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Abstract

In the paper, we propose a novel linearly implicit structure-preserving algorithm, which

is derived by combing the invariant energy quadratization approach with the exponential

time differencing method, to construct efficient and accurate time discretization scheme for

a large class of Hamiltonian partial differential equations (PDEs). The proposed scheme

is a linear system, and can be solved more efficient than the original energy-preserving ex-

ponential integrator scheme which usually needs nonlinear iterations. Various experiments

are performed to verify the conservation, efficiency and good performance at relatively

large time step in long time computations.
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1. Introduction

It is well known that all real physical processes with negligible dissipation can be described

by Hamiltonian form, so the latter is becoming one of the most useful tools in modeling many

scientific and engineering problems. In the past few years, studies in this field have captured

researchers’ increasing attention and many significant achievements have been made [16, 17].

Many partial differential equations (PDEs) can be reformulated as Hamiltonian systems, and

* Received October 26, 2020 / Revised version received January 17, 2022 / Accepted February 6, 2023 /

Published online September 6, 2023 /
1) Correspondence author



1064 Y.Y. FU, D.D. HU, W.J. CAI AND Y.S. WANG

these equations posses some conservation laws, such as multi-symplectic conservation law [12,

25,43], momentum conservation law [6] and energy conservation law [8,9,21,26]. Among them

the conservation of energy is particularly important for proving the existence and uniqueness

of solutions for PDEs [42]. Therefore, developing stable and accurate numerical algorithms to

preserve energy of the systems becomes extremely important and this is becoming a norm for

one to judge the effectiveness of numerical algorithms.

In this paper, our aim is to present and analyze an efficient linearly implicit scheme with

energy-preserving property for a class of Hamiltonian PDEs, such as the sine-Gordon equation,

the nonlinear Schrödinger equation and the Klein-Gordon-Schrödinger equation, etc., which can

be rewritten as the following canonical Hamiltonian system:

zt = S δH
δz

with S =

(

O −Im

Im O

)

, (1.1)

where z belongs to a Hilbert spaceW(Ω) with values z(x, t) = (z1(x, t), z2(x, t), · · · , z2m(x, t))T

∈ R
2m, (x, t) ∈ Ω × [0, T ] ⊂ R

d × R, d = 1, 2, and δH/δz is the variational derivative of the

Hamiltonian energy functional H with respect to the variable z.

Structure-preserving algorithms are achieved by constructing numerical methods which can

preserve some properties of continuous systems [18, 28, 34]. The prior researches substanti-

ated that numerical schemes inheriting such properties from the continuous dynamical system

have been shown in many cases to be advantageous, especially when integration over long

time intervals is considered. Over the years, developing structure-preserving numerical schemes

to conserve the energy conservation law for Hamiltonian PDEs has gained increasing atten-

tion [7, 9, 31]. For instance, Furihata [23] presented the discrete variational derivative method

for a large class of PDEs that inherit energy conservation or dissipation properties of the

PDEs. Matsuo and Furihata [38] generalized the method to complex valued nonlinear PDEs

and obtained a series of schemes [24]. Dahlby and Owren [14] clarified the concept of the dis-

crete variational derivative and proposed a general framework for deriving integral-preserving

numerical methods for PDEs. Celledoni et al. [11, 35] used the averaged vector field (AVF)

method to construct a systematic energy-preserving or energy dissipation method for a class of

PDEs. Brugnano et al. [3, 4] developed Hamiltonian boundary value methods (HBVM) which

can be recast as a multistage Runge-Kutta (RK) method to construct energy-preserving scheme

for polynomial Hamiltonian systems. There are many related researches, the readers can refer

to [5, 7, 21, 22] and references therein for more details.

The exponential integrators scheme was systematically studied in [2] and then further devel-

oped by scholars [1,15,19,30,33,47]. A distinctive feature of exponential integrators schemes is

the exact evaluation of the contribution of the linear part, which provides satisfactory stability

and accuracy even though the linear terms have strong stiffness. Such advantage leads some

successful applications of the schemes on Hamiltonian PDEs. For instance, Celledoni et al. [10]

constructed an implicit exponential integrators scheme for the cubic Schrödinger equation by

using the symmetric projection approach, the proposed scheme can preserve symmetric and

energy. Li and Wu [36] developed an energy-preserving scheme for conservative systems based

on the exponential integrators and discrete gradient method. The resulted scheme permitted

lager step sizes and achieved higher accuracy than non-exponential ones. However, most exist-

ing energy-preserving exponential integrators schemes for Hamiltonian PDEs are fully implicit,

therefore, one needs to use iterations to solve a system of nonlinear algebraic equations at each

time step, which brings a large number of calculations in long time numerical simulation.


