DOI: 10.4208/ata.OA-2021-0030 March 2023 ## Busemann-Petty Type Problem for the General L_p -Centroid Bodies Weidong Wang^{1,2,*} Received 16 September 2021; Accepted (in revised version) 7 February 2022 **Abstract.** Lutwak showed the Busemann-Petty type problem (also called the Shephard type problem) for the centroid bodies. Grinberg and Zhang gave an affirmation and a negative form of the Busemann-Petty type problem for the L_p -centroid bodies. In this paper, we obtain an affirmation form and two negative forms of the Busemann-Petty type problem for the general L_p -centroid bodies. **Key Words**: L_p -centroid body, general L_p -centroid body, Busemann-Petty problem, affirmation form, negation form. AMS Subject Classifications: 52A40, 52A20, 52A39, 52A38 ## 1 Introduction Let K^n denote the set of convex bodies (compact, convex subsets with non-empty interiors) in n-dimensional Euclidean space \mathbb{R}^n , for the set of convex bodies containing the origin in their interiors and the set of origin-symmetric convex bodies, we write K^n_o and K^n_{os} , respectively. Let S^n_o and S^n_{os} orderly denote the set of star bodies (about the origin) and the set of origin-symmetric star bodies in \mathbb{R}^n . Let S^{n-1} denote the unit sphere in \mathbb{R}^n , denote by V(K) the n-dimensional volume of a body K, for the standard unit ball B in \mathbb{R}^n , write $\omega_n = V(B)$. Centroid body was attributed by Blaschke to Dupin (see [6, 18]), its definition was extended by Petty (see [17]). Let K is a compact set, the centroid body, ΓK , of K is an origin-symmetric convex body whose support function is given by (see [6]) $$h_{\Gamma K}(u) = \frac{1}{V(K)} \int_{K} |u \cdot x| dx \tag{1.1}$$ ¹ Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, Hubei 443002, China ² College of Science, China Three Gorges University, Yichang, Hubei 443002, China ^{*}Corresponding author. Email address: wdwxh722@163.com (W. Wang) for all $u \in S^{n-1}$. Centroid bodies are very important in Brunn-Minkowski theory. For decades, centroid bodies have attracted increased attention (for example see articles [10,11,17,27] and books [6,18]). In particular, Lutwak [11] showed an affirmation and a negative form of the Busemann-Petty type problems for the centroid bodies as follows: **Theorem 1.1.** For $K \in \mathcal{S}_o^n$, $L \in \mathcal{P}^*$, if $\Gamma K \subseteq \Gamma L$, then $$V(K) \leq V(L)$$, and V(K) = V(L) if and only if K = L. Here \mathcal{P}^* denotes the set of polars of all projection bodies. **Theorem 1.2.** If $K \in \mathcal{S}_{os}^n \backslash \mathcal{P}^*$ is infinite smooth, then there exists $L \in \mathcal{S}_{os}^n \backslash \mathcal{P}^*$ is infinite smooth, such that $\Gamma K \subset \Gamma L$, but $$V(K) > V(L)$$. In 1997, Lutwak and Zhang [15] introduced the notion of L_p -centroid bodies. For each compact star-shaped (about the origin) K in \mathbb{R}^n and real $p \ge 1$, the L_p -centroid body, $\Gamma_p K$, of K is an origin-symmetric convex body whose support function is defined by $$h_{\Gamma_{p}K}^{p}(u) = \frac{1}{c_{n,p}V(K)} \int_{K} |u \cdot x|^{p} dx$$ $$= \frac{1}{c_{n,p}(n+p)V(K)} \int_{S^{n-1}} |u \cdot v|^{p} \rho_{K}(v)^{n+p} dv$$ (1.2) for all $u \in S^{n-1}$. Here $$c_{n,p} = \omega_{n+p}/\omega_2 \omega_n \omega_{p-1} \tag{1.3}$$ and dv is the standard spherical Lebesgue measure on S^{n-1} . The normalization above is chosen so that for the standard unit ball B in \mathbb{R}^n , we have $\Gamma_p B = B$. For the case p = 1, by (1.1) and (1.2), we see that $\Gamma_1 K$ is the centroid body ΓK under the normalization of definition (1.2) and $\Gamma_1 K = c_{n,1}^{-1} \Gamma K$ (see [6]). Further, Lutwak and Zhang [15] established the L_p -centroid affine inequality. Whereafter, associated with the L_p -centroid bodies, Lutwak, Yang and Zhang [14] proved the L_p -Busemann-Petty centroid inequality which is stronger than the L_p -centroid affine inequality. The L_p -centroid bodies mean that the centroid bodies are extended from the Brunn-Minkowski theory to the L_p -Brunn-Minkowski theory. Regarding the studies of the L_p -centroid bodies, also see [1–3,7,21,22,24] and books [6,18]. In particular, Grinberg and Zhang [7] gave the following the Busemann-Petty type problem for the L_p -centroid bodies. **Theorem 1.3.** *If* $K \in \mathcal{S}_o^n$, $L \in \mathcal{P}_v^*$, then $\Gamma_v K \subseteq \Gamma_v L$ implies $$V(K) \leq V(L)$$, and V(K) = V(L) if and only if K = L. Here \mathcal{P}_p^* denotes the set of polars of all L_p -projection bodies.