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Abstract. This paper constructs a new kind of block based bivariate blending rational
interpolation via symmetric branched continued fractions. The construction process may be
outlined as follows. The first step is to divide the original set of support points into some
subsets (blocks). Then construct each block by using symmetric branched continued fraction.
Finally assemble these blocks by Newton’s method to shape the whole interpolation scheme.
Our new method offers many flexible bivariate blending rational interpolation schemes which
include the classical bivariate Newton’s polynomial interpolation and symmetric branched
continued fraction interpolation as its special cases. The block based bivariate blending
rational interpolation is in fact a kind of tradeoff between the purely linear interpolation
and the purely nonlinear interpolation. Finally, numerical examples are given to show the
effectiveness of the proposed method.
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1 Introduction

Bivariate Newton’s polynomial interpolation may be the most commonly used bivariate inter-
polation. It uses the bivariate partial divided differences which can be calculated recursively
and produce useful intermediate results. On the other hand, the most powerful bivariate in-
terpolation is the one using bivariate rational functions. The main advantage of the rational
functions over polynomials is their ability to model functions with nonlinear characters (such as
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poles or other singularity) and their fast convergence properties. Given a set of two dimensional
points Πmn = {(xi, yj) | i = 0, 1, . . . , m; j = 0, 1, . . . , n}, and suppose that f(x, y) is defined on
D ⊃ Πmn. Then one has two basic approaches for interpolating f(x, y) on Πmn. One is the
bivariate Newton’s interpolating polynomial ([5])

P (x, y) =
m

∑

i=0

n
∑

j=0

f [x0, . . . , xi; y0, . . . , yj ]
i−1
∏

h=0

(x − xh)

j−1
∏

k=0

(y − yk),

where the empty products are defined to take the value 1, and

f [x0; y0] = f(x0, y0),

f [x0, . . . , xi; y0] =
f [x1, . . . , xi; y0] − f [x0, . . . , xi−1; y0]

xi − x0
,

f [x0, . . . , xi; y0, . . . , yj ] =
f [x0, . . . , xi; y1, . . . , yj] − f [x0, . . . , xi; y0, . . . , yj−1]

yj − y0
.

The other one is the interpolating symmetric branched continued fraction ([2–4,7])

R(x, y) = ϕ00 +

m
∑

k=1

x − xk−1

ϕk0
+

n
∑

k=1

y − yk−1

ϕ0k

+

m
∑

l=1

(x − xl−1)(y − yl−1)

ϕll +

m
∑

k=l+1

x − xk−1

ϕkl

+

n
∑

k=l+1

y − yk−1

ϕlk

, (m ≤ n)

or

R(x, y) = ϕ00 +
m

∑

k=1

x − xk−1

ϕk0
+

n
∑

k=1

y − yk−1

ϕ0k

+

n
∑

l=1

(x − xl−1)(y − yl−1)

ϕll +

m
∑

k=l+1

x − xk−1

ϕkl

+

n
∑

k=l+1

y − yk−1

ϕlk

, (n ≤ m)

where ϕij = ϕ[x0, . . . , xi; y0, . . . , yj], and

ϕ[x0; y0] = f(x0, y0),

ϕ[x0, . . . , xk; y0] =
xk − xk−1

ϕ[x0, . . . , xk−2, xk; y0] − ϕ[x0, . . . , xk−1; y0]
,

ϕ[x0; y0, . . . , yk] =
yk − yk−1

ϕ[x0; y0, . . . , yk−2, yk] − ϕ[x0; y0, . . . , yk−1]
,

ϕ[x0, . . . , xj ; y0, . . . , yj ] = (xj − xj−1)(yj − yj−1)(ϕ[x0, . . . , xj−2, xj ; y0, . . . , yj−2, yj ]

−ϕ[x0, . . . , xj−1; y0, . . . , yj−2, yj ] − ϕ[x0, . . . , xj−2, xj ; y0, . . . , yj−1]

+ϕ[x0, . . . , xj−1; y0, . . . , yj−1])
−1,

and for k > j

ϕ[x0, . . . , xk; y0, . . . , yj ] =
xk − xk−1

ϕ[x0, . . . , xk−2, xk; y0, . . . , yj] − ϕ[x0, . . . , xk−1; y0, . . . , yj ]
,

ϕ[x0, . . . , xj ; y0, . . . , yk] =
yk − yk−1

ϕ[x0, . . . , xj ; y0, . . . , yk−2, yk] − ϕ[x0, . . . , xj ; y0, . . . , yk−1]
.
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The above two interpolants are purely linear and nonlinear interpolations, respectively. Obvi-
ously, some applications need interpolation by the bivariate functions between the purely linear
and purely nonlinear (rational) interpolants. In such cases, the bivariate blending rational inter-
polants may be better than the purely linear or nonlinear one. The case of bivariate blending
rational functions are studied by one of the authors ([9, 11, 12, 14]). The bivariate blending ra-
tional interpolants are constructed by the tensor-like product of univariate linear and nonlinear
interpolants ([9, 11]). By applying the Neville’s algorithm to continued fractions, a Neville-like
method is proposed ([12]). By adopting composite interpolation over triangular sub-grids, the
composite scheme for multivariate blending rational interpolation is discussed ([14]).

In this paper, the emphasis is put on the study of block based bivariate blending rational
interpolation in Newton-like form via symmetric branched continued fractions. The bivariate
blending rational interpolants are constructed by taking the policy of “tradeoff” between the
purely linear and the purely nonlinear method in the block blending manner. The construction
process may be outlined as follows. First of all, divide the original set of support points into some
subsets (blocks). Then construct each block by using symmetric branched continued fraction.
Finally assemble these blocks by Newton’s method to shape the whole interpolation scheme. By
introducing so-called block based bivariate partial divided differences which look like divided
differences, we give a recursive algorithm for interpolation. Our method offers many flexible
bivariate blending rational interpolation schemes which include the classical bivariate Newton’s
polynomial interpolation and the classical branched continued fraction interpolation as its special
cases. Moreover, we investigate the error estimation. Numerical examples are also given to show
the effectiveness of our method.

2 Block based bivariate blending rational interpolants

Recently, a kind of block based interpolation method in Thiele-Werner-type form has been pro-
posed for univariate vector-valued osculatory rational interpolation ([15]). In order to obtain
flexible bivariate blending rational interpolation, we elaborate on that technique in terms of
Newton-like form for the bivariate blending rational interpolation. Some details of the algorithm
will be given below.

2.1 Basic idea

Given a set of two dimensional points Πmn = {(xi, yj) | i = 0, 1, . . . , m; j = 0, 1, . . . , n}. Suppose
Πmn ⊂ D ⊂ R2, and let f(x, y) be a real function defined on D such that

f(xi, yj) = fij , i = 0, 1, . . . , m; j = 0, 1, . . . , n.

We divide Πmn into the following (u + 1) × (v + 1) subsets:

Πst
mn = {(xi, yj) | cs ≤ i ≤ ds; ht ≤ j ≤ rt}, (s = 0, 1, . . . , u; t = 0, 1, . . . , v).

The subsets may be achieved by reordering the interpolation points if necessary. It is easy to
check that

u
∑

s=0

(ds − cs + 1) = m + 1,

v
∑

t=0

(rt − ht + 1) = n + 1.

Let us consider the following function with block based bivariate Newton-like formation:

T (x, y) = Z0(x, y) + Z1(x, y)ω0(x) + · · · + Zu(x, y)ω0(x) · · ·ωu−1(x), (1)
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for s = 0, 1, . . . , u

Zs(x, y) = Is0(x, y) + Is1(x, y)ω0(y) + · · · + Isv(x, y)ω0(y) · · ·ωv−1(y), (2)

where

ωs(x) =

ds
∏

i=cs

(x − xi), s = 0, 1, . . . , u − 1, (3)

ω∗

t (y) =

rt
∏

i=ht

(y − yi), t = 0, 1, . . . , v − 1, (4)

and Ist(x, y) (s = 0, 1, . . . , u; t = 0, 1, . . . , v) are the interpolating symmetric branched con-
tinued fractions on the subsets Πst

mn (s = 0, 1, . . . , u; t = 0, 1, . . . , v). If the above Ist(x, y)
(s = 0, 1, . . . , u; t = 0, 1, . . . , v) are chosen so that

T (xi, yj) = fij , (xi, yj) ∈ Πmn, (5)

then T (x, y) defined by (1)-(4) is called block based bivariate blending rational interpolant to
f(x, y). To obtain a block based bivariate blending rational interpolant on the whole set Xn, the
above Ist(x, y) must be computed so that (5) holds.

2.2 Block based bivariate partial divided differences

This subsection is concerned with choosing Ist(x, y) (s = 0, 1, . . . , u; t = 0, 1, . . . , v) such that (5)
holds. For convenience, we introduce the following notations:

f00
ij = fij , i = 0, 1, . . . , m; j = 0, 1, . . . , n; (6)

and for t = 1, 2, . . . , v

f0t
ij =

f
0,t−1
ij − I0,t−1(xi, yj)

ω∗

t−1(yj)
, (i = 0, 1, . . . , m; j = ht, ht + 1, . . . , n), (7)

where I0t(x, y) are the symmetric branched continued fraction interpolants on the subsets Π0t
mn

such that
I0t(xi, yj) = f0t

ij , (c0 ≤ i ≤ d0, ht ≤ j ≤ rt, t = 0, 1, . . . , v). (8)

For s = 1, 2, . . . , u,

fs0
ij =

f
s−1,0
ij − Zs−1(xi, yj)

ωs−1(xi)
, (i = cs, cs + 1, . . . , m; j = 0, 1, . . . , n), (9)

and for t = 1, 2, . . . , v

fst
ij =

f
s,t−1
ij − Is,t−1(xi, yj)

ω∗

t−1(yj)
, (j = ht, ht + 1, . . . , n; i = cs, cs + 1, . . . , m), (10)

where Ist(x, y) are the symmetric branched continued fraction interpolants on subsets Πst
mn such

that

Ist(xi, yj) = fst
ij , (cs ≤ i ≤ ds, ht ≤ j ≤ rt; s = 1, 2, . . . , u; t = 0, 1, . . . , v). (11)

If all the fst
ij exist, then fst

ij are called the (s, t)th block based bivariate partial divided differences
for the function f(x, y).
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Theorem 2.1. If all the above interpolants Ist(x, y) exist and satisfy (8) and (11), then

T (xi, yj) = fij , i = 0, 1, . . . , m; j = 0, 1, . . . , n.

Proof Let cs ≤ i ≤ ds, and ht ≤ j ≤ rt. By (1), (2) and (6)-(11), we have

T (xi, yj) = Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + Zs(xi, yj)ω0(xi) · · ·ωs−1(xi)

and

Zs(xi, yj) = Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + Ist(xi, yj)ω
∗

0(yj) · · ·ω
∗

t−1(yj)

= Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + fst
ij ω∗

0(yj) · · ·ω
∗

t−1(yj)

= Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + (fs,t−1
ij − Is,t−1(xi, yj))ω

∗

0(yj) · · ·ω
∗

t−2(yj)

= Is0(xi, yj) + Is1(xi, yj)ω
∗

0(yj) + · · · + f
s,t−1
ij ω∗

0(yj) · · ·ω
∗

t−2(yj)

= · · · = fs0
ij .

It is easy to verify that

T (xi, yj) = Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + Zs(xi, yj)ω0(xi) · · ·ωs−1(xi)

= Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + fs0
ij ω0(xi) · · ·ωs−1(xi)

= Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + (fs−1,0
ij − Zs−1(xi, yj))ω0(xi) · · ·ωs−2(xi)

= Z0(xi, yj) + Z1(xi, yj)ω0(xi) + · · · + f
s−1,0
ij ω0(xi) · · ·ωs−2(xi)

= · · · = f00
ij = fij.

The proof is thus completed.

2.3 Special cases

Block based bivariate blending rational interpolation via symmetric branched continued fractions
can be obtained explicitly by means of the above recursive algorithm and has a number of
interesting special cases. From the special cases, it is not difficult to find that the above block
based interpolation is a kind of tradeoff between the purely linear bivariate Newton interpolation
and the purely nonlinear symmetric branched continued fraction interpolation in block blending
manner.

Case 1: u = v = 0, i.e., the whole set Πmn is the unique subset. In this case, if I00(x, y) is the
symmetric branched continued fraction interpolant on the Πmn, then one has

T (x, y) = I00(x, y). (12)

This is to say that the above block based bivariate blending rational interpolation includes the
classical symmetric branched continued fraction interpolation as its special case.

Case 2: u = 0, v = 1, 2, . . . , n. In this case, it is easy to know that

T (x, y) = Z0(x, y)

= I00(x, y) + I01(x, y)ω∗

0(y) + · · · + I0v(x, y)ω∗

0(y) · · ·ω∗

v−1(y). (13)

Let us consider the case of v = n. It is clear that the set Πmn is divided into n + 1 subsets
Π0t

mn = {(xi, yj) | i = 0, 1, . . . , m; j = t} (t = 0, 1, . . . , n). In this case, the symmetric branched
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continued fraction interpolants I0t(x, y)(t = 0, 1, . . . , n) on the subsets Π0t
mn degenerate into

univariate Thiele-type continued fraction interpolants ([7]). Therefore, when u = 0 and v = n,
the above block based bivariate blending rational interpolation degenerates into the classical
Thiele-Newton interpolation ([11]).

Case 3: u = m, v = 0. Then we have

Zs(x, y) = Is0(x, y), (s = 0, 1, . . . , m) (14)

and

T (x, y) = I00(x, y) + I10(x, y)ω0(x) + · · · + Im0(x, y)ω0(x) · · ·ωm−1(x), (15)

where all the Is0(x, y) (s = 0, 1, . . . , m) also degenerate into univariate Thiele-type continued
fraction interpolants ([7]). In this case, the above block based bivariate blending rational inter-
polant becomes the classical Newton-Thiele interpolant ([11]).

Case 4: u = m, v = n, i.e., each block (subset) contains only one point. Then the block
based bivariate partial divided differences degenerate into the classical bivariate partial divided
differences and the above block based bivariate blending rational interpolant degenerates into
the classical bivariate Newton interpolant .

The above special cases tell us that the block based bivariate blending rational interpolation
is a kind of tradeoff between the purely linear interpolation (the bivariate Newton interpolation)
and the purely nonlinear interpolation (the symmetric branched continued fraction interpolation)
in the block blending manner. In particular case when u = 0 and v = 0 (no partition of block),
the block based bivariate blending rational interpolant is the purely linear one. As u or v becomes
larger (finer partition of block), the linear weight in the blending rational interpolant becomes
larger. Especially, when u = m and v = n (the finest partition of block), the linear weight in
the blending rational interpolant becomes the largest, which means the above blending rational
interpolant degenerates into the purely linear bivariate Newton interpolant.

3 Error estimate

In this section, we discuss the error in the approximation of a function f(x, y) by its block based
bivariate blending rational interpolants via the symmetric branched continued fractions.

Theorem 3.1. Suppose D = [a, b]× [c, d] is a rectangular domain containing Πmn and f(x, y) ∈
C(m+n+2)(D). Let

T (x, y) = Z0(x, y) + Z1(x, y)ω0(x) + · · · + Zu(x, y)ω0(x) · · ·ωu−1(x)

=
P (x, y)

Q(x, y)
(16)

be the block based bivariate blending rational interpolant on Πmn. Then ∀(x, y) ∈ D, we have

f(x, y) − T (x, y) =
ω(x)

Q(x, y)

∂m+1

∂xm+1 [fQ − P ]x=ξ

(m + 1)!
+

ω∗(y)

Q(x, y)

∂n+1

∂yn+1 [fQ − P ]y=η

(n + 1)!

−
ω(x)ω∗(y)

Q(x, y)

∂n+m+2

∂xm+1∂yn+1 [fQ − P ]x=ξ,y=η

(m + 1)!(n + 1)!
,

with ξ, ξ ∈ (a, b) and η, η ∈ (c, d), where

ω(x) = (x − x0)(x − x1) · · · (x − xm), ω∗(y) = (y − y0)(y − y1) · · · (y − yn).
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Proof Let E(x, y) = f(x, y)Q(x, y) − P (x, y). It follows from Theorem 2.1 and (16) that

E(xi, yj) = 0, (i = 0, 1, . . . , m; j = 0, 1, . . . , n).

Using the bivariate Newton formula ([5]) gives

E(x, y) =
m

∑

i=0

n
∑

j=0

E[x0, . . . , xi; y0, . . . , yj]
i−1
∏

h=0

(x − xh)

j−1
∏

k=0

(y − yk)

+
∂m+1E(ξ, y)

∂xm+1

∏m
h=0(x − xh)

(m + 1)!
+

∂n+1E(x, η)

∂yn+1

∏n
k=0(y − yk)

(n + 1)!

−
∂m+n+2E(ξ, η)

∂xm+1∂yn+1

∏m
h=0(x − xh)

∏n
k=0(y − yk)

(m + 1)!(n + 1)!
,

where ξ, ξ ∈ (a, b) and η, η ∈ (c, d). It is easy to verify that

f(x, y) − T (x, y) =
E(x, y)

Q(x, y)

=
ω(x)

Q(x, y)

∂m+1

∂xm+1 [fQ − P ]x=ξ

(m + 1)!
+

ω∗(y)

Q(x, y)

∂n+1

∂yn+1 [fQ − P ]y=η

(n + 1)!

−
ω(x)ω∗(y)

Q(x, y)

∂n+m+2

∂xm+1∂yn+1 [fQ − P ]x=ξ,y=η

(m + 1)!(n + 1)!
,

with ξ, ξ ∈ (a, b) and η, η ∈ (c, d), where

ω(x) = (x − x0)(x − x1) · · · (x − xm), ω∗(y) = (y − y0)(y − y1) · · · (y − yn).

The proof is complete.

4 Numerical examples

In this section, some numerical examples are given to show how the algorithms are implemented.

Example 1: Suppose the interpolating points and the prescribed values of f(x, y) at the support
abscissas (xi, yj) are given in the following table

y0 = 0 y1 = 1 y2 = 2 y3 = 3
x0 = 0 0 -3 -4 1
x1 = 1 1 0 -1 -3
x2 = 2 3 1 0 -1
x3 = 3 4 -4 3 0

For convenience, we only present a few schemes.

Scheme 1: Classical symmetric branched continued fraction interpolant

Let us consider u = v = 0 (see Case 1 ). Then the above block based bivariate blending ratio-
nal interpolant degenerates into the following classical symmetric branched continued fraction
interpolant on the whole set Π33

T (x, y) =
63x + 114xy − 45x2 + 10x2y − 192y + 66y2 − 44xy2

54 − 36x − 12y + 8xy

+
xy

2157−237y+27x−283xy
9858−4346x−3906y+1722xy

+ (x−1)(y−1)
10
3 + 2

7x− 34
21y+

(x−2)(y−2)

−

3
118

.
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It is easy to check that
T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Scheme 2: Block based bivariate blending rational interpolant

Let u = 0, v = 1 and h0 = 0, r0 = 1; h1 = 2, r1 = 3 (see Case 2 ). The whole set Π33 is divided
into the following two subsets Π00

33 and Π01
33:

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

Suppose I00(x, y) is the symmetric branched continued fraction interpolant on the subset Π00
33.

Then we have
I00(x, y) =

x

1 + x−1
7−5x

+
y

− 1
3

+
xy

1
2 + x−1

2
3−

82
33 (x−2)

.

By (7), we have

f01
02 = 1 f01

03 =
5

3
f01
12 = 0 f01

13 = −
1

6

f01
22 =

1

2
f01
23 =

1

3
f01
32 =

15

2
f01
33 =

10

3

Let I01(x, y) be the symmetric branched continued fraction interpolant on the subset Π01
33. Then

it follows from (8) that

I01(x, y) =
1

−33696 + 22212x− 3480x2
× (−23016x + 5557x2 + 11232

+1239x3 + 45618xy − 24260x2y − 22464y + 3600x3y).

By (13) and (4), one finally obtains

T (x, y) =
x

1 + x−1
7−5x

+
y

− 1
3

+
xy

1
2 + x−1

2
3−

82
33 (x−2)

+

y(y − 1)

−33696 + 22212x− 3480x2
× (−23016x + 5557x2

+11232 + 1239x3 + 45618xy − 24260x2y − 22464y + 3600x3y).

It is easy to verify that
T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Scheme 3: Classical Newton-Thiele interpolant

Suppose u = 3 and v = 0 (see Case 3 ). Then the above block based bivariate blending rational
interpolant becomes the following classical Newton-Thiele interpolant on the whole set Π33

T (x, y) =
11y2 − 32y

−2y + 9
+

21y2 − 48y − 21

5y − 21
x

+
18y2 − 49y + 12

24 − 5y
x(x − 1) +

53y2 − 51y − 114

342 − 174y
x(x − 1)(x − 2).

It is easy to verify that
T (xi, yj) = fij , i, j = 0, 1, 2, 3.
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Scheme 4: Block based bivariate blending rational interpolant

Let u = 1, v = 0 and c0 = 0, d0 = 1; c1 = 2, d1 = 3 (see Case 3 ). The whole set Π33 is divided
into the following two subsets Π00

33 and Π10
33:

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

Suppose I00(x, y) is the symmetric branched continued fraction interpolant on the subset Π00
33.

Then we have

I00(x, y) =
−9x + 2xy + 32y − 11y2

2y − 9
+

xy(21y − 53)

5y − 21
.

By (9), we have

f10
20 =

1

2
f10
21 = −1 f10

22 = −1 f10
23 = 3

f10
30 =

1

6
f10
31 = −

5

3
f10
32 = −

1

3
f10
33 =

11

6

Let I10(x, y) denote the symmetric branched continued fraction interpolant on the subset Π10
33.

Then it follows from (11) that

I01(x, y) =
84 − 157y − 24x + 5xy + 54y2

72 − 15y
+

y(x − 2)(109 − 53y)

6(29y − 57)
.

By (15) and (3), we finally obtain

T (x, y) =
−9x + 2xy + 32y − 11y2

2y − 9
+

xy(21y − 53)

5y − 21

+

(

84 − 157y − 24x + 5xy + 54y2

72 − 15y
+

y(x − 2)(109 − 53y)

6(29y − 57)

)

x(x − 1).

It is easy to check that
T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Scheme 5: Classical Thiele-Newton interpolant

Suppose u = 0 and v = 3 (see Case 3 ). Then the block based bivariate blending rational
interpolant degenerates into the following classical Thiele-Newton interpolant on the whole set
Π33

T (x, y) = −
8

3
y − y2 +

2

3
y3 +

x

1 − 17
12y + 23

24y2 − 5
24y3

+
x − 1

−3 + 253
18 y − 16

3 y2 + 5
18y3

+
x − 2

− 1
5 + 239

660y − 677
1320y2 + 263

1320y3
.

It is easy to verify that
T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Scheme 6: Classical bivariate Newton polynomial interpolant

Let u = 3 and v = 3 (see Case 4 ). Then the block based bivariate blending rational interpolant
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degenerates into the following classical bivariate Newton polynomial interpolant on the whole
set Π33

T (x, y) = x − 3y +
1

2
x(x − 1) + 2xy + y(y − 1) −

1

3
x(x − 1)(x − 2)

−
3

2
x(x − 1)y − xy(y − 1) +

2

3
y(y − 1)(y − 2)

−
1

3
x(x − 1)(x − 2)y +

3

4
x(x − 1)y(y − 1)

−
5

6
xy(y − 1)(y − 2) +

5

6
x(x − 1)(x − 2)y(y − 1)

+
5

12
x(x − 1)y(y − 1)(y − 2) −

29

36
x(x − 1)(x − 2)y(y − 1)(y − 2).

It is easy to verify that
T (xi, yj) = fij , i, j = 0, 1, 2, 3.

Example 2: In order to compare the stability of block based bivariate blending rational interpo-
lation and the classical bivariate Newton’s polynomial interpolation, we have chosen the function
f(x, y) = ln(1 + x2 + y2) + x(x − 1)(x − 2) exp((1 + x2 + y2)−1). As a set of the interpolating
points we take Π44 = {(xi, yj) | i = 0, 1, . . . , 4; j = 0, 1, . . . , 4} and the values of f(x, y) at the
support abscissas (xi, yj) are given in the following table

y0 = 0 y1 = 1 y2 = 2 y3 = 3 y4 = 4
x0 = 0 0 0.6931471806 1.609437912 2.302585093 2.833213344
x1 = 1 0.6931471806 1.098612289 1.791759469 2.397895273 2.890371758
x2 = 2 1.609437912 1.791759469 2.197224577 2.639057330 3.044522438
x3 = 3 8.933610601 8.968911913 9.083305916 9.268686437 9.493361086
x4 = 4 28.28732683 28.26143764 28.21502757 28.19915473 28.23491172

The classical bivariate Newton polynomial interpolant on the whole set Π44 is obtained and a
block based bivariate blending rational interpolant is computed when the whole set Π44 is divided
into the following two subsets Π00

44 and Π10
44:

(0,0) (0,1) (0,2) (0,3) (0,4)
(1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4)

(3,0) (3,1) (3,2) (3,3) (3,4)
(4,0) (4,1) (4,2) (4,3) (4,4)

We have calculated the errors at (1.5, 1.5) and (3.5, 3.5). The results are displayed in the following
table

(1.5,1.5) (3.5,3.5)
Bivariate Newton interpolant 0.395318059 0.28624459
Block based blending interpolant 0.025869493 0.00200955

5 Conclusions

This paper presents a new kind of block based bivariate blending rational interpolation which
can be computed recursively based on the block blending method via the symmetric branched
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continued fractions. It is demonstrated that our method provides many flexible bivariate blending
rational interpolation schemes. We give a brief discussion of the algorithm for the block based
bivariate blending rational interpolation, illustrate some special cases and investigate the error
estimates. Numerical examples show the flexibility and effectiveness of our method. Finally we
point out that the block based bivariate blending rational interpolation method can be easily
generalized to vector-valued cases or matrix-valued cases ([6, 10, 16]).
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