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Abstract
The main aim of this paper is to study the nonconforming linear triangular Crouzeix-
Raviart type finite element approximation of planar linear elasticity problem with the pure
displacement boundary value on anisotropic general triangular meshes satisfying the max-
imal angle condition and coordinate system condition. The optimal order error estimates
of energy norm and L?-norm are obtained, which are independent of lamé parameter .
Numerical results are given to demonstrate the validity of our theoretical analysis.
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1. Introduction

We consider the planar linear elasticity problem with the pure displacement boundary value

{ —pAu — (p+ N)grad(divu) = f, in Q,

u=0, on 99, (1.1)

where A, p are Lamé constants, A € (0,400), p € [p1,u2], 0 < p1 < p2. An equivalent
variational formulation to problem (1.1) is

{ find w € V' such that (1.2)

a(u,v) = (f,v) YveV,

where V C (H}(Q))2, u = (u1,u2), f = (f1, f2) € (L*(Q))?,

aw0) = [ 7w o+ (e Ndivu) @ivo)dody, ()= [ f-vdody.

It is well-known that if problem (1.1) is approximated by using standard conforming finite
elements as the material becomes nearly incompressible, the numerical solutions converge slowly.
Such phenomena have been known as numerical locking. The reason for this lies in that the
coefficient of the finite element error estimates is dependent on A, which will extend to oo if
A — 00. More detailed explanation of numerical locking can be found in [1-3].
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In order to overcome the locking phenomena, the special finite element methods were used.
One direct approach is to use the mixed formulation, which can be found in [4-7]. The other
method is to use the nonconforming finite elements approximation of the pure displacement
problem. Based on standard finite element methods, [1] and [2] proved that the linear trian-
gular Crouzeix-Raviart nonconforming element is locking-free. [2] and [8] used the so-called
reduced integration methods to take account of a class of triangular and quadrilateral elements.
[9] also provided a new method to construct locking-free element, and gave a useful noncon-
forming incomplete biquadratic rectangular element. However, all the above studies rely on the
regularity assumption hg /px < C or quasi-uniform assumption h/ h<C [10] of the meshes,
where hg, px denote the diameter and the radius of inscribed circle of the element K re-
spectively, h = maxg hx, h = ming hyi, C is a positive constant independent of h. However,
in some cases, the solutions of some elliptic problems may have anisotropic behavior in some
parts of the solution domain. An obvious idea to reflect this anisotropy is to employ anisotropic
meshes with a finer mesh size in the direction of the rapid variation of the solution and a coarser
mesh size in the perpendicular direction. The above assumptions are no longer valid in the case
of anisotropic meshes, because the anisotropic elements K are characterized by hx/px — oo,
when the limit is considered as h — 0. For the anisotropic elements, the well-known Bramble-
Hilbert lemma can not be used directly in estimating the interpolation error. At the same
time, the consistency error estimate, the key of the nonconforming finite element analysis, will
become very difficult to be dealt with. In recent years, many works have been done to analyze
the properties of anisotropic finite elements, especially for the nonconforming finite elements
[11-23]. Though [14-18] used the rectangular nonconforming elements to solve the different
problems on anisotropic meshes and the Quasi-Wilson element for narrow quadrilateral meshes
was discussed in [13], it is difficult to apply these elements to problem (1.1) directly. On the
other hand, [12] only discussed the convergence properties for second-order elliptic problem
with the nonconforming linear triangular Crouzeix-Raviart type element on anisotropic three-
directional meshes. How to extend this element to anisotropic general triangular meshes is still
an open problem.

In this paper, we will use the nonconforming linear triangular Crouzeix-Raviart type finite
element to approximate problem (1.1) for anisotropic general triangular meshes satisfying the
maximal angle condition and coordinate system condition [11]. The optimal order error esti-
mates of energy norm and L?-norm are obtained by introducing a auxiliary finite element space
similar to [12], which are independent of lamé parameter A. But the analysis is more difficult,
and needs more techniques than [12].

The organization of the paper is as follows. In Section 2, we introduce some preliminaries
and lemmas. The optimal energy norm and L?-norm are obtained in Section 3. At last, a
numerical example is given to confirm our theoretical analysis in Section 4.

2. Construction of the Nonconforming Anisotropic Element

For the sake of simplicity, we assume that 2 C R? is a convex polygon composed by a family
of triangular meshes Jp, Q = Uy, K, J, satisfies the following conditions (a) and (b) (see
Fig. 2.1.), but does not need to satisfy the regularity assumption or quasi-uniform assumption.

(a) Maximal angle condition: There is a constant v* < 7 (independent of h and K € Jp,)
such that the maximal interior angle v of any element K is bounded by v*, v < ~*.
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Fig. 2.1. Notation and illustration of K.

(b) Coordinate system condition: The angle 6 between the longest side and the z—axis
is bounded by |siné| < Chy i /hz k (where hy i is the length of the longest edge, hy, x is the
length of the high corresponding to the longest edge and C' is a positive constant).

For any K € J, suppose that the three vertices of K are A;(x;,y;) and the corresponding
edges are F; (i = 1,2,3). Let K be the reference element on (A1, A2)-plane with vertices
dAl = (1,0), dAQ = (0, 1), and dA3 = (0,0), Zl = dAQdA;g, ZQ = dA3dAl, [3 = dAldAQ.

The finite element (K, P, 2) on K is defined by

do=A{aM, a®, @™y, P={1, A1, A}, (2.1)

) 1 A
o = m/adg, |zz-|:/ 1ds, i=1,2,3.

The interpolation defined above is properly posed and the interpolation function can be

where

expressed as
Mo =a® +a® —a® 4200 —aW)A; + 203 — @), (2.2)
Contrary to the Lagrange interpolation (nodal values), this interpolation is defined for @ €
WLP(K), Vp € [1,+o0). Note further that 1l = @, V& € Py (P, is the polynomial set with
the order less than or equal to one).
d

For simplicity, we shall use the abbreviations d; and 9;; for 5 and o7

3 2005 respectively.

Lemma 2.1. The interpolation operator 11 defined by (2.2) has the anisotropic interpolation
property [13], i.e., for any a = (a1, aa), |a| =1, there holds

ID*(a —Ta)|l, 4 < C1D*al, g, @€ HY(K), (2.3)
where C is a constant and only relies on reference element K.

Proof. Let o = (1,0). Then
DO = 9y, (TTa) = 2(a® — oMy = |K|7? / O, tidA AN 2 F(DY0),
K

where |K| is the measure of K. Let @ = D*@. Then

G(&) = |K| / i < Cloly z < Clol, 4
K
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apparently G is a continuous linear function. By the anisotropic interpolation theorem [13], we
have
HDa(ﬂ - fm)”o,f( < CA’|Daﬁ|1,f('
Similarly, (2.3) is valid for & = (0, 1), which completes the proof. O
The affine mapping Fi : K — K and the finite element space are defined by

{ T = (Il — x3))\1 + (xg — $3))\2 + z3,
Y= (y1 —y3)A1 + (y2 — y3) A2 + y3,

and

Vi = {Uh; uh'K oFy € ]32a /

[up]ds = 0, VF C 0K, K € Jh}
F

respectively, where F' denotes the edge of K, [up] denotes the jumping value of wy, and if
F C 09, then [up] = up.
Let Iy |x =IIx =110 F];l. Then we have the following very important lemma.

Lemma 2.2. Yu € WHP(K) (p € [1,+00)), the interpolation operator I, satisfies
diVHKU = MK(diVU), (24)
where Mgv = |K|™" [, vdxdy.

Proof.

3
diVHKU:|K|71/ divll gudzdy = |K|71/ Miu-nds = |K|7lz/ Mgu-nids
K oK = JF

3
=|K|™! Z/ u-nds = |K|_1/ divudzdy = Mg (divu).
i=1/Fi K
The proof is completed. O

3. Approximation and Error Estimates

The nonconforming finite element approximation of (1.2) reads as

{ find up, € V3, such that (3.1)

an(un,vn) = (f,vn) Yop € Vi,

where

up = (Upy, Uhy), an(Un,vp) = Z / {u  un - Jon + (e )\)(divuh)(divvh)}dzdy.
KelJy, K

The following error estimate can be found in [2].

Lemma 3.1. The variational problem (1.2) has a unique solution u € (H}(Q)N H%(Q))2.
Furthermore, the following elliptic reqularity estimate holds

[ull2.0 + Aldivulio < C[[fllo.g (3.2)

where C' > 0 is a constant independent of A\ and p.
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Yon, € Vi, let ||oplln = an(vn,vp)2, then || - ||, is a norm over V,. Now we state the main
result of this paper.

Theorem 3.1. Assume that u € (H?(2) N HE(Q))? and uy, € Vi, are the solutions of (1.2) and
(3.1), respectively. Then on anisotropic meshes, we have

Here and later, C' > 0 is a constant independent of A\ and u, and may be of different value at
each occurrence.
Proof. By Strang lemma [10], we have

(3.3)

. Ep(u,w
lu—unlln < C{ inf lu—uvnln+ sup |En(u, wn)| , (3.4)
v €Vh wneVi\{0} llewnlln

where Ej(u,wr) = an(u,wn) — f(wn).
We now begin with estimating the first term on the right hand of (3.4). We know that

Z lu — pulf = Z / (u — Tpu))? + (0y (u — Mju))?|dedy

KeJy, KeJdy,

= Z (Dl +D2);

KeJdy,
where Dy = [ (0, (u — ITyw))?dady, Dy = [5(0y(u — Iyu))?dzdy.

An apphcatlon of Lemma 2.1 gives

= — u 2 X = ’IAL—AQAJ, 2. 1 2
Dy = [ 0,(u~T)Pdedy = [ (0,0~ 110))? 2[R} dndn

= / [0, (@ — TT2) Dy A1 4 O, (4 — TT0) Dy A9)? - 2| K |dA1d Ay
K

§2/ {[ah (@ — TIa) 9y A1) + [0, (it — ﬂa)ayAQP} 2| K|dM\d)s
K

<C 20K (S5 om0l
<c-2K|-{(* 2IKT2) /[(aml )2+ (900 8)2]dNdAo
(B2 [ 07 + Qunsilandn

T3 — T2

<O{ (S [ (@ r =)'+ @y = )1 = )"

+ (Oayu)? (21 — 23) (Y1 — y3)® + (Byyu)* (1 — y3)*

+ (Do) (z1 — 23)* (22 — 23)° + (Oyotr)*(y1 — y3)* (22 — 23)°
(&Eyu) (z1 — 933)2(3/2 - y3)2 + (8yyu)2(y1 - y3)2(y2 - y3)2]dxdy
(A [ 10mru (w2 = a1 = 22 + Oyt (v = ) (01— 23)°

+
+
+ (Ouyu)® (22 — 23)2 (Y1 — y3) + (Byy)* (y2 — y3)* (11 — 3)?
+ (Orau)? (22 — 23)* + (Oyar)* (y2 — y3)* (w2 — x3)?

+
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Obviously, we can derive that

(y1 —y3)? . ¢ (y2 — y3)? . ¢
2IK[)? ~ hZg"  (QK]D? T Ak

If the maximal interior angle v of K is an obtuse angle, then from condition (a), there holds
1/siny* < C. So we have

(w5 —w2)* (1 — ) _ (as—mP(mn—ws)” 1 (3.6)
2IK])? (A A3][A3Ag|siny)? — sin”y =
and
(23 —@2P(wi —we)' _ oy (w3 @@ @)’ o (3.7)

(2|K1)? (2|K1)?

If the maximal interior angle v of K is an acute angle or a right angle, then

(z3 — x2)* (21 — x3)*

<C,
(2|K1)?
(3.7) is still valid. Hence
D, = / (8y(u — Tpu))?dady < Ch*|ul3 k. (3.8)
K
Similarly, we have
D, = / (00 (u — Mpw)) dady < Ch|ul3 k- (3.9)
K
Combining with these two estimates (3.8) and (3.9), yields
S Ju— Tl < Ch? S Jul? = Ch?ul3g, (3.10)
KeJdy, KeJy,

It follows from Lemma 2.2, inequality (3.10) and Lemma 3.1 that

inf |lu-— vh||% <|ju — Hhu||% = ap(u — Hpu,u — pu)

v €Vh
=u Z lu — HhuﬁK +(n+A) Z ||dive — dithuHaK

KeJdy, KeJdy,
= Z lu — pulf g + (14 A) Z [dive — Mg divu|[§ g
KeJdy, KeJdy,
<Ch? > ful3 g+ Clp+ Mh* Y [divul?
KeJdy, KeJy,
§0h2< S Bt A Y |divu|%,K)
KeJy, KeJy,

<Ch?*(Jul3 o + Adivuli o) < CR?||f]F o-

Thus
inf |[u—wnlln < Ch| f]

vp €V

0.0- (3.11)

Next, we turn to estimate the consistency error, the second term on the right hand of (3.4).
In order to do this, we introduce the auxiliary finite element space V},, which can be defined by

7 = {u € (L@ b € (span{1,}", VK, [ [inlds = 0},



130 D.Y. SHI AND C. XU

where Fy, are the two longer edges of K.
For an arbitrary but fixed u, € Vj, we define uy, € Vh such that

/ upds :/ upds, VFr, € OK. (3.12)
Fr, Fr,

Since triangles have exactly two longer edges Fp, this definition is meaningful for the above
element. Owing to Jup,/dy and duy /Oy are constants, by means of Green’s formula and (3.12),
we have

0y — ) = K" [ 0, (un — an)dedy = K| Y
K

/ (up — @p) - nyds =0,
Freok Y Fr
where n = (ng,n,) is outward unit normal vector to 9K, so we get

8yuh = 8yﬂh, amﬁh =0. (3.13)

Using (3.12) and (3.13), we can derive

[, — tun | 0.k S Cla, — an, 1K (3.14)

and

~ 1 Sr— LA X
lun — tnllo,x = [K|2 - |[K[72|[an — anlly £

1 p— LA X
<C|K|z - |[K|"2|ap, — tn|y g < Chy,k||05un]

0K (3.15)

Let Mpu; = |—I{ﬂ‘ [ uids (i =1,2), then we have

En(u,wp) = Z /K [uVu -Vwy + (1 + )\)(divu)(divwh)] dxdy — /Q [ - wpdzdy
KeJy

— Z / [,u(@xulé)l.whl + Oyu10ywh, + Opua0zwh, + OyuaOywn,)
KeJ, K

+ (4 A) (divudzwy, + divudywn, )} dxdy — Z / (frwn, + fawn,)dzdy
KeJ, 'K

-y / (1@ Dason, + Byur0yon, + Duaduson, + Dyusdyon,)
K

KeJdy

+ (1t + A)(divudzwh, + divudywp, )} dzdy — Z / (frwn, + fawn, )dzdy
KeJy K

S Z / {u(é?mulwhl + Oyyu1@h, + OpgUoWhn, + OyyUsn, )
Kedy, K

(ot N[O (divueon, + 0y (divu)n,] + freon, + fowon, Jdody
+ Z / {u(@zulwhlnz + Oyu1@h, Ny + OpUaWhy Ny + OyUa@h,Ny)
KeJdy, oK

+ (1 + N |[(dive)wp, ng + (divu)®h2ny]}ds
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== / {[Mawul + (1 + A0 (divu) + f1](wn, —@n,)
Keg, 'K
 (1Ouauz + f2) (wny — Gng) fdady
+ Z / {u(@mulwhlnm + Oyu1@h, Ny + OxUaWh, Ny + OyUaWh,Ny)
KedJ, Y 0K
+ (p+ M) [(dive)wp, ng + (divu)[&hQny]}ds
.S / [1antts + (11 + Ny (divee) + F1](wn, — @, )dady
K

KeJdy

_ Z / (MamgUQ —+ fg)(wh2 - (th)dl'dy
K

KeJdy

+ Z / [(Opurwhy Ny + Optiawp,ng) + (10 + A)(dive)wp, ny)ds

{M(Gyul&}hlny + Oyua@n,ny) + (1t + A)(dive)@p,ny | ds

=FE, + Es + E5 + Ej. (3.16)

We take into account the first term of (3.16), i.e., the integral on K. From (3.2) and (3.15),
we have

|Er| < Z he k (Jul2,x + Aldivul k + || fillo, ) |0zwh, [lo,.x
KeJy,
<Ch||flloellwn| - (3.17)
Similarly,
B < > (|p0eatia + fallo.sclwn, — @nsllox < Chllfllo.cllwnlln: (3.18)

KeJdy

As to the third term of (3.16), i.e., the integral along 0K, we have

|Es| = Z Z / [ (Opurwn, Ny + Opuown,ng) + (p 4+ A) (dive) wp, nglds
KeJ, Fcok ' F
= Z Z nm/ {u[(azul — Mpo,ur) (wh, — Mpwp,)
KeJ, FCOK F

+ (c%uz — Mpam’u,g) (wh2 — Mthz)]

+ (p+ A) [(divu) — Mp (divu)] (wp, — Mpwp,) }ds

1

F|n, 3 3
<> ¥ B T moanlic) (X clownli)

KeJn FCOK q€{z,y} q€{z,y}
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: :
+u( 5 hz,KnaxqugnaK) ( 3 hz,K||aqwh2||%,K)

q€{z,y} q€{z,y}
: :
pn (X maivike) (X @adownlii) | G9)
q€{z,y} q€{=,y}
If F is the shortest edge, we obviously have
Flng c
Plina| 520
2|K| hae K
If F is the longest edge, using the coordinate system condition (b), we can derive that
[Plins| _ [Fllcosal _ |Fllsing] _ ., IF| hyx _ C_ sa1)
2|K]| 2|K]| 2| K| 2|K| hgx ~ hak

If F is the remainder edge of the element K, owing to 8 < ZA5 or 8 < 6 (see Fig. 3.1), and

Fig. 3.1. The outward unit normal vectors to two longer edges (two cases).

Cihg x < |A3As| < Cohg ik [11] (C1 and Cy are constants), we also have

|[Fllna| _ |Fllcosal _ |Fl|sinf| _ ., |F| hywx o C

2|K| 2|K| 2|K| = 2|K|hyx = hax

(3.22)

It follows from the inequalities (3.19)—(3.22) and Lemma 3.1 that

B3| < Ch(||ull2,0 + Aldivul10)l[wnlln < ChI|fllo.allwnlln- (3.23)
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0,F < hy, i || G5

Finally, for the last term Ej, since 65‘;’; =0 and ||&p — Mp@y|

E= Y Y n, /F {u[(ayul—Mpé)yul)([&hl — Myin,)

KelJy, FCOK

+ (8yu2 — MFayUQ)((Ith — MF(:J}LQ):|

+ (/L + )\)[(dlvu) — Mp (divu)](@hz — MF(:th)}dS

<<y ¥ (hy,m-l[( > Bkl ) oy |Byons i

KeJ, FCOK ge{z,y}
1
2 ~
(D0 2 klOuguald )"yl Bions lo.x
q€{z,y}
| s i
Fo (X hdival i) lOy@nalo
q€{z,y}
<Ch(llull2.c + Aldivuls.o)llnn

<Ch||f|

o.llwnn-
Combining the results (3.16)—(3.18), (3.23) and (3.24), we have
|En(u,wn)| < Chl[fllo.allwln-

Thus the desired result (3.3) follows from (3.11) and (3.25).

133

0,K, We obtain

(3.24)

(3.25)

|

Now we start to derive the following optimal L2-norm error estimate by using Aubin-Nitsche

technique.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have

llu —unllo.0 < Ch?||f]

0,9
Proof. Let g € (H?(Q) N H(Q))? satisfy

—uAg — (p+ Ngrad(divg) = u — up, in Q,
g=0 on 0f.

Then, corresponding to (3.2), the following estimate holds

l9llz.0 + Aldivglio < Cllu = ua|

0,Q-
Let gn € V}, be the solution of the following weak formulation
an(gn,vn) = (u —up,vp), Vo, € V.

According to Theorem 3.1,

lg = gnlln < Chllu—unllo.g-

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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Taking the L?-norm product of (3.27) with u — uj, and then employing the Green’s formula
piecewise, we have

IIU*UhH%Q
=ap(g,u — —(u+ M) Z/ divg(u — up) nds—uZ/ Ong(u — up)ds
KeJ, /0K KeJdy
=an(g — gn,u —up) — (L+A) Z/ divg(u — up,) ndsfuZ/ Ong(u — up)ds
KeJy, KeJdp
+(p+N) Z/ divugy, - nds + p Z Onugnds
KeJ, KeJ, K

—Ry + (u+ ARy + uRs, (3.31)

where

Ry = an(g — gn,u — up),

Z/ divg(u — up) - nds + Z/ divugy, - nds,

KeJy, KeJy,
Z / Ong(u — up)ds + Z / Onugpds. (3.32)
KeJ, /0K KeJy, VK

Now we estimate |R;| (i=1,2,3) one by one. By Theorem 3.1 and (3.30), the following estimate
holds
[R1| < Cllg = gnllnllu — unlln < Ch? (3.33)

By the similar error estimate technique of (3.25), and combining with Theorem 3.1 and (3.30),
yields

mﬂ<\

Z/ divg(u — up) - nds| +

KeJy

‘Z/ divugp - nds
KedJ, Y 0K

<Chllu = up||n|divglr,o + Chldivuliollg = gnlln

<CR?||fllo,eldivg|1,0 + Ch® (3.34)
and
|R3|:‘Z/ é?ngu—uhds—i—z Onu(g — gn)ds
K€y Keg, 7K
<Chllu —un|[nlgl.o + Chlulz.allg — gnlln
<Ch? (3.35)
Collecting the estimates (3.33) to (3.35), together with (3.2) and (3.28), we have
lu—ullf o <Ch?|
+ (n+ N flloeldivgl e + [divuli ol lu — Uhllo,ﬂ)}
<Ch*| fllol (3.36)

Therefore,
lu—unllo.o < CR?| fllo.0-

The proof is completed. O



Table 4.1: The error ||u — up||a.
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mi X ma 10 x 80 20 x 160 40 x 320 80 x 640 o
A=9 10.29813758 | 5.10505902 | 2.54804779 | 1.27360420 | 1.0051
A=199 10.14780095 | 5.04018850 | 2.51678398 | 1.25778677 | 1.0040

A=0999 | 10.14517060 | 5.03512340 | 2.51295416 | 1.25604985 | 1.0046

A =9999 | 10.13446599 | 5.03533038 | 2.51349808 | 1.25603180 | 1.0041

Table 4.2: The error ||u — upjo,0-

mi X ma 10 x 80 20 x 160 40 x 320 80 x 640 o
A= 0.55616049 | 0.13756083 | 0.03435003 | 0.00858766 | 2.0056
A=99 0.55960322 | 0.13887440 | 0.03469492 | 0.00867049 | 2.0040

A=1999 | 0.56212467 | 0.13928850 | 0.03476480 | 0.00868709 | 2.0052

A =19999 | 0.56076504 | 0.13927853 | 0.03478685 | 0.00869010 | 2.0039

4. Numerical Example

In order to check the convergence behavior of the nonconforming linear triangular Crouzeix-
Raviart type finite element on anisotropic meshes as A — co, we carry out a numerical example
in this section. We consider problem (1.1) with Q = [0,2]? and f = (f1, f2) € L*(Q2), where

fi == (2" — 4a® + 427) [n(n +1)(n+2)y" " —dn(n —1)(n+1)y" > +4n(n — 1)(n — 2)y”_3]

sin 7 sin 7y,

— (122% — 24z + 8) [(n +2)y" T —d(n+ 1)y" + 4ny”_1] +

f2 =(24x —24) [y"(y — 2)°] +

“
1+

sin ma sin wy

s
14+ A

+ (4x3 — 1222 + 8z) [(n +1)(n+2)y" — 4n(n + l)yn_1 +4n(n — 1)y"_2} .

Uy =

U =

05

The exact solution ul.

—(42® —122% + 82)[y" (y — 2)°] +

The exact solution of problem (1.1) is u = (u1,us), where

4 3 2y (, n+2 n+1 n M
—4 4 —4 +4 +
(o — d2” + 42%)(y y v+ T

I
1+

A

sin mx sin 7y.

0.5

sin 7 sin 7y,

The exact solution u2.

Fig. 4.1. The exact solutions w1 and us with n = 6 and A = 999.
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Fig. 4.3. The finite element method solutions
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The finite element method solution uh2.

and up, with n =6 and A = 999.
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L
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h

Fig. 4.4. The error ||u — un||n.

L
0.12
h

Fig. 4.5. The error ||u — unljo,0-

It can be seen that the exact solutions u; and us vary significantly in the y-direction when
n is a big positive integer (see Fig. 4.1). This anisotropic behavior makes it necessary to use
a smaller mesh size in y-direction and a larger mesh size in z-direction. So we first divide the
boundary of €2 into m; and mo equal intervals along z-axis and y-axis, respectively, to get the
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uniformly right triangle meshes. Then we do some perturbations on interior points (see Fig. 4.2).
Obviously, the triangular meshes satisfy the conditions (a) and (b). The computation is carried
out for y =1, n =6 and m; : mg = 1 : 8, and the numerical results are listed in Tables 1-2 ,
and pictured in Figs. 4.3-4.5, respectively , where « represents the average convergence order.

From the above tables we can see that the optimal convergence orders are obtained in the
energy and L2-norms, which are independent of the Lamé parameter A for anisotropic meshes.
Thus we can devise the better meshes to improve the computing accuracy.
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