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Abstract. In this paper, we give error estimates for the weighted approximation of r-

monotone functions on the real line with Freud weights by Bernstein-type operators.
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1 Introduction

For an integer r ≥ 0, let Cr(S) denote the set of all r-times continuously differentiable func-

tions on S, where C0(S) = C(S) is the usual set of all continuous functions on S.

Let

w(x) = e−Q(x), x ∈ (−∞,+∞)

be a Freud weight, with the continuous function Q(x) satisfying the following conditions:

(a) Q ∈C2(0,∞) is a positive even function;

(b) lim
x→∞

x
Q
′′
(x)

Q
′
(x)

= γ > 0;
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(c) if γ = 1 or 3, then Q
′′

is nondecreasing. (see [2, Definition 11.3.1, p.184]).

Evidently, we have the following proposition (see [7, Lemma 1]).

Proposition A. Let the continuous function Q(x) satisfying the conditions (a),(b),(c).

Then lim
x→∞

Q
′
(x) = ∞, and there exist t0 > 0 and A > 1 such that























Q
′
(x) > 0,

Q
′′
(x) > 0,

Q
′
(2x) ≤ AQ

′
(x)

hold for x > t0.

For a Freud weight w(x), denote by Cw the space of all f ∈C(R) such that lim
|x|→∞

(w f )(x) = 0

and equipped with the norm ‖w f‖Cw
= sup

x∈R

|(w f )(x)|. We also put

‖w f‖[c,d] = sup
x∈[c,d]

|(w f )(x)|.

For f ∈Cw the weighted modulus of smoothness is

ω2( f , t)w = sup
0<h≤t

‖w∆2
h f‖[−h∗,h∗] + inf

ℓ∈P1

‖w( f − ℓ)‖[t∗,∞)

+ inf
ℓ∈P1

‖w( f − ℓ)‖(−∞,−t∗], (1.1)

where h∗ and t∗ are defined by hQ
′
(h∗) = 1 and tQ

′
(t∗) = 1 respectively (see [2, Definition

11.2.2, p.182]), Pn,n ∈ N, is the set of algebraic polynomials of degree at most n, and

∆r
h f (x) =

r

∑
i=0

(−1)i

(

r

i

)

f

(

x+
rh

2
− ih

)

is the r-th symmetric difference of f (see [2, p. 7]).

Let the sequence of positive real numbers {λn} be monotone increasing and defined by

λnQ
′
(λn) =

√
n, n > n0, (1.2)

with n0 sufficiently large (see [2, p. 7]).It follows from (1.2) that lim
n→∞

λn√
n

= 0.

In the following c,c1,c2 denote positive constants which may assume different values in

different formulas.

For every f ∈Cw let

Bn( f ,x) =
n

∑
k=0

pn,k(x) f (xk) (1.3)


