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Abstract. A Chebyshev polynomial neural network for solving boundary value problems

for one- and two-dimensional partial differential equations is constructed. In particular,

the input parameters are expanded by Chebyshev polynomials and fed into the network.

A loss function is constructed, and approximate solutions are determined by minimizing

the loss function. Elliptic equations are used to test a Chebyshev polynomial neural

network solver. The numerical examples illustrate the high accuracy of the method.
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1. Introduction

Various problems in physics and engineering can be formulated in terms of partial dif-

ferential equations (PDEs). In particular, the equilibrium of physical systems are often

described by elliptic equations. However, analytical solutions of the corresponding equa-

tions are rarely available, hence numerical methods have to be used. Various numerical

techniques developed for PDEs include finite-difference, finite element, finite volume, and

spectral methods [1, 28]. Besides, recent substantial growth of computer resources [25]

led to rapid development of deep learning methods and the applications of artificial intelli-

gence in language and image recognition [13,16], signal processing, computer vision, and

other areas.

Neural network has been also used in the numerical approximation. Thus Cybenko [3]

proved that functions can be approximated by a single-layer feed-forward neural network

with arbitrary accuracy — i.e. the theory of universal approximation. Hornik [8] showed

that if the activation function is smooth and there are enough hidden cells, the feed-forward
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neural network can approximate any function. The potential of neural networks in solv-

ing the differential equations has been first demonstrated in Refs. [14,15,26]. Nowadays,

there are numerous methods using the artificial neural networks in order to solve differen-

tial equations. In particular, Mall et al. [20] proposed a Chebyshev neural network based

method for the second-order non-linear ordinary differential equations of the Lane-Emden

type. Raissi et al. [24] designed a neural network of physical information for nonlinear

PDSs. E et al. [6] constructed a deep Ritz method which can use a neural network for solving

the variational formulation of differential equations. Sirignano et al. [29] designed a deep

Galerkin method for high-dimensional partial differential equations. Karumuri et al. [11]

developed deep neural networks for solving high-dimensional random elliptic PDEs. Verma

et al. [30] discussed multi-layer perceptron artificial neural network technique for the so-

lution of Lane-Emden type differential equations. In the last few years, there are growing

literatures on neural network based numerical methods for PDEs [4, 27]. In particular,

E [5] emphasised the important relationship between machine learning and computational

mathematics. Jagtap et al. [10] proposed a generalized space-time domain decomposition

framework for the physics-informed neural networks used for solving nonlinear PDEs on

the domains with arbitrary complex-geometry. Liao et al. [18] proposed a deep Ritz method

to deal with essential boundary conditions encountered in the deep learning-based numer-

ical solvers for PDEs. Liu et al. [19] presented VPVnet – a deep neural network method for

the Stokes equations with reduced regularity. Huang et al. [9] studied a novel deep learn-

ing method for variational problems with essential boundary conditions. Feng et al. [7]

proposed an adaptive learning approach based on temporal normalizing flows for solving

time-dependent Fokker-Planck equations.

In this work, we employ a Chebyshev polynomial neural network to solve boundary

value problems for elliptic PDEs. Previously, the method has been used for approximating

general functions [17] and ordinary differential equation [2]. It is developed in spirit of the

Chebyshev Galerkin spectral method and can achieve the high accuracy of spatial approxi-

mations [1]. The specific steps are as follows. Firstly, the input parameters are defined by

Chebyshev polynomials and fed into the network. Secondly, a loss function related to the

corresponding PDE is constructed and grid points are chosen. After that, an approximate

solution is found by minimizing the loss function constructed.

The paper is organized as follows. In Section 2, we introduce neural networks, describe

their training and the approach to the solution of differential equations by feed-forward

neural networks. In Section 3, a Chebyshev polynomial neural network is introduced and

used in solving partial differential equations. Section 4 contains numerical examples for

one- and two-dimensional elliptic equations. The examples show that the method can solve

partial differential equations with a high accuracy. Our conclusions are in Section 5.

2. Introduction to Feed-Forward Neural Networks

A neural network is an abstract mathematical model simulating the operation of the

human brain. It consists of many simple, interconnected processing units called neurons.

The neural networks studied in this paper are composed of the same type of neurons in


