1= IΦ

(
kx

cx,y1,t,k

)

+ IΦ

(
ktyn

cx,y1,t,k

)

,

whence

1=
1

k

(

1+ IΦ

(
kx

cx,y1,t,k

)

+ IΦ

(
ktyn

cx,y1,t,k

))

≤
1

k

(

1+ IΦ

(
kx

dΦ−ε

)

+ IΦ

(
ktyn

dΦ−ε

))
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for all k>1. Therefore, for all k>0 the inequality

1

k

(

1+ IΦ

(
kx

dΦ−ε

)

+ IΦ

(
ktyn

dΦ−ε

))

≥1

holds. By the definition of the Amemiya-Orlicz norm, we have
∥
∥
∥

x+tyn

dΦ−ε

∥
∥
∥ ≥ 1, that is,

‖x+tyk‖>dΦ−ε. Therefore,

ΓℓΦ
(t)≥dΦ−ε−1,

and, by the arbitrariness of ε>0, we have that ΓℓΦ
(t)≥dΦ−1.

Now, we will prove that ΓℓΦ
(t) ≤ dΦ−1. By the definition of dΦ, we always have

cx (t)≤dΦ for any x∈S(ℓΦ) with finite supp(x) and any t>0.

Taking any basic sequence (xn) in S(ℓΦ) and any ε> 0, by Φ∈ δ2, there exists i0 > 0
such that ∥

∥
∥
∥
∥

∞

∑
i=i0+1

x1(i)ei

∥
∥
∥
∥
∥
< ε.

Since in reflexive Banach space every basic sequence is weakly null (see [25]), we have
that xn→0 weakly and we conclude that the sequence (xn) converges to 0 coordinatewise.
There is n1∈N such that

∥
∥
∥
∥
∥

i0

∑
i=1

xn (i)ei

∥
∥
∥
∥
∥
< ε

for all n≥n1. In virtue of Φ∈δ2 again, there exists i1> i0 such that

∥
∥
∥
∥
∥

∞

∑
i=i1+1

xn1
(i)ei

∥
∥
∥
∥
∥
< ε.

In such a way we obtain that there are two sequences i0 < i1 < ··· and n1 < n2 < ··· such
that

∥
∥
∥
∥
∥

i0

∑
i=1

xnm (i)ei

∥
∥
∥
∥
∥
< ε,

∥
∥
∥
∥
∥

∞

∑
i=im+1

xnm(i)ei

∥
∥
∥
∥
∥
< ε.

Hence

‖x1+txnm‖

≤

∥
∥
∥
∥
∥

i0

∑
i=1

(x1(i)+txnm (i))ei+
∞

∑
i=i0+1

x1(i)ei+
im

∑
i=i0+1

txnm(i)ei+
∞

∑
i=im+1

txnm(i)ei

∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥

i0

∑
i=1

x1(i)ei+
im

∑
i=i0+1

txnm(i)ei

∥
∥
∥
∥
∥
+(1+2t)ε.
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Next, we will estimate the second last term in the above estimate for n>n1. Put

z1=
i0

∑
i=1

x1(i)ei

/∥
∥
∥
∥
∥

i0

∑
i=1

x1(i)ei

∥
∥
∥
∥
∥

, zm =
im

∑
i=i0+1

xnm(i)ei

/∥
∥
∥
∥
∥

im

∑
i=i0+1

xnm(i)ei

∥
∥
∥
∥
∥

for n>n0. There exists k>1 such that

1

k

(

1+ IΦ

(
kz1

cz1 ,zn,t

)

+ IΦ

(
ktzm

cz1 ,zn,t

))

=1.

So ∥
∥
∥
∥

z1+tzm

dΦ

∥
∥
∥
∥
≤

1

k

(

1+ IΦ

(
kz1+ktzm

dΦ

))

=
1

k

(

1+ IΦ

(
kz1

dΦ

)

+ IΦ

(
ktzm

dΦ

))

≤
1

k

(

1+ IΦ

(
kz1

cz1 (t)

)

+ IΦ

(
ktzm

cz1 (t)

))

≤
1

k

(

1+ IΦ

(
kz1

cz1 ,zn,t

)

+ IΦ

(
ktzm

cz1 ,zn,t

))

=1

for all m≥n0, whence
∥
∥
∥
∥
∥

i0

∑
i=1

x1(i)ei+
im

∑
i=i0+1

txnm(i)ei

∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

i0

∑
i=1

x1(i)ei

∥
∥
∥
∥
∥

z1+t

∥
∥
∥
∥
∥

im

∑
i=i0+1

xnm(i)ei

∥
∥
∥
∥
∥

zm

∥
∥
∥
∥
∥
≤ ‖z1+tzm‖≤ dΦ.

By the arbitrariness of ε>0, we get the inequality

ΓℓΦ
(t)≤dΦ−1.

Since the opposite inequality was already proved, we obtain the equality ΓℓΦ
(t) = dΦ−

1.

Corollary 4.1. The Orlicz sequence space ℓΦ is nearly uniformly smooth if and only if Φ∈δ2 and
Φ∈δ2.

Proof. Since nearly uniform smoothness implies reflexivity and the space ℓΦ is reflexive
if and only if Φ∈ δ2 and Φ∈ δ2, so we only need to prove that if Φ∈ δ2 and Φ∈ δ2, then
ℓΦ is nearly uniformly smooth. For any x,y∈S(ℓΦ) with with supp(x)∩supp(y)=∅, any
ε>0 and any t0>0, by Φ∈δ2 we have that the number

K :=sup

{

k>1 :
1

k
(1+ IΦ (k(x+ty)))=‖x+ty‖

}
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is finite for any t∈ [0,t0] (see Theorem 1.35 in [9]). Take arbitrary k>1 such that

‖x‖=
1

k
(1+ IΦ (kx)).

Then

‖x+ty‖≤
1

k

(

1+ IΦ(kx+kty)
)

=
1

k

(

1+ IΦ(kx)+ IΦ(kty)
)

=1+
IΦ(kty)

k
.

By Φ∈δ2, there exists θ∈ (0,1) such that

Φ(
u

2
)≤

θ

2
Φ(u)

whenever |u|≤Φ−1(1) (see [9]). For any ε>0, there is n∈N such that θn < ε. Put δ= 1
2n .

Then

Φ(δu)=Φ(
u

2n
)≤

θn

2n
Φ(u)≤δεΦ(u)

whenever |u|≤Φ−1(1). Hence

Φ(tu)=Φ

(
t

δ
δu

)

≤
t

δ
Φ(δu)≤

t

δ
δεΦ(u)= tεΦ(u)

whenever t∈ (0,δ) and |u|≤Φ−1(1) .

Take t0 > 0 small enough such that t0K < δ. We have IΦ(x)≤ 1 thanks to x ∈ S(ℓΦ).
Therefore,

‖x+ty‖≤1+
IΦ(kty)

k
≤1+

tkε

k
IΦ(y)=1+tε

for any t ∈ (0,δ). This shows that cx,y,t = ‖x+ty‖ ≤ 1+tε, that is, ΓℓΦ
(t)≤ tε whenever

t∈ (0,δ). Therefore, Γ
′

ℓΦ
(0)=0.

Corollary 4.2. Let ℓp (1< p<∞) be the Lebesgue sequence space. Then Γℓp
(t)=(1+tp)

1
p .

Proof. It is well known that the Lebesgue sequence space ℓp (1 < p < ∞) is the Orlicz
sequence space generated by the Orlicz function Φ(u) = |u|p . For any x,y ∈ S(ℓp) with
supp(x)∩supp(y)=∅ and t>0, we can easy calculate the Amemiya-Orlicz norm of ‖x‖
and ‖y‖, which are the following:

‖x‖=C

(
∞

∑
i=1

|x(i)|p

) 1
p

, ‖y‖=C

(
∞

∑
i=1

|y(i)|p

) 1
p

,
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where C= p(p−1)
1
p−1

. We have

c
p
x,y,t=‖x+ty‖p=Cp

(
∞

∑
i=1

|x(i)|p+tp
∞

∑
i=1

|y(i)|p

)

=Cp

(
1

Cp
+

tp

Cp

)

=1+tp.

Therefore, Γℓp
(t)=(1+tp)

1
p .

Remark 4.1. As far as we know, the result from Corollary 4.2 is new.

Using the definition of R(a,ℓΦ) and D(xn), we can easily get the following lemma.

Lemma 4.1. In any Orlicz sequence space lΦ, we have that

R(a,ℓΦ)=sup
{

liminf
n→∞

‖xn+x‖
}

,

where the supremum is taken over all ‖x‖≤ a and all weakly null sequences (xn) in B(X) with
‖xn−xm‖≤1 for all n,m∈N.

Let us define

D(ℓΦ)=

{

x∈B(ℓΦ) : supp(x) is finite and there exists

k>1 such that
k−1

2
≥ IΦ(kx)

}

.

Take a>0 such that (a,a,0···)∈B(ℓΦ). Then there exists k>1 such that

1≥‖(a,a,0···)‖=
1

k

(

1+2Φ(ka)
)

=
1

k
(1+2IΦ(kx)) ,

where x=(a,0,0,···). This shows that the element x∈D(ℓΦ) and so that the set D(lΦ) is
nonempty.

Theorem 4.3. For any Orlicz sequence space we have the equality

R(a,ℓΦ)=sup
{

‖x+y‖ : x∈D(ℓΦ), ‖y‖= a,supp(y)

is finite and supp(x)∩supp(y)=∅
}

.

Proof. Let

cΦ =sup
{

‖x+y‖ : x∈D(ℓΦ), ‖y‖= a,supp(y)

is finite and supp(x)∩supp(y)=∅
}

.
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Then for any ε>0 there are x∈D(ℓΦ) and y∈ ℓΦ with ‖y‖= a such that supp(y) is finite,
supp(x)∩supp(y)=∅, and

cΦ−ε≤‖x+y‖ .

Let s=max(supp(y)), l=max(supp(x)) and

xn =






s+(n−1)l times
︷ ︸︸ ︷

0,··· ,0 ,x(1),··· ,x(l),0,···






for each n∈N. Then xn
w
→0 as n→∞. Since x∈D(ℓΦ), there exists k>1 such that

k−1

2
≥ IΦ(kx) .

Hence

‖xn−xm‖≤
1

k
(1+ IΦ (kxn−kxm))=

1

k
(1+2IΦ (kx))≤

1

k
(1+k−1)=1,

and so

R(a,ℓΦ)≥ lim
n→∞

inf‖xn+y‖=‖x+y‖≥ cΦ−ε.

By the arbitrariness of ε>0, we get the inequality R(a,ℓΦ)≥ cΦ.

We need to prove the inverse inequality. For any weakly null sequence {xn} in B(ℓΦ)
with ‖xn−xm‖≤1 for any m,n∈N and ‖y‖=a, by the same argumentation as in the proof
of Theorem 4.2, we may assume that supp(y)∩supp(xn) =∅, supp(xn)∩supp(xm) =∅

for n,m∈N,n 6=m, and both supp(y) and supp(xn) are finite.

Taking kn,m >1 such that

‖xn−xm‖=
1

kn,m

(

1+ IΦ(kn,mxn)+ IΦ(kn,mxm)
)

,

we have
kn,m−1

2
≥ IΦ(kn,mxn) (equivalently xn ∈D(ℓΦ))

and
kn,m−1

2
≥ IΦ(kn,mxm) (equivalently xm ∈D(ℓΦ)).

Therefore, we have that xn ∈ D(ℓΦ) for any n ∈ N. So ‖xn+y‖ ≤ cΦ, whence R(a,ℓΦ)≤
cΦ.

Corollary 4.3. Let ℓp (1 < p < ∞) be the Lebesgue sequence space. Then R
(
a,ℓp

)
=

(1+ap)
1
p .
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Proof. It is easy to prove that

R
(
a,ℓp

)
=

{

‖x+y‖ :‖y‖= a, ‖x‖=
1

2
1
p

,supp(y)∩supp(x)=∅

}

.

Then

‖x+y‖p=Cp

(
∞

∑
i=1

|x(i)|p+
∞

∑
i=1

|y(i)|p

)

=Cp

(
1

2Cp
+

ap

Cp

)

=
1

2
+ap,

where C was defined in the proof of Corollary 4.2. So, R
(
a,ℓp

)
=
(

1
2+ap

) 1
p .

Corollary 4.4. For an Orlicz sequence space ℓΦ, the inequality R(a,ℓΦ)<1+a holds if and
only if Φ∈δ2.

Proof. If Φ /∈ δ2, for any ε>0 there exists x∈B(ℓΦ) such that

lim
n→∞

‖(0,··· ,0,x(n+1),x(n+2),···)‖>1−ε.

There are n1<n2< ··· such that

∥
∥
∥
∥
∥

nj+1−nj

∑
i=1

x(nj+i)ei

∥
∥
∥
∥
∥
≥1−ε

for each j∈N. Put xj =
nj+1−nj

∑
i=1

x(nj+i)ei. Then
∥
∥xj−xs

∥
∥≤‖x‖≤1 for all j,s∈N and so, if

f ∈ lΨ, then we have

f (xj)=
nj+1−nj

∑
i=1

x(nj+i) f (i)→0

thanks to f (x) = ∑
∞
i=1 x(i) f (i) < ∞. This fact and the fact that any singular functional

vanishes over hΦ show that the sequence
{

xj

}
is weakly null. Moreover,

∥
∥xj+ax

∥
∥≥

∥
∥xj+axj

∥
∥=(1+a)

∥
∥xj

∥
∥≥ (1+a)(1−ε)

for any j∈N. So, R(a,ℓΦ)=1+a.
On the other hand, if Φ∈δ2 there is a number δ>0 such that

Φ((1+δ))≤2Φ(u)

whenever |u|≤Φ−1(3). For any x∈D(ℓΦ) there is k>1 such that k−1
2 ≥ IΦ(kx), whence

1≥
1

k
(1+2IΦ (kx))≥

1

k
(1+ IΦ((1+δ)kx))≥ (1+δ)‖x‖.
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Therefore, ‖x‖≤ 1
1+δ and by ‖y‖= a and the triangle inequality for the norm, we get

‖x+y‖≤
1

1+δ
+a<1+a.

Summing up, we obtain that R(a,ℓΦ)<1+a.

Corollary 4.5. If Φ∈ δ2, then Orlicz sequence spaces equipped with the Amemiya-Orlicz norm
have the weak fixed point property.
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[26] N. V. Efimov, S. B. Stečkin, Approximative compactness and Chebyshev sets, Soviet Math.
Dokl.,Russian, 2(5)(1961), 1226–1228; Dokl. Akad. Nauk SSSR, 140(1961), 522–524.

[27] H. W. Engle, M. Z. Nashed, Generalized inverse of random linear operators in Banach
spaces, Math. Anal. Appl., 83(2)(1981), 582–610.

[28] H. W. Engle, M. Z. Nashed, New characterizations of generalized inverse of linear operators,
Math. Anal. Appl., 82(1981), 566–686.

[29] K. Fan, I. Glicksberg, Fully convex normed linear spaces, Proc. Nat. Acad. Sci., U.S.A.,
41(1955), 947–953.

[30] P. Foralewski, H. Hudzik, R. Kaczmarek, M. Krbec, Moduli and characteristics of mono-
tonicity in some Banach lattices, Fixed Point Theory and Applications, 2010, Article ID 852346.

[31] P. Foralewski, H. Hudzik, R. Kaczmarek, M. Krbec, M. Wójtowicz, On the moduli and
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