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Abstract. In this paper, we introduce a weak Galerkin (WG) finite element method for
p-Laplacian problem on general polytopal mesh. The quasi-optimal error estimates of
the weak Galerkin finite element approximation are obtained. The numerical examples
confirm the theory.
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1. Introduction

We consider the following p-Laplacian problem

V-(lVuP?vu)=f in Q,

1.1
u=20 on 29, D

where 1 < p < o0.

The p-Laplacian problem has many applications including filtration, power-law materi-
als and quasi-Newtonian flows. Finite element analysis of the p-Laplacian has been exten-
sively studied in the literature. The quasi-norm approach introduced in [2] provides sharper
error bounds for finite element solutions of the p-Laplacian problems. The quasi-norm error
estimates have been derived for different finite element approximations in [4, 8, 9].

The weak Galerkin finite element method is an effective and flexible numerical tech-
nique for solving partial differential equations. It is a natural extension of the standard
Galerkin finite element method where classical derivatives are substituted by weakly de-
fined derivatives on functions with discontinuities. The WG method was first introduced
in [15,16] and then has been applied to solve various PDEs such as second order elliptic
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equations, biharmonic equations, Stokes equations, convection dominant problems, hyper-
bolic equations, and Maxwell’s equations [1,3,5,6,11-14,17-24].

In this paper, we introduce a WG finite element method for solving the p-Laplacian
problem. Error estimates are obtained in different norms. The numerical examples tested
on hybrid polygonal meshes confirm the theoretical findings.

2. Finite Element Methods

For any given polygon D C ), we use the standard definition of Sobolev spaces H*(D)
with s > 0. The associated inner product, norm, and semi-norm in H*(D) are denoted by
(,)s.p> I - lls,p> @and | - |5 p, 0 < s, respectively. When s = 0, HO(D) coincides with the space
of square integrable functions L2(D). In this case, the subscript s is suppressed from the
notation of norm, semi-norm, and inner products. Furthermore, for D = Q the subscript D
is also suppressed.

Let 4, be a partition of a domain 2 consisting of polygons in two dimension or polyhe-
dra in three dimension satisfying a set of conditions specified in [16]. Denote by &, the set
of all edges or flat faces in &, and let 8}? = &,\ 99 be the set of all interior edges or flat faces.
For every element T € Z,, we denote by hy its diameter and mesh size h = maxrcg hy
for Z,.

For k > 1, we define the finite element spaces

Vi i={v={vo,vp} 1 vy €P(T) x P(e),e € 3T, T € G},
VhO = {v eV, :vy,=0o0n EQ}.

For any v = {v,, v}, the weak gradient V,,v € [P,_;(T)]¢ is defined on T by

(Vs 91 =, V- 9)r— (v, 9 -n)ar forall ¢ e [P (T)]% 2.1)

We introduce also the bilinear forms

s(v,w) := Z h;l(vo—vb,wo—wb)aT, (2.2)
TeZ,

a(v,w) := Z (lVWvlp_szv, VWW)T +s(v,w). (2.3)
TeT,

Let Qo,Q; and Qj, be the locally defined L? projections onto P(T), P.(e) and [P,_;]
accordingly on each element T € &, and e € d T. For the true solution u of (1.1), we define

Quu as
Quu :={Qou,Quu} € Vho.

Algorithm 2.1. A numerical approximation for (1.1) can be obtained by seeking u; =
{up,upt € Vh0 satisfying the following equation:

a(uy,v)=(f,vy) forall v={vy,vp}e Vho. (2.4)



