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Abstract. We consider the problem K(x)uxx = utt , 0 < x < 1, t ≥ 0, with the boundary

condition u(0,t) = g(t) ∈ L2(R) and ux(0,t) = 0, where K(x) is continuous and 0 < α ≤
K (x) < +∞. This is an ill-posed problem in the sense that, if the solution exists, it does

not depend continuously on g. Considering the existence of a solution u(x, ·) ∈ H2(R) and

using a wavelet Galerkin method with Meyer multiresolution analysis, we regularize the

ill-posedness of the problem. Furthermore we prove the uniqueness of the solution for this

problem.
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1 Introduction and Main Results

In [5] the authors have considered an inverse problem for the sideway heat equation with

constant coefficient. The variational formulation, on the scaling space Vj, of the approximating

problem, produces an infinite-dimensional system of second order ordinary differential equa-

tions with constant coefficients, for which the solution is known. Stability and convergence of

the method follow the from form of this solution.

In a previous work[3], we studied the following parabolic partial differential equation prob-
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lem with variable coefficients:

K(x)uxx(x, t) = ut(x, t), t ≥ 0, 0 < x < 1

u(0, ·) = g, ux(0, ·) = 0

0 < α ≤ K (x) < +∞, K continuous.

Under the hypothesis of the existence of a solution for this problem, using a wavelet Galerkin

method, we constructed a sequence of well-posed approximating problems in the scaling spaces

of the Meyer multiresolution analysis, which has the property to filter away the high frequencies.

We had shown the convergence of the method, applied to our problem, and we gave an estimate

of the solution error. We get an estimate for the difference between the exact solution of this

problem and the orthogonal projection, onto Vj, of the solution of the approximating problem

defined on the scaling space Vj−1.

In [6] the authors have given the error estimate between the exact solution by the above

problem and the approximating solution of wavelet-Galerkin method in the sense of pointwise

convergence.

In our work[12], by assuming that
1

K(x)
is Lipschitz, we proved that the existence of a solution

u(x, .) ∈ H1(R), for the above problem, implies its uniqueness.

In this work, we will extend the results in [2] and [3] to the hyperbolic problem:

K(x)uxx(x, t) = utt(x, t), t ≥ 0, 0 < x < 1

u(0, ·) = g, ux(0, ·) = 0

0 < α ≤ K (x) < +∞, K continuous.

(1.1)

We assume g ∈ L2 (R), when it is extended as vanishing for t < 0, and the problem to have

a solution u(x, ·) ∈ H2 (R), when it is extended as vanishing for t < 0.

Our approach follows quite closely to that used in [2] and [3].

In note 1 we show that problem (1.1) is ill-posed in the sense that a small disturbance on the

boundary specification g, can produce a big alteration on its solution, if it exists.

We consider the Meyer multiresolution analysis. The advantage in making use of Meyer’s

wavelets is its good localization in the frequency domain, since its Fourier transform has compact

support. Orthogonal projections onto Meyer’s scaling spaces, can be considered as low pass

filters, cutting off the high frequencies.

From the variational formulation of the approximating problem on the scaling space Vj, we

get an infinite-dimensional system of second order ordinary differential equations with variable

coefficients. An estimate obtained for the solution of this evolution problem, is used to regularize

the ill-posed problem approaching it by well-posed problems. Using an estimate obtained for

the difference between the exact solution of problem (1.1) and its orthogonal projection onto


