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Abstract. Inner-outer iterative methods for large sparse non-Hermitian nonlinear sys-

tems are considered. Using the ideas of modified generalised Hermitian and skew Her-

mitian methods and double-parameter GHSS method, we develop a double-parameter

modified generalised Hermitian and skew Hermitian method (DMGHSS) for linear non-

Hermitian systems. Using this method as the inner iterations and the modified Newton

method as the outer iterations, we introduce modified Newton-DMGHSS methods for

large sparse non-Hermitian nonlinear systems. The convergence of the methods is stud-

ied. Numerical results demonstrate the efficacy of the methods.
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1. Introduction

Numerical solution of nonlinear partial differential equations — e.g. the Poisson-Boltz-

mann equation, are vital to many scientific and engineering applications. The discretisation

of such equations leads to a nonlinear system

F(x) = 0 (1.1)
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with a continuously differentiable (nonlinear) map F defined on a domain in Rn or Cn. It

is worth noting that the systems arising are often connected with large sparse matrices —

cf. [19, 20]. This study focuses on numerical solutions x of nonlinear systems (1.1) with

a sparse non-Hermitian, positive definite Jacobian matrix F ′(x).

Inexact Newton approaches [15], which do not use the inverses of the Jacobian matri-

ces, are an attractive tool for the solution of such systems. This method can be described

as follows.

Algorithm 1.1 Inexact Newton Method.

1: Give an initial guess x0.

2: for k = 0 to “convergence” do

3: Develop some ηk ∈ [0,1) and sk that meet ‖F(xk) + F ′(xk)sk‖ ≤ ηk‖F(xk)‖.
4: end for

5: Set xk+1 = xk + sk.

Here, F ′(xk) is the Jacobian matrix and ηk ∈ [0,1) a forcing term used to control the

accuracy. An inexact Newton approach consists of two steps. The nonlinear iteration gener-

ating a sequence {xk} is referred to as the outer iteration and the linear iteration generating

an approximation for the Newton step sk as the inner iteration. We note that linear itera-

tive methods often used as internal Newton iterative solvers lead to inner-outer iterations

such as Newton-CG and Newton-GMRES — cf. [3,17]. In particular, using a Hermitian and

skew-Hermitian splitting method [6] in the inexact Newton procedure, one obtains the so-

called Newton-HSS method — cf. [10]. It is widely used for solving large sparse nonlinear

systems with non-Hermitian positive definite Jacobian matrices.

This work is aimed at the development of efficient and robust iteration methods, which

have a high convergence order, for nonlinear systems. For example, the modified Newton

method
¨

yk = xk − F ′(xk)
−1

F(xk),

xk+1 = yk − F ′(xk)
−1

F(yk), k = 0,1,2, . . .
(1.2)

has at least the third order of convergence [14]. It is comparable with the Newton method,

and it has been widely used in for solving inverse eigenvalue problems [13], power flow

equations [16], and other nonlinear systems [21,22]. Wu and Chen [21] considered a mod-

ified Newton-HSS method based on a modified Newton method and the Hermitian and

skew-Hermitian splitting as outer and inner solvers, respectively. Note that the conver-

gence analysis shows that the efficiency of the inner iteration affects the convergence rate

of the modified Newton-HSS approach [12]. Therefore, at each Newton iteration an effi-

cient inexact solver for the Jacobian systems has to be employed.

For linear system Ax = b, the Hermitian and skew-Hermitian splitting (HSS) [6] and

its modifications [4, 5, 7–9, 11] are popular methods because of their efficiency. Using the

HSS method, Benzi [11] developed a generalised Hermitian and skew-Hermitian splitting

iterations (GHSS) for positive definite, non-Hermitian linear systems. It finds applications

in Sylvester equations [23] and image restoration [1]. The GHSS method is based on


