DOI: 10.4208/ata.OA-2020-0034 December 2022

Some Estimates for θ -type Calderón–Zygmund Operators and Linear Commutators on Certain Weighted Amalgam Spaces

Hua Wang*

School of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, China

Received 6 August 2020; Accepted (in revised version) 9 August 2020

Abstract. In this paper, we first introduce some new kinds of weighted amalgam spaces. Then we discuss the strong type and weak type estimates for a class of Calderón–Zygmund type operators T_{θ} in these new weighted spaces. Furthermore, the strong type estimate and endpoint estimate of linear commutators $[b, T_{\theta}]$ formed by b and T_{θ} are established. Also we study related problems about two-weight, weak type inequalities for T_{θ} and $[b, T_{\theta}]$ in the weighted amalgam spaces and give some results.

Key Words: θ -type Calderón–Zygmund operators, commutators, weighted amalgam spaces, Muckenhoupt weights, Orlicz spaces.

AMS Subject Classifications: 42B20, 42B35, 46E30, 47B47

1 Introduction

Calderón–Zygmund singular integral operators and their generalizations on the Euclidean space \mathbb{R}^n have been extensively studied (see [4,11,21,24] for instance). In particular, Yabuta [24] introduced certain θ -type Calderón–Zygmund operators to facilitate his study of certain classes of pseudo-differential operators. Following the terminology of Yabuta [24], we introduce the so-called θ -type Calderón–Zygmund operators.

Definition 1.1. Let θ be a non-negative, non-decreasing function on $\mathbb{R}^+ = (0, +\infty)$ with

$$\int_0^1 \frac{\theta(t)}{t} dt < \infty. \tag{1.1}$$

^{*}Corresponding author. Email address: wanghua@pku.edu.cn (H. Wang)

A measurable function $K(\cdot,\cdot)$ on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x,x) : x \in \mathbb{R}^n\}$ is said to be a θ -type kernel if it satisfies

(i)
$$|K(x,y)| \le \frac{C}{|x-y|^n}$$
 for any $x \ne y$, (1.2a)

(ii)
$$|K(x,y) - K(z,y)| + |K(y,x) - K(y,z)| \le \frac{C}{|x-y|^n} \cdot \theta\left(\frac{|x-z|}{|x-y|}\right)$$

for $|x-z| < |x-y|/2$. (1.2b)

Definition 1.2. Let T_{θ} be a linear operator from $\mathscr{S}(\mathbb{R}^n)$ into its dual $\mathscr{S}'(\mathbb{R}^n)$. We say that T_{θ} is a θ -type Calderón–Zygmund operator if

- 1. T_{θ} can be extended to be a bounded linear operator on $L^{2}(\mathbb{R}^{n})$;
- 2. There is a θ -type kernel K(x,y) such that

$$T_{\theta}f(x) := \int_{\mathbb{R}^n} K(x, y) f(y) dy \tag{1.3}$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$ and for all $x \notin \text{supp } f$, where $C_0^{\infty}(\mathbb{R}^n)$ is the space consisting of all infinitely differentiable functions on \mathbb{R}^n with compact support.

Note that the classical Calderón–Zygmund operator with standard kernel (see [4,11]) is a special case of θ -type operator T_{θ} when $\theta(t) = t^{\delta}$ with $0 < \delta \le 1$.

Definition 1.3. Given a locally integrable function b defined on \mathbb{R}^n , and given a θ -type Calderón–Zygmund operator T_{θ} , the linear commutator $[b, T_{\theta}]$ generated by b and T_{θ} is defined for smooth, compactly supported functions f as

$$[b, T_{\theta}] f(x) := b(x) \cdot T_{\theta} f(x) - T_{\theta} (bf)(x)$$

$$= \int_{\mathbb{R}^n} [b(x) - b(y)] K(x, y) f(y) \, dy. \tag{1.4}$$

We first give the following weighted results of T_{θ} obtained by Quek and Yang in [19].

Theorem 1.1 ([19]). Suppose that θ is a non-negative, non-decreasing function on $\mathbb{R}^+ = (0, +\infty)$ satisfying condition (1.1). Let $1 \leq p < \infty$ and $w \in A_p$. Then the θ -type Calderón–Zygmund operator T_{θ} is bounded on $L_w^p(\mathbb{R}^n)$ for p > 1, and bounded from $L_w^1(\mathbb{R}^n)$ into $WL_w^1(\mathbb{R}^n)$ for p = 1.

Since linear commutator has a greater degree of singularity than the corresponding θ -type Calderón–Zygmund operator, we need a slightly stronger condition (1.5) given below. The following weighted endpoint estimate for commutator $[b,T_{\theta}]$ of the θ -type Calderón–Zygmund operator was established in [26] under a stronger version of condition (1.5) assumed on θ , if $b \in BMO(\mathbb{R}^n)$ (for the unweighted case, see [15]). Let us