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Abstract. We propose a numerical method to solve the Monge-Ampère equation
which admits a classical convex solution. The Monge-Ampère equation is reformu-
lated into an equivalent first-order system. We adopt a novel reconstructed discon-
tinuous approximation space which consists of piecewise irrotational polynomials.
This space allows us to solve the first-order system in two sequential steps. In the
first step, we solve a nonlinear system to obtain the approximation to the gradient.
A Newton iteration is adopted to handle the nonlinearity of the system. The ap-
proximation to the primitive variable is obtained from the approximate gradient by
a trivial least squares finite element method in the second step. Numerical examples
in both two and three dimensions are presented to show an optimal convergence
rate in accuracy. It is interesting to observe that the approximation solution is piece-
wise convex. Particularly, with the reconstructed approximation space, the proposed
method numerically demonstrates a remarkable robustness. The convergence of the
Newton iteration does not rely on the initial values. The dependence of the conver-
gence on the penalty parameter in the discretization is also negligible, in comparison
to the classical discontinuous approximation space.
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1 Introduction

The elliptic Monge-Ampère equation is a fully nonlinear second-order partial differen-
tial equation, which arises naturally from the geometric surface theory and from the
applications such as optimal mass transportation, kinetic theory, geometric optics, im-
age processing and others, and we refer to [13, 14, 25] and the references therein for an
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extensive review of applications. Recently, the numerical scheme for solving the elliptic
Monge-Ampère equation has been a subject of particular interests [4]. It is known that
if the classical solution exists the solution to the Monge-Ampère equation is strictly con-
vex on the smooth domain with the positive source term. Hence, the Monge-Ampère
equation is challenging to solve numerically due to its full nonlinearity and the con-
vex constraint. We refer to the review papers [21, 35] for an overview of the numerical
challenges and the history of the work on this problem.

In 1988, Prussner and Oliker introduced a finite difference scheme in [37] for the
Monge-Ampère equation. The discretization was based on the geometric interpreta-
tion of the equation and they proved that the method converges to the generalized
solution in two dimensions. Froese and Oberman proposed a convergent monotone fi-
nite difference scheme by constructing a wide stencil. We refer to [3,16,24,36] for more
discussion and some improvements on the wide stencil scheme. Another simple finite
difference method was proposed in [4] but the proof of convergence remains an open
problem. Galerkin-type methods have also been investigated for the Monge-Ampère
equation and an immediate challenge is the problem does not naturally fit within the
Galerkin framework [16]. Böhmer introduced an L2 projection method in [6] by ap-
plying the C1 finite element spaces. Brenner et al. [7] proposed a C0 finite element
method. They proposed a discrete linearization which is consistent with continuous
linearization. Dean and Glowinski [19, 20] reformulated the Monge-Ampère equation
as a minimization problem by applying the augmented Lagrangian method. The min-
imization problem can then be solved with mixed finite element methods. Feng and
Neilan added a small multiple of the biharmonic operator to the Monge-Ampère equa-
tion. The resulted fourth-order PDE is solved by mixed finite element methods [22,23].
Besides, there are some least squares finite element methods proposed for the Monge-
Ampère equation and we refer to [9, 10, 40].

In this paper, we propose a new least squares finite element method for solving the
Monge-Ampère equation with classical solutions. As a preparation, we reformulate
the Monge-Ampère equation into an equivalent first-order system and we solve the
first-order problem in two sequential steps. In the first step, we solve a nonlinear first-
order system to obtain the approximation to the gradient by a piecewise irrotational
polynomial space. This space is obtained by the patch reconstruction process with only
one unknown per element [27, 29, 39]. The second step is to solve a linear first-order
system to seek a numerical approximation to the primitive variable.

The numerical scheme to the first nonlinear problem is the main component in our
method. We apply the standard Newton-type linearization to the nonlinear operator,
and from the linearization we formally give the non-divergence problem in each it-
eration step. In the discrete level, given a numerical approximation, we solve the non-
divergence form problem by minimizing a least squares functional on the reconstructed
space, and then update the numerical approximation for the next step via the Newton
iterative method. In the second step, we introduce another least squares functional
to solve the linear problem. This functional is then minimized in the Lagrange finite
element space, together with the numerical gradient from the first step, to seek a nu-


