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Abstract. Let p(z) be a polynomial of degree at most n. In this paper we obtain some new

results about the dependence of
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on ‖p(z)‖s for every α, β ∈ C with |α| ≤ 1, |β | ≤ 1, R > r > 1, and s > 0. Our results

not only generalize some well known inequalities, but also are variety of interesting results

deduced from them by a fairly uniform procedure.
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1 Introduction and Statement of Results

Let Pn be the class of all complex polynomials

p(z) =
n

∑
j=0

a jz
j

of degree at most n and p′(z) its derivative. For p ∈ Pn, define
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, 1 ≤ s < ∞

and

‖p(z)‖∞ := max
|z|=1

|p(z)|.
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According to a famous result Known as Bernstein’s inequality[4] , we have

‖p′(z)‖∞ ≤ n‖p(z)‖∞. (1)

Also concerning the maximum modulus of p(z) on |z| = R > 1, we have

‖p(Rz)‖∞ ≤ Rn‖p(z)‖∞ (2)

(for reference see [11]). Zygmund[13] has shown

‖p′(z)‖s ≤ n‖p(z)‖s, s > 1. (3)

whereas we can deduce the following inequality by applying a result of Hardy [9],

‖p(Rz)‖s ≤ Rn‖p(z)‖s, R > 1, s > 0. (4)

Also Arestov[1] proved that (3) remains true for 0 < s < 1 as well. It is clear that the inequalities

(1) and (2) can be obtained by letting s −→ ∞ in the inequalities (3) and (4) respectively. If

we restrict ourselves to the class of polynomials having no zeros in |z| < 1, the inequalities (3)

and (4) can be improved. In fact, it was shown by De-Bruijn[6] for s > 1 and Rahman and

Schmeisser[12] extended it for 0 < s < 1 that if p(z) is a polynomial of degree n having no zeros

in |z| < 1, the inequality (3) can be replaced by

‖p′(z)‖s ≤ n
‖p(z)‖s

‖1+ z‖s

, s > 0. (5)

Also Boas and Rahman[5] proved for s > 1 and Rahman and Schmeisser[12] extended it for 0 <

s < 1 that if p(z) is a polynomial of degree n having no zeros in |z| < 1, the inequality (4) can

be replaced by

‖p(Rz)‖s ≤
‖Rnz+ 1‖s

‖1+ z‖s

‖p(z)‖s, R > 1, s > 0. (6)

Aziz and Rather[2] obtained a generalization of the inequalities (3) and (4). In fact, they have

shown that if p ∈ Pn, then for every R > 1 and s > 1,

‖p(Rz)− p(z)‖s ≤ (Rn −1)‖p(z)‖s. (7)

Recently Aziz and Rather [3] considered a more general problem of investigating the dependence

of

‖p(Rz)−β p(rz)‖s on ‖p(z)‖s

for every β ∈ C with |β | ≤ 1, R > r > 1, s > 0 and extended the inequality (7) for 0 < s < 1 as

following.


