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Email: felice.iavernaro@uniba.it

Abstract

In this paper, we define arbitrarily high-order energy-conserving methods for Hamilto-

nian systems with quadratic holonomic constraints. The derivation of the methods is made

within the so-called line integral framework. Numerical tests to illustrate the theoretical

findings are presented.
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1. Introduction

In recent years, much interest has been given to the modeling and/or simulation of tethered

systems, where the dynamics of interconnected bodies is studied (see, e.g. [2, 25–27, 33, 34, 40,

42–45]). It turns out that the underlying dynamics is often described by a Hamiltonian system,

for which the total energy is conserved.

Motivated by this fact, we here investigate the numerical approximation of a constrained

Hamiltonian dynamics, described by the separable Hamiltonian

H(q, p) =
1

2
p⊤M−1p− U(q), q, p ∈ R

m, (1.1)

where M is a symmetric and positive-definite (SPD) matrix, subject to ν quadratic holonomic

constraints,

g(q) = 0 ∈ R
ν , ν ≤ m, (1.2)
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i.e. the entries of g are quadratic polynomials. Hereafter, we shall assume all points be regular

for the constraints, i.e. ∇g(q) ∈ R
m×ν has full column rank or, equivalently,

∇g(q)⊤M−1∇g(q) ∈ R
ν×ν is SPD. (1.3)

Moreover, we shall assume that its smallest eigenvalue is bounded away from 0, in the domain

of interest. Also, for sake of simplicity, in the same domain the potential U will be assumed to

be analytic.

It is well-known that the problem defined by (1.1)-(1.2) can be cast in Hamiltonian form by

defining the augmented Hamiltonian

Ĥ(q, p, λ) = H(q, p) + λ⊤g(q), (1.4)

where λ is the vector of the Lagrange multipliers. The resulting constrained Hamiltonian system

reads

q̇ =M−1p, ṗ = ∇U(q)−∇g(q)λ, g(q) = 0, t ∈ [0, T ], (1.5)

and is subject to consistent initial conditions

q(0) = q0, p(0) = p0 (1.6)

such that

g(q0) = 0, ∇g(q0)⊤M−1p0 = 0. (1.7)

Clearly, H(q, p) ≡ Ĥ(q, p, λ), provided that the constraints (1.2) are satisfied, and a straight-

forward calculation proves that both are conserved along the solution trajectory.

We notice that the condition g(q0) = 0 ensures that q0 belongs to the manifold

M = {q ∈ R
m : g(q) = 0}, (1.8)

as required by the constraints, whereas the condition ∇g(q0)⊤M−1p0 = 0 means that the

motion initially stays on the tangent space to M at q0. This condition is satisfied by all points

on the solution trajectory, since, in order for the constraints to be conserved, the following

condition needs to be satisfied as well:

ġ(q) = ∇g(q)⊤q̇ = ∇g(q)⊤M−1p = 0 ∈ R
ν . (1.9)

These latter constraints are usually referred to as hidden constraints, and allow the derivation

of the vector of the Lagrange multiplier λ. In fact, from (1.9) and (1.5)-(1.6), one obtains

0 = ∇g
(
q(t)

)⊤
M−1p(t)

= ∇g
(
q(t)

)⊤
M−1

[

p0 +

∫ t

0

∇U
(
q(ζ)

)
dζ −

∫ t

0

∇g
(
q(ζ)

)
λ(ζ)dζ

]

, (1.10)

from which one derives the integral equation

∇g
(
q(t)

)⊤
M−1

∫ t

0

∇g
(
q(ζ)

)
λ(ζ)dζ

= ∇g
(
q(t)

)⊤
M−1

[

p0 +

∫ t

0

∇U
(
q(ζ)

)
dζ

]

. (1.11)


