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Abstract. We obtain weak type (1,q) inequalities for fractional integral operators on gen-

eralized non-homogeneous Morrey spaces. The proofs use some properties of maximal

operators. Our results are closely related to the strong type inequalities in [13, 14, 15].
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1 Introduction

The work of Nazarov et al.[10], Tolsa[17], and Verdera [18] reveal some important ideas of

the spaces of non-homogeneous type. By a non-homogeneous space we mean a (metric) mea-

sure space−here we consider only Rd equipped with a Borel measure µ satisfying the growth

condition of order n with 0 < n ≤ d, that is there exists a constant C > 0 such that

µ(B(a,r)) ≤C rn (1)

for every ball B(a,r) centered at a ∈ Rd with radius r > 0. The growth condition replaces the

doubling condition:

µ(B(a,2r)) ≤Cµ(B(a,r))
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which plays an important role in the space of homogeneous type.

In the setting of non-homogeneous spaces described above, we define the fractional integral

operator Iα (0 < α < n ≤ d) by the formula

Iα f (x) :=

∫

Rd

f (y)

|x− y|n−α
dµ(y)

for suitable functions f on Rd . Note that if n = d and µ is the usual Lebesgue measure on

Rd, then Iα is the classical fractional integral operator introduced by Hardy and Littlewood[5,6]

and Sobolev[16] . The classical fractional integral operator Iα is known to be bounded from the

Lebesgue space Lp(Rd) to Lq(Rd) where
1

q
=

1

p
−

α

d
for 1 < p <

d

α
. This result has been

extended in many ways-see for examples [4, 8, 11] and the references therein.

For p = 1, we have a weak type inequality for Iα and on non-homogeneous Lebesgue spaces

such an inequality has been studied, among others, by García-Cuerva, Gatto, and Martell in

[2, 3]. One of their results is the following theorem. (Here and after, we denote by C a positive

constant which may be different from line to line.)

Theorem 1.1[2,3].
1

q
= 1−

α

n
, then for any function f ∈ L1(µ) we have

µ{x ∈ Rd : |Iα f (x)| > γ} ≤C

(

‖ f‖L1(µ)

γ

)q

, γ > 0.

The proof of Theorem 1.1 uses the weak type inequality for the maximal operator

M f (x) := sup
r>0

1

rn

∫

B(x,r)
| f (y)| dµ(y).

In this paper, we shall prove the weak type inequality for Iα on generalized non-homogeneous

Morrey spaces (which we shall define later). The proof will employ the following inequality for

the maximal operator M.

Theorem 1.2[3,12]. For any positive weight w on Rd and any function f ∈ L1
loc(µ), we have

∫

{x∈Rd :M f (x)>γ}
w(x) dµ(x) ≤

C

γ

∫

Rd
| f (x)|Mw(x) dµ(x), γ > 0.

Our main results are presented as Theorems 2.2 and 2.3 in the next section. Related results

can be found in [13, 14, 15].

2 Main Results

For 1 ≤ p < ∞ and a suitable function φ : (0,∞) → (0,∞), we define the generalized non-

homogeneous Morrey space M
p,φ (µ) = M

p,φ (Rd ,µ) to be that of all functions f ∈ L
p
loc(µ) for


