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Abstract. A local discontinuous Galerkin finite element method for a class of time-

fractional Burgers equations is developed. In order to achieve a high order accuracy, the

time-fractional Burgers equation is transformed into a first order system. The method

is based on a finite difference scheme in time and local discontinuous Galerkin methods

in space. The scheme is proved to be unconditionally stable and in linear case it has

convergence rate O (τ2−α + hk+1), where k ≥ 0 denotes the order of the basis functions

used. Numerical examples demonstrate the efficiency and accuracy of the scheme.
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1. Introduction

Fractional differential equations generally can be divided into three categories: time

fractional equations [8, 14, 18, 38], space fractional equations [2, 13, 24, 36] and time-

space fractional equations [1,16,26,35]. Analytical solutions of these equations are rarely

known and even if they are, it is difficult to extend them to a general case. Therefore, it

is important to study the properties of fractional differential equations and to develop nu-

merical methods for the approximation of their solutions. Various numerical approaches to

the equations with fractional derivatives include methods for equations with Caputo and

Riemann-Liouville fractional derivatives. In particular, Sun and Wu [27] showed that the

L1-approximation formula for the order α Caputo fractional derivatives is of order (2−α).
Lin and Xu [20] considered a spectral method with finite difference approximation for

the time Caputo fractional diffusion equation. They proved that L1 formula has the order
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(2 − α) and established a strict estimate. Lin et al. [19] studied a spectral method with

L1 scheme for fractional PDEs, Zhang et al. [38] combined finite difference methods with

L1-approximations, Li et al. [18] considered a finite element method and L1 scheme for the

time fractional Maxwell’s equations, and Feng et al. [12] discussed a finite element method

for a 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equations.

Classical Burgers equation is an important model in fluid dynamics [3], and fractional

Burgers-type equations can be used to describe the cumulative effect of the wall friction

through boundary layers. Therefore, considerable efforts have been spent on the develop-

ment of numerical methods for such equations. El-Ajou [10] generalised the RPS method

and obtained explicit and approximate solutions of the nonlinear fractional KdV-Burgers

equation with time-space-fractional derivatives, Li et al. [17] developed a linear implicit

finite difference scheme, which greatly reduces computational complexity, Mohebbi [25]

considered a method based on a finite difference scheme in time and the Chebyshev spectral

collocation method in space, Esen and Tasbozan [11] employed a finite element method

based on the cubic B-spline collocation method. Other numerical methods for this type

equations are studied in [21, 22, 28]. In this work, we consider a local discontinuous

Galerkin (LDG) method for the following generalized time fractional Burgers equation:

∂ αu(x , t)

∂ tα
+ g(u)x − d

∂ 2u(x , t)

∂ x2
= f (x , t), (x , t) ∈ [a, b]× [0, T ], (1.1)

where 0 < α ≤ 1 and d > 0 is a positive constant. The boundary conditions is either

periodic or compact and the initial condition is

u(x , 0) = u0(x), x ∈ [a, b].

The time fractional derivative ∂ αu/∂ tα in the Eq. (1.1) is the Caputo derivative

∂ αu

∂ tα
=

1

Γ (1−α)

∫ t

0

∂ u(x , s)

∂ s

ds

(t − s)α
, 0< α < 1, (1.2)

where Γ refers to the usual Gamma function. As α approaches 1−, it is the first order

integral derivation.

Local discontinuous Galerkin methods for time fractional partial differential equations

have been recently studied in [15,29–31]. In particular, it was shown that a fully discrete

LDG method for the time-fractional KdV equation in [31] converges as O (τ−αhk+1+τ2−α+

τ−α/2hk+1/2+hk+1), where k ≥ 0 is the order of the basis function, and τ and h are, respec-

tively, time and space step sizes. In present work, we show that the order of convergence

for the LDG method can be improved to O (τ2−α + hk+1). On the other hand, Du et al. [9]

introduced an LDG method with high-order temporal convergence rate for nonlinear time-

fractional fourth-order PDEs, and Liu [23] considered an LDG method for a time-fractional

subdiffusion equation with the third-order temporal convergence rate. The LDG method

proposed by Cockburn and Shu [7] is an important class of numerical methods with a high-

order accuracy. Due to discontinuity of the elements in the approximation space, it is well


