A DIRECT ALGORITHM FOR DISTINGUISHING NONSINGULAR M－MATRIX AND H－MATRIX＊

Li Yaotang（李耀堂）Zhu Yan（朱 艳）

Abstract

A\) direct algorithm is proposed by which one can distinguish whether a ma－ trix is an M－matrix（or H－matrix）or not quickly and effectively．Numerical examples show that it is effective and convincible to distinguish M－matrix（or H－matrix）by using the algorithm．

Key words nonsingular M－matrix，nonsingular H－matrix，direct algorithm．
AMS（2000）subject classifications 15A48

1 Introduction

For many kinds of applications of M－matrices and H－matrices，the problem how to deter－ mine whether a matrix is an M－matrix（or H－matrix）or not arouses many researchers interesting． Recently，some iterative methods have been proposed for distinguishing H－matrices（see［2－5］）． However，these methods have a common drawback，that is，it is not possible to determine the number of steps of iteration，and when A is not an H－matrix，a wasteful computation is necessary． A direct algorithm has been proposed in［6］，but it is only useful when matrices are symmetrical． In this paper，to conquer these drawbacks，we propose a new direct algorithm．

2 A direct algorithm for distinguishing M－matrix

Let $R^{n \times n}$ denote the set of all $n \times n$ real matrices．$A=\left(a_{i j}\right) \in R^{n \times n}$ is said to be an M－matrix if $a_{i j} \leq 0$ ，for $i \neq j$ ，and $A^{-1} \geq 0$ ．

Lemma $1^{[1]}$ Let $A=\left(a_{i j}\right) \in R^{n \times n}$ be an M－matrix，then any principle submatrix of A is an M－matrix．

Lemma $2^{[1]}$ Let $A=\left(a_{i j}\right) \in R^{n \times n}$ ，its off－diagonal entries are all non－positive，then A is

[^0]an M-matrix if and only if successive principle minor of $A, D_{K}>0, k=1, \cdots, n$.
From Lemma 2, we can immediately obtain the following lemma.
Lemma 3 Let $A=\left(a_{i j}\right) \in R^{2 \times 2}$, and $a_{i j} \leq 0, i \neq j, a_{i i}>0$, then A is an M-matrix if and only if determinant of $A, \operatorname{det} A>0$.

Theorem 1 Let

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \in R^{n \times n},
$$

where $B_{12} \leq 0, B_{21} \leq 0, B_{11}$ is a 2×2 square matrix and B_{22} is an $(n-2) \times(n-2)$ square matrix, in which their diagonal entries are all positive and off-diagonal entries are all non-positive. Then B is an M-matrix if and only if $\operatorname{det} B_{11}>0$ and $B_{22}-B_{21} B_{11}^{-1} B_{12}$ is an M-matrix.

Proof Necessity: Suppose B is an M-matrix, then
$B^{-1}=\left[\begin{array}{cc}B_{11}^{-1}+B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & -B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \\ -\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & \left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1}\end{array}\right] \geq 0$, and B_{11} and B_{22} are M-matrices by Lemma 1. Hence, $\operatorname{det} B_{11}>0$ by Lemma 3 , and $B_{11}^{-1} \geq$ $0,\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \geq 0$. For $B_{12} \leq 0, B_{21} \leq 0$, we have $B_{21} B_{11}^{-1} B_{12} \geq 0$, and off-diagonal entries of matrix $B_{22}-B_{21} B_{11}^{-1} B_{12}$ are all non-positive. So, $B_{22}-B_{2} B_{11}^{-1} B_{12}$ is an M-matrix.

Sufficiency: Suppose $\operatorname{det} B_{11}>0$ and $B_{22}-B_{21} B_{11}^{-1} B_{12}$ is an M-matrix, then by Lemma 3, we have that B_{11} is an M-matrix, so

$$
\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \geq 0, \quad B_{11}^{-1} \geq 0 .
$$

Therefore

$$
\begin{aligned}
& B_{11}^{-1}+B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} \geq 0, \\
& -\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} \geq 0, \\
& -B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \geq 0 .
\end{aligned}
$$

From these inequalities, we have
$B^{-1}=\left[\begin{array}{cc}B_{11}^{-1}+B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & -B_{11}^{-1} B_{12}\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} \\ -\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1} B_{21} B_{11}^{-1} & \left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1}\end{array}\right] \geq 0$.
Thus B is an M-matrix.
From Theorem 1, we propose the following algorithm A.

Algorithm A

Input The given matrix $B=\left(b_{i j}\right) \in R^{n \times n}$.
Step 1 Set $B=B^{(m)}$, and $m=0$.
Step 2 Partition $B^{(m)}$ into a 2×2 block matrix

$$
B^{(m)}=\left[\begin{array}{ll}
B_{11}^{(m)} & B_{12}^{(m)} \\
B_{21}^{(m)} & B_{22}^{(m)}
\end{array}\right],
$$

where $B_{11}^{(m)}$ is a 2×2 square matrix, and $B_{22}^{(m)}$ is an $(n-2) \times(n-2)$ square matrix.
Step 3 Set $B^{(m+1)}=B_{22}^{(m)}-B_{21}^{(m)}\left(B_{11}^{(m)}\right)^{-1} B_{12}^{(m)}$. If $\operatorname{det} B_{11}^{(m)} \leq 0$ or $B^{(m+1)}$ satisfies that diagonal entries of $B^{(m+1)}$ are not all positive or off-diagonal entries of $B^{(m+1)}$ are not all nonpositive, then from Theorem $1, B$ is not an M-matrix, stop and output " B is not an M-matrix"; otherwise.

Step 4 Set $m=m+1$, when $m<\left[\frac{n+1}{2}\right]-2$, go to step 2; otherwise.
Step $5 \quad B^{(m+1)}$ is a real numbers or a 2×2 square matrix, if $B^{(m+1)}>0$ or $\operatorname{det} B^{(m+1)}>0$, then B is an M-matrix, stop and output " B is an M-matrix"; if $B^{(m+1)} \leq 0$ or det $B^{(m+1)} \leq 0$, then B is not an M-matrix, stop and output " B is not an M-matrix".

Note: it is estimated that the total cost of the algorithm is $O\left(\frac{n^{3}}{3}\right)$.

3 The use of Algorithm A for distinguishing H-matrix

Let $C^{n \times n}$ denote the set of all $n \times n$ complex matrices, $A=\left(a_{i j}\right) \in C^{n \times n}$, the comparison $\operatorname{matrix} \mathcal{M}(A)=\left(b_{i j}\right)$,

$$
b_{i j}=\left\{\begin{array}{l}
\left|a_{i j}\right|, i=j, \\
-\left|a_{i j}\right|, i \neq j,
\end{array} \quad i, j=1,2, \cdots, n\right.
$$

If $\mathcal{M}(A)$ is an nonsingular M-matrix, then A is called an H-matrix.
From the definition of H-matrix, we can distinguish whether a given matrix is an H-matrix or not by using Algorithm A on the comparison matrix $\mathcal{M}(A)$.

4 Numerical example

Example 1 First we consider the matrix

$$
B=\left[\begin{array}{cccc}
1 & -\frac{1}{2} & 0 & -1 \\
-\frac{1}{2} & 1 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 1 & -\frac{1}{4} \\
-1 & 0 & -\frac{1}{4} & 1
\end{array}\right]
$$

We get a 2×2 matrix

$$
B^{(1)}=B_{22}-B_{21} B_{11}^{-1} B_{12}=\left[\begin{array}{cc}
\frac{23}{27} & -\frac{17}{36} \\
-\frac{17}{36} & -\frac{1}{3}
\end{array}\right]
$$

by using Algorithm A. For $B^{(1)}$ has an negative diagonal entry $-\frac{1}{3}$, so B is not an M-matrix from Algorithm A. In fact, we know principle submatrix of $B, B(1,4)=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right], \operatorname{det} B(1,4)=0$, by Lemma $2, B$ is really not an M-matrix.

Example 2 The second example is

$$
B=\left[\begin{array}{ccccccc}
1 & -1 & & & & \\
-1 & 3 & -2 & & O & & \\
& -1 & 4 & -3 & & & \\
& & & \ddots & \ddots & \ddots & -(n-1) \\
& O & & & & -1 & (n+1)
\end{array}\right]
$$

When $n=10$ and $n=99$, we get real numbers $90>0$ and $9506>0$, respectively, by using Algorithm A, so B is an M-matrix from Algorithm A. In fact, we can proof that successive principal minor of $A, D_{K}=K!^{[1]}, k=1,2, \cdots, n$, so B is really an M-matrix.

Example 3 The third example is

$$
B=\left[\begin{array}{cccc}
1 & -\frac{1}{4} & -\frac{1}{4} & 0 \\
-\frac{1}{4} & 1 & 0 & -\frac{1}{4} \\
-\frac{1}{4} & 0 & 1 & -\frac{1}{4} \\
0 & -\frac{1}{4} & -\frac{1}{4} & 1
\end{array}\right]
$$

We get a real number $0.8>0$ by using Algorithm A, so B is an M-matrix from Algorithm A. In fact,

$$
B^{-1}=\left[\begin{array}{cccc}
\frac{7}{2} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} \\
\frac{2}{6} & \frac{7}{6} & \frac{1}{6} & \frac{2}{6} \\
\frac{2}{6} & \frac{1}{6} & \frac{7}{6} & \frac{2}{6} \\
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{7}{6}
\end{array}\right]>0
$$

so B is really an M-matrix.
Of course, as to H-matrix, such as

$$
B_{1}=\left[\begin{array}{cccc}
8 & -2 & -2 & -3 \\
-3 & 6 & -1 & -1 \\
-2 & -\frac{5}{2} & 4 & 0 \\
-4 & -2 & -1 & 6
\end{array}\right], \quad B_{2}=\left[\begin{array}{cccc}
0.9 & 0.1 & 0.2 & 0.1 \\
0.9 & 0.9 & 0.7 & 0.8 \\
0.1 & 0.1 & 0.9 & 0.1 \\
0.3 & 0.1 & 0.2 & \frac{23}{30}
\end{array}\right]
$$

We get two real numbers $3.59693>0$ and $0.11824>0$ by using Algorithm A on the comparison matrix $\mathcal{M}\left(B_{1}\right)$ and $\mathcal{M}\left(B_{2}\right)$, respectively, so these two matrices are H-matrices.

5 Program

\#include < stdio.h>
\#include <iostream.h>
\#include <math.h>
main ()
\{ \quad int $n, i, j, k=0, h=0, s=1 ;$
$/ / m=B ;$
float $m[150][150]$;
$/ / b 11=|B 11| ; b=B 22 ; c=1 / B 11 ; b 21=B 21 ; b 12=B 12 ; d=B 21 * B 11^{\prime} ; e=d * B 12 ;$
float $b 11, b[150][150], c[3][3], b 21[150][3], b 12[3][150]$;
float $d[150][3], e[150][150]$;
//input//input function: there you input your matrix data
cout<<"Program to judge an M-matrix:" <<endl;
cout<<" please input the $\operatorname{rank}(n)$ of the matrix:" \ll endl;
cout $\ll " n="$;
$\operatorname{cin} \gg n$;
if $(n>149)$
\{cout<<"the $\operatorname{rank}(n)$ of the matrix should be less than 149 " <<endl;
return $0 ;\}$
cout<<"please input the element of the matrix:" <<endl;
for ($i=1 ; i<n+1 ; i++$)
$\{$ for $(j=1 ; j<n+1 ; j++)$
\{ $k++;$ cout $\ll " m[" \ll i \ll "][" \ll j \ll "]=" ;$ cin $\gg m[i][j]$; if $(k==n)$ \{ $\quad k=0$; cout<<endl;\}\}\}
//the end of init//
//display the matrix data//
cout<<"the matrix you input is:" \ll endl;
for ($i=1 ; i<n+1 ; i++$)
\{ for $(j=1 ; j<n+1 ; j++)$
cout $\ll m[i][j] \ll '$ ';
cout<<endl; \}
//the begin of the function to judge an M-matrix //
$k=0 ;$
int $l=n$;
for $(l=l ; l>0 ; l-=2)$
$\{\quad / / b 11=|B 11| ; b=B 22 ; c=1 / B 11 ; b 21=B 21 ; b 12=B 12$;
$/ / b 11=|B 11| ; / /$ and judge whether $b 11$ is positive or not;
$b 11=m[1][1] * m[2][2]-m[1][2] * m[2][1] ;$
if $(i==2)$
break;
else if $(i==1)$
$\{\quad b 11=m[1][1]$;
break;\}
if $(b 11<0)$
\{ $\quad k=1 ;$
break;\}

$$
\begin{aligned}
& c[1][1]=m[2][2] /(m[1][1] * m[2][2]-m[1][2] * m[2][1]) ; \\
& c[1][2]=m[1][2] /(m[2][1] * m[1][2]-m[1][1] * m[2][2]) ; \\
& c[2][1]=m[2][1] /(m[1][2] * m[2][1]-m[2][2] * m[1][1]) ; \\
& c[2][2]=m[1][1] /(m[2][2] * m[1][1]-m[1][2] * m[2][1]) ; \\
& / / b 21=B 21 ; \\
& \operatorname{for}(i=1 ; i<n-1 ; i++) \\
& \{\quad \operatorname{for}(j=1 ; j<3 ; j++) \\
& \quad\{\quad b 21[i][j]=m[i+2][j] ;\}\} \\
& / / b 12=B 12 ; \\
& \text { for }(i=1 ; i<3 ; i++) \\
& \{\quad \operatorname{for}(j=1 ; j<n-1 ; j++)
\end{aligned}
$$

$$
\begin{aligned}
& \{b 12[i][j]=m[i][j+2] ;\}\} \\
& / / d=B 21 * B 11^{\prime} \\
& \text { for }(i=1 ; i<n-1 ; i++) \\
& \{\quad \operatorname{for}(j=1 ; j<3 ; j++) \\
& \{\quad d[i][j]=0 ; \\
& \text { for }(h=1 ; h<3 ; h++ \text {) } \\
& \{d[i][j]+=b 21[i][h] * c[h][j] ;\}\}\} \\
& / / q=d * B 12=B 21 * B 11^{\prime} * B 12 ; \\
& \text { for }(i=1 ; i<n-1 ; i++) \\
& \{\operatorname{for}(j=1 ; j<n-1 ; j++) \\
& \{\quad e[i][j]=0 ; \\
& \text { for }(h=1 ; h<3 ; h++ \text {) } \\
& \{e[i][j]+=d[i][h] * b 12[h][j] ;\}\}\} \\
& / / e=B 22-B 21 * B 11^{\prime} * B 12 \text {; } \\
& \text { for }(i=1 ; i<n-1 ; i++) \\
& \{\operatorname{for}(j=1 ; j<n-1 ; j++) \\
& \{\quad b[i][j]-=e[i][j] ;\}\}
\end{aligned}
$$

$/ / b=B 22 ; /$ and judge whether diagonal entries are positive or not and off-diagonal entries are non-positive or not;

$$
\begin{aligned}
& \text { for }(i=1 ; i<n-1 ; i++) \\
& \left\{\begin{array}{c}
\text { for }(j=1 ; j<n-1 ; j++) \\
\{b[i][j]=m[i+2][j+2] ; \\
\text { if }(i==j) \\
\{\quad \text { if }(b[i][j]<0) \\
\{\quad k=1 ; \\
\text { break; }\}\} \\
\text { else if }(b[i][j]>0) \\
\left\{\begin{array}{c}
k=1 ;
\end{array}\right. \\
\text { break; }\}\}\}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& / / m=b ; n=n-2 \\
& n-=2 ; \\
& \text { for }(i=1 ; i<n+1 ; i++) \\
& \{\operatorname{for}(j=1 ; j<n+1 ; j++) \\
& \{\quad m[i][j]=b[i][j] ;\}\}\} \\
& \text { //result } \\
& \text { if }(k==0) \\
& \text { \{ } \quad \text { cout } \ll \text { endl } \ll " \text { b11 }=" \ll \text { b11 } \ll \text { endl; } \\
& \text { cout } \ll \text { " the matrix you input is an } M \text {-matrix!" } \ll \text { endl; }\} \\
& \text { else } \\
& \text { \{ } \quad \text { cout } \ll \text { endl } \ll " \text { b11 }=" \ll \text { b11 } \ll \text { endl; } \\
& \text { cout<<"the matrix you input is not an } M \text {-matrix!" } \ll \text { endl } ;\}
\end{aligned}
$$

the end of the program

References

1 You Z Y. Nonsingular M-matrix. Wuhan: Huazhong Institute of Technology Press, 1981
2 Ojiro K, Niki H, Usui M. A new criterion for the H-matrix property. J. Comput. Appl. Math., 2003, 150: 293-302

3 Li L . On the iterative criterion for generalized diagonally dominant matrices. Japan Soc. Indust. Appl. Math., Tokyo, 2002,17-24

4 Li B, Li L, Harada Niki H. An iterative criterion for H-matrices. Linear Algebra and Its Applications, 1998, 271: 179-190

5 Kohno T, Niki H, Sawami H, Gao Y M. An iterative test for-matrix. J. Comput. Math., 2000,115: 345-355

6 Guo X J, Wang C W, Wang Y M, Kong L F. A method for judging nonsingular M-matrix and its parallel algorithm. Numeri.Math.J.Chinese Univ. (Chinese Series). 2001, 23(4): 357-362

Li Yaotang Department of Mathematics, University of Yunnan, Kunming 650091, PRC.
Zhu Yan Department of Mathematics, University of Yunnan, Kunming 650091, PRC.

[^0]: ＊Foundation item：This work is supported by the Science Foundations of the Education Department of Yunnan Province（03Z169A）and the Science Foundatons of Yunnan University（2003Z013B）．
 Received：Sep．11， 2004.

