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Abstract. In this paper, we introduce the class of n-normed generalized difference se-
quences related to /,-space. Some properties of this sequence space like solidness,
symmetricity, convergence-free etc. are studied. We obtain some inclusion relations
involving this sequence space.
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1 Introduction

The notion of n-normed space was studied at the initial stage by Gahler [7], Misiak [10],
Gunawan [8] and many others from different aspects.

Let n € N and X be a real vector space. A real valued function on X" satisfying the
following ||-,---|| four properties:

1. ||(z1,22,-++,2zn) ||n =0 if and only if zq,2y,--,z, are linearly dependent;
2. |(z1,2z2,-+,zn)||n is invariant under permutation;

cz1,z2, 0 zn—1,0z0) |n = ||| 1] (21,22, 20 ) ||n, for all « €R;
(

3
4. H 21,22, '/Zn—11x+]/) Hn S H <21122/' "/anll-x) Hn+ H (21122/' "/Zn—h]/) Hnl
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is called an n-norm on X and the pair (X, ||,-,||») is called an n-normed space.

Kizmaz [9] studied the notion of difference sequence spaces at the initial stage. Kiz-
maz [9] investigated the difference sequence spaces ¢ (A),c(A) and co(A) of crisp sets.
The notion is defined as follows:

Z(A)={x=(x): (Axc) €2},

for Z ={«,c and ¢y, where Ax = (Axy) = (xx—xx.1), for all k€ N. The above spaces are
Banach spaces, normed by
lxlla =[x +Sl;P||Axk||~

The idea of Kizmaz [9] was applied to introduce different types of difference sequence
spaces and study their different properties by Tripathy (see [13, 14]), Tripathy, Altin and
Et [15], Tripathy and Baruah (see [16, 17]), Tripathy abd Borgohain [18], Tripathy and
Chandra [19], Tripathy, Choudhary and Sarma [20], Tripathy and Dutta [21], Tripathy
and Esi (see [22,23]), Tripathy, Esi and Tripathy [24], Tripathy and Mahanta [25] and
many others.

Tripathy and Esi [22] introduced the new type of difference sequence spaces, for fixed
méeEN,

Z(Ap)={x=(xx): (Amxx) €Z},

for Z=/{s,c and cp, where A, x = (Apxi) = (X — Xgrm ), for all k€ N.
This generalizes the notion of difference sequence spaces studied by Kizmaz [9]. The
above spaces are Banach spaces, normed by

m
1xlla, = 2 1%l +-sup | Ap ]|
r=1 k

Tripathy, Esi and Tripathy [24] further generalized this notion and introduced the follow-
ing notion. Form>1and n>1,

Z (D) ={x=(x): (Apxi) €Z},

for Z="/,c and cy.
This generalized difference has the following binomial representation,

A:lrzxk:Z(_l)y <1:) Xk+rm- (1.1)

r=0

Sargent [12] introduced the crisp set sequence space m(¢) and studied some properties
of this space. Later on it was studied from the sequence space point of view and some
matrix classes were characterized with one member as m(¢) by Rath and Tripathy [11].
Afterwards the notion was further investigated by Esi [5], Tripathy and Borgohain [18],
Tripathy and Sen [27] and others. In this article we introduce the class of sequences
(m(¢,A%),||-++,+||n) with respect to n-norm.



