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Abstract. In this paper, we propose a class of stochastic Runge-Kutta (SRK) methods
for solving semilinear parabolic equations. By using the nonlinear Feynman-Kac for-
mula, we first write the solution of the parabolic equation in the form of the backward
stochastic differential equation (BSDE) and then deduce an ordinary differential equa-
tion (ODE) containing the conditional expectations with respect to a diffusion process.
The time semidiscrete SRK methods are then developed based on the corresponding
ODE. Under some reasonable constraints on the time step, we theoretically prove the
maximum bound principle (MBP) of the proposed methods and obtain their error es-
timates. By combining the Gaussian quadrature rule for approximating the condi-
tional expectations, we further propose the first- and second-order fully discrete SRK
schemes, which can be written in the matrix form. We also rigorously analyze the
MBP-preserving and error estimates of the fully discrete schemes. Some numerical ex-
periments are carried out to verify our theoretical results and to show the efficiency
and stability of the proposed schemes.
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1 Introduction

In this paper, we consider the following initial-boundary-value problem of a second-
order semilinear parabolic partial differential equation (PDE):

∗Corresponding author. Email addresses: sunybly@163.com (Y. Sun), wdzhao@sdu.edu.cn (W. Zhao)

http://www.global-sci.org/csiam-am 390 ©2024 Global-Science Press



Y. Sun and W. Zhao / CSIAM Trans. Appl. Math., 5 (2024), pp. 390-420 391

ut=
1

2
σσ⊤ : ∇2u+ f (u), (t,x)∈ (0,T]×D,

u(t,·) is D-periodic, t∈ [0,T],

u(0,x)= ϕ(x), x∈D,

(1.1)

where u(t,x) denotes the unknown function, ∇2u is the Hessian matrix of u with respect
to x, f is a nonlinear operator, D=(0,a)d ⊂R

d (d=1,2,3) is a hypercube domain, and the
matrix σ∈R

d×d is defined as
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, σi 6=0, i=1,.. . ,d.

Since the matrix A=σσ⊤/2 is symmetric and positive definite uniformly, it is well known
that the semilinear parabolic equation (1.1) possesses the maximum bound principle [8].
The semilinear parabolic equation (1.1) can be used to describe the evolution of physical
quantities, such as density, concentration and pressure, which only take values in a given
range to be consistent with physical phenomena. Therefore, the MBP is an indispensable
tool to study physical features of semilinear parabolic equations, including the aspects
of mathematical analysis and numerical simulation. Up to now, great efforts have been
made in developing MBP-preserving numerical methods for equations like (1.1), such as
the stablized linear semi-implicit method [24, 25], the nonlinear second-order method
[9, 10], the exponential time differencing method [7, 8], the integrating factor method
[13, 16, 17], the exponential cut-off method [15, 29], and the exponential-SAV method
[11, 12]. As for the spatial discretizations, a partial list includes the works for finite
element method [2, 5, 15, 27, 28, 30], finite difference method [3, 4, 26], and finite vol-
ume method [21, 22]. Moreover, by using a regularized energy technique in their recent
work [6], the authors studied the effect of noise on the MBP-preserving property and en-
ergy evolution property of numerical methods for parabolic stochastic partial differential
equation with a logarithmic Flory-Huggins potential.

Note that the efficient spectral method can not be used to construct the MBP-preser-
ving numerical schemes for the equations like (1.1), and to match the high temporal accu-
racy of the existing high order numerical schemes, the spatial size needs to be very small,
which leads to heavy computational efforts. Thus, it is necessary to construct some nu-
merical schemes with efficient spatial discretizations. On the other hand, Pardoux and
Peng studied the existence and uniqueness of the backward stochastic differential equa-
tion in their pioneer work [20], and then by using the theory of BSDE, Peng [23] devel-
oped the nonlinear Feynman-Kac formula, which gives a probabilistic representation of
the solution of the semilinear parabolic equation including the one like (1.1).

Motivated by such probabilistic interpretation, we are aim to construct a class of MBP-
preserving stochastic Runge-Kutta methods for solving (1.1) avoiding to approximate the


