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Abstract. A negative curvature method is applied to nonlinear least squares problems with
indefinite Hessian approximation matrices. With the special structure of the method, a new
switch is proposed to form a hybrid method. Numerical experiments show that this method
is feasible and effective for zero-residual, small-residual and large-residual problems.
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1 Introduction

Consider nonlinear least squares problems

min
x∈Rn

F (x) =
1

2
f(x)T f(x) =

1

2

m
∑

i=1

fi(x)2 (1)

where m ≥ n, f : R
n → R

m ∈ C2(Ω), Ω ∈ R
n is an open convex set and fi(x) is the component

function of f(x). The gradient of F (x) is

g(x) = J(x)T f(x), (2)

where J(x) is the Jacobian matrix of f(x), and the Hessian matrix is

G(x) = J(x)T J(x) +
m

∑

i=1

fi(x)∇2fi(x).

Set

M(x) = J(x)T J(x), W (x) =
m

∑

i=1

fi(x)∇2fi(x). (3)
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Then

G(x) = M(x) + W (x). (4)

Using the special structures of the object function F (x) and the Hessian matrix G(x), many
effective methods have been developed. Among them a fundamental method is Gauss-Newton
method which neglects the nonlinear term W (x) in G(x). In other words, a search direction is
given by

J(xk)T J(xk)pk = −J(xk)T f(xk). (5)

The following theorem shows the convergence of the Gauss-Newton method.

Theorem 1.1. Suppose that F (x) ∈ C2(Ω), x∗ is a local minimum of (1), J(x) and G(x) are Lip-

schitz continuous in Ω, and for all x ∈ Ω, J(x) is of full rank. If ‖J(x)‖ ≤ δ, ‖(J(x)T J(x))−1‖ ≤
τ , where δ and τ are constants, then Gauss-Newton iteration is well-defined for all x ∈ Ω, and

‖x(k+1) − x∗‖ ≤ ‖(J(x∗)T J(x∗))−1W (x∗)‖‖x(k) − x∗‖ + O(‖x(k) − x∗‖2). (6)

From the theorem above, whether Gauss-Newton method can succeed depends on whether
the neglected term W (x) is important, that is to say, whether W (x) is a small part in G(x).
The Gauss-Newton method has quadratic rate of convergence for zero residual problems where
f(x∗) = 0 or W (x∗) = 0.

The search direction can also be obtained by

(J(x(k))T J(x(k)) + λkI)p(k) = −J(x(k))T f(x(k)) (7)

where the nonnegative scalar λk is used to make J(x(k))T J(x(k)) + λkI positive definite. This
formula is first proposed by Levenberg [4] and Marquardt [5], and is therefore called Levenberg-
Marquardt method.

Another method takes advantage of W (x) in G(x), which is necessary for large residuals.
One of this type of methods is due to Dennis-Gay-Welsh [6]. Since

∇2fi(x
(k+1))s(k) = ∇fi(x

(k+1)) −∇fi(x
(k)), (8)

we have

fi(x
(k+1))∇2fi(x

(k+1))s(k) = fi(x
(k+1))(Jk+1 − Jk)T ei, (9)

which leads to

m
∑

i=1

fi(x
(k+1))∇2fi(x

(k+1))s(k) = (Jk+1 − Jk)T f (k+1). (10)

Set y♯ = (Jk+1 − Jk)T f (k+1). Then Wk+1 satisfies

Wk+1s = y♯. (11)

The Dennis-Gay-Welsh method gave the updating formula for Wk and scale strategy as follows:

Wk+1 = τWk +
(y♯ − τWks)yT + y(y♯ − τWks)T

yT s
−

(y♯ − τWks)T s

(yT s)2
yyT , (12)
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where

y = JT
k+1f

(k+1) − JT
k f (k), y♯ = JT

k+1f
(k+1) − JT

k f (k+1), (13)

τ = min

(

1,
|sT y♯|

|sT Wks|

)

. (14)

Since the nonlinear least squares problems are also general optimization problems, the hybrid
methods using Gauss-Newton method or the Levenberg-Marquadt method can be used for zero
residual problems, otherwise quasi-Newton method is adopted. Because hybrid methods can be
adapted to a suitable method for many problems, hybrid methods are also called switch methods.
Fletcher-Xu [3] proposed a switch strategy with little computation and superlinear convergence
provided that

|Fk−1 − Fk|

Fk−1
< ρ, (15)

where ρ = 0.2 is suggested. Fletcher-Xu’s hybrid method is one of the most efficient algorithms
for solving nonlinear least squares problems.

2 Algorithm

From Theorem 1.1, when ‖(J(x∗)T J(x∗))−1W (x∗)‖ ≤ θ < 1, the Gauss-Newton method con-
verges at superlinear rate at least. As a result, the matrix norms ‖J(x∗)T J(x∗)‖ and ‖W (x∗)‖
are compared in practice. It is quite expensive to compute the matrix norms directly. The algo-
rithm to be proposed here will not require matrix norms and extra memory. And this algorithm
is different from that of Fletcher-Xu, which is based on the comparison of function values in
order to distinguish the residuals. Our proposed algorithm is based on Theorem 1.1 directly.
Now we introduce the algorithm in detail. By (11),

(JT
k+1Jk+1 + Wk+1)s = JT

k+1Jk+1s + Wk+1s

= JT
k+1Jk+1s + (Jk+1 − Jk)T f (k+1) = y,

JT
k+1Jk+1s = y − (Jk+1 − Jk)T f (k+1)

= JT
k+1f

(k+1) − JT
k f (k) − JT

k+1f
(k+1) + JT

k f (k+1)

= JT
k (f (k+1) − f (k)). (16)

For convenience, we rewrite (11) as follows

Wk+1s = (Jk+1 − Jk)T f (k+1). (17)

Note that ‖JT
k+1Jk+1s‖ and ‖Wk+1s‖ can be regarded as the approximations of ‖JT

k+1Jk+1‖ and
‖Wk+1‖ in the search direction s. Now we propose a new switch as follows

Tk : ‖JT
k+1Jk+1s‖ ≥ γ‖Wk+1s‖, (18)

where γ > 1, and

Bk =

{

JT
k Jk if Tk is true,

JT
k Jk + Wk otherwise.

(19)
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Table 1: The numerator is our result, and the denominator is the result of [3].

Problems Residual type (R) Nit Nf Ng

Rosenbrock 8/16 11/28 8/16
Wood 18/36 40/66 18/39
Box Z 5/5 5/7 5/6
Beale 6/7 7/20 6/11
Cragg 10/8 11/18 10/11
Watson6 5/5 5/7 5/6
Watson9 5/5 5/6 5/5
Watson12 S 5/5 5/8 5/7
Watson20 8/5 48/7 8/6
Osborne1 10/9 12/14 10/9
Osborne2 11/9 17/19 11/9
Bard 5/5 5/7 5/6
Madsen 4/5 5/8 4/5
Kowalik 6/6 9/16 6/8
Meyer 7/7 15/28 7/10
Freudenstein and Roth L 9/6 19/10 9/6
Jennrich and Sampson 6/6 16/15 6/7

We now describe the proposed algorithm as follows:

Algorithm

Given x0, W0, k = 0, ε and evaluate J0, f0.

1. Evaluate dk by Bkdk = −JT
k fk, where Bk is given by (19).

2. Inexact line search

F (xk + αkdk) < F (xk) + ραkgT
k dk.

3. Set xk+1 = xk + αkdk and evaluate Jk+1, fk+1.

4. Termination test
‖g(xk+1)‖ < ε or Fk − Fk+1 <= 10−8 max{1, Fk+1}.

5. If ‖yT
k sk‖ > η‖yk‖‖sk‖, update Wk by Dennis-Gay-Welsh updating formula and scale

strategy, otherwise updating is skipped. Set k := k + 1, goto step 1.

Since positive definiteness of Wk cannot be assured by the Dennis-Gay-Welsh formula, we apply
BP factorization method to the system Bkdk = −JT

k fk, and a negative curvature direction is
obtained [9].

3 Numerical results

The algorithm presented in this paper was implemented in a C++ code. This section discusses
our computational results which will be compared with the results of Fletcher-Xu [3]. All testing
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was performed on a 1.1GHZ Pentium III PC with 256M memory. The test problems were
obtained from Fletcher-Xu [3].

In Table 1, Nit, Nf , Ng represent the number of iterations, function evaluating, and gradient
evaluating, respectively. The numerator is the result obtained from this algorithm, while the
denominator is the result of Fletcher-Xu.

During inexact line search, we adopt backtracking line search with ρ = 10−4. We also set
B0 = I, ε = 10−8 for stopping test in step 4, and η = 0.01 in step 5. In the switch strategy, we
set γ = 100.

It is observed that the proposed method is effective and feasible. However, for many test
functions, numerical results are only a little better than that of Fletcher-Xu. Moreover, the
convergence and stability have not been verified. This will be a future research topic.
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