DOI: 10.4208/ata.OA-2021-0030 March 2023

## Busemann-Petty Type Problem for the General $L_p$ -Centroid Bodies

Weidong Wang<sup>1,2,\*</sup>

Received 16 September 2021; Accepted (in revised version) 7 February 2022

**Abstract.** Lutwak showed the Busemann-Petty type problem (also called the Shephard type problem) for the centroid bodies. Grinberg and Zhang gave an affirmation and a negative form of the Busemann-Petty type problem for the  $L_p$ -centroid bodies. In this paper, we obtain an affirmation form and two negative forms of the Busemann-Petty type problem for the general  $L_p$ -centroid bodies.

**Key Words**:  $L_p$ -centroid body, general  $L_p$ -centroid body, Busemann-Petty problem, affirmation form, negation form.

AMS Subject Classifications: 52A40, 52A20, 52A39, 52A38

## 1 Introduction

Let  $K^n$  denote the set of convex bodies (compact, convex subsets with non-empty interiors) in n-dimensional Euclidean space  $\mathbb{R}^n$ , for the set of convex bodies containing the origin in their interiors and the set of origin-symmetric convex bodies, we write  $K^n_o$  and  $K^n_{os}$ , respectively. Let  $S^n_o$  and  $S^n_{os}$  orderly denote the set of star bodies (about the origin) and the set of origin-symmetric star bodies in  $\mathbb{R}^n$ . Let  $S^{n-1}$  denote the unit sphere in  $\mathbb{R}^n$ , denote by V(K) the n-dimensional volume of a body K, for the standard unit ball B in  $\mathbb{R}^n$ , write  $\omega_n = V(B)$ .

Centroid body was attributed by Blaschke to Dupin (see [6, 18]), its definition was extended by Petty (see [17]). Let K is a compact set, the centroid body,  $\Gamma K$ , of K is an origin-symmetric convex body whose support function is given by (see [6])

$$h_{\Gamma K}(u) = \frac{1}{V(K)} \int_{K} |u \cdot x| dx \tag{1.1}$$

<sup>&</sup>lt;sup>1</sup> Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, Hubei 443002, China

<sup>&</sup>lt;sup>2</sup> College of Science, China Three Gorges University, Yichang, Hubei 443002, China

<sup>\*</sup>Corresponding author. Email address: wdwxh722@163.com (W. Wang)

for all  $u \in S^{n-1}$ .

Centroid bodies are very important in Brunn-Minkowski theory. For decades, centroid bodies have attracted increased attention (for example see articles [10,11,17,27] and books [6,18]). In particular, Lutwak [11] showed an affirmation and a negative form of the Busemann-Petty type problems for the centroid bodies as follows:

**Theorem 1.1.** For  $K \in \mathcal{S}_o^n$ ,  $L \in \mathcal{P}^*$ , if  $\Gamma K \subseteq \Gamma L$ , then

$$V(K) \leq V(L)$$
,

and V(K) = V(L) if and only if K = L. Here  $\mathcal{P}^*$  denotes the set of polars of all projection bodies.

**Theorem 1.2.** If  $K \in \mathcal{S}_{os}^n \backslash \mathcal{P}^*$  is infinite smooth, then there exists  $L \in \mathcal{S}_{os}^n \backslash \mathcal{P}^*$  is infinite smooth, such that  $\Gamma K \subset \Gamma L$ , but

$$V(K) > V(L)$$
.

In 1997, Lutwak and Zhang [15] introduced the notion of  $L_p$ -centroid bodies. For each compact star-shaped (about the origin) K in  $\mathbb{R}^n$  and real  $p \ge 1$ , the  $L_p$ -centroid body,  $\Gamma_p K$ , of K is an origin-symmetric convex body whose support function is defined by

$$h_{\Gamma_{p}K}^{p}(u) = \frac{1}{c_{n,p}V(K)} \int_{K} |u \cdot x|^{p} dx$$

$$= \frac{1}{c_{n,p}(n+p)V(K)} \int_{S^{n-1}} |u \cdot v|^{p} \rho_{K}(v)^{n+p} dv$$
(1.2)

for all  $u \in S^{n-1}$ . Here

$$c_{n,p} = \omega_{n+p}/\omega_2 \omega_n \omega_{p-1} \tag{1.3}$$

and dv is the standard spherical Lebesgue measure on  $S^{n-1}$ . The normalization above is chosen so that for the standard unit ball B in  $\mathbb{R}^n$ , we have  $\Gamma_p B = B$ . For the case p = 1, by (1.1) and (1.2), we see that  $\Gamma_1 K$  is the centroid body  $\Gamma K$  under the normalization of definition (1.2) and  $\Gamma_1 K = c_{n,1}^{-1} \Gamma K$  (see [6]).

Further, Lutwak and Zhang [15] established the  $L_p$ -centroid affine inequality. Whereafter, associated with the  $L_p$ -centroid bodies, Lutwak, Yang and Zhang [14] proved the  $L_p$ -Busemann-Petty centroid inequality which is stronger than the  $L_p$ -centroid affine inequality. The  $L_p$ -centroid bodies mean that the centroid bodies are extended from the Brunn-Minkowski theory to the  $L_p$ -Brunn-Minkowski theory. Regarding the studies of the  $L_p$ -centroid bodies, also see [1–3,7,21,22,24] and books [6,18]. In particular, Grinberg and Zhang [7] gave the following the Busemann-Petty type problem for the  $L_p$ -centroid bodies.

**Theorem 1.3.** *If*  $K \in \mathcal{S}_o^n$ ,  $L \in \mathcal{P}_v^*$ , then  $\Gamma_v K \subseteq \Gamma_v L$  implies

$$V(K) \leq V(L)$$
,

and V(K) = V(L) if and only if K = L. Here  $\mathcal{P}_p^*$  denotes the set of polars of all  $L_p$ -projection bodies.