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Abstract. A particle-cluster treecode based on barycentric Lagrange interpolation is
presented for fast summation of hydrodynamic interactions through general Rotne-
Prager-Yamakawa tensor in 3D. The interpolation nodes are taken to be Chebyshev
points of the 2nd kind in each cluster. The barycentric Lagrange interpolation is scale-
invariant that promotes the treecode’s efficiency. Numerical results show that the
treecode CPU time scales like O(N logN), where N is the number of beads in the
system. The kernel-independent treecode is a relatively simple algorithm with low
memory consumption, and this enables a straightforward OpenMP parallelization.
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1 Introduction

The Brownian Dynamics (BD) is a coarse-grained model used to account for long-range
hydrodynamic interactions (HI) of small spherical particles suspended in a viscous flow
at low Reynolds number. The technique is commonly used to study properties of rigid
and flexible macromolecules using bead models [2,6,9,26]. Particle beads moving in a vis-
cous fluid induce a local flow field that affects other beads. The long-range, many-body
interactions, mediated by the solvent are commonly called HI. HIs are critical to describe
large scale collective motions. The Ermak-McCammon algorithm is one of the popular
algorithms for Brownian dynamics simulation with hydrodynamic interactions [7, 12],
where the particles are assumed to be spherical beads, and hydrodynamic interactions
between particles are described by a diffusion tensor. The Rotne-Prager-Yamakawa (RPY)
approximation is one of the most commonly used tensors of including HIs in modeling
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of colloidal suspensions and polymer solutions [23, 30]. This widely used approach has
been recently generalized by [27, 28] for the RPY translational and rotational degrees of
freedom, as well as for the shear disturbance tensor C which gives the response of the
particles to an external shear flow. The general Rotne-Prager-Yamakawa (GRPY) mobil-
ity has the form
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which contains four 3N×3N blocks for translation, µtt, rotation, µrr, and translation ro-
tation coupling µtr, and µrt =(µtr)T, where N is the number of beads. The translational-
translational mobility µtt is
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the rotational degrees of freedom µrr is
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finally, the translation-rotational mobility is described by the following tensor:
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