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On Conformal Metrics with Constant Q-Curvature
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Abstract. We review some recent results in the literature concerning existence of con-
formal metrics with constant Q-curvature. The problem is rather similar to the classi-
cal Yamabe problem: however it is characterized by a fourth-order operator that might
lack in general a maximum principle. For several years existence of geometrically ad-
missible solutions was known only in particular cases. Recently, there has been instead
progress in this direction for some general classes of conformal metrics.
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1 Introduction

A classical problem in conformal geometry is the Yamabe problem, consisting in deforming
a background metric on a compact manifold (M,g) so that its scalar curvature becomes
constant. This can be considered as an extension of the classical uniformization problem
for two-dimensional surfaces and has received a lot of attention in the literature, see [34]
for a general introduction to the problem.

The scalar curvature of a manifold transforms conformally according to the law

Lgu+Rgu=Rg̃u
n+2
n−2 , g̃=u

4
n−2 g, (1.1)

where Lg is the conformal laplacian, defined by

Lgφ=−4(n−1)
(n−2)

∆gφ+Rgφ.

The latter operator transforms covariantly, namely one has

Lg(uφ)=u
n+2
n−2 Lg̃(φ). (1.2)
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The Yamabe problem then amounts to finding a positive solution to (1.1) with Rg̃ equal
to a constant. This constant can be viewed as a Lagrange multiplier when considering
the following minimization problem

Y(g)= inf
u∈W1,2(M,g),u 6=0

´
M uLgudµg(´

M |u|
2n

n−2 dµg

) n−2
n

. (1.3)

It can be proved using (1.1) and (1.2) that the latter quantity is conformally invariant.
Since the Sobolev embedding W1,2(M,g) ↪→ L

2n
n−2 (M,g) is not compact, it is a-priori

not clear whether a minimizer exists. In [44] the problem was attacked by lowering the
exponent by a small amount and trying to pass to the limit: however the original proof
of convergence was faulty. In [41] existence of minimizers was shown provided Y(g) is
smaller than a given positive dimensional constant (and in particular when it is negative
or zero). In [1] it was shown via a compactness argument that minimizers exist pro-
vided Y(g)<Y(gSn), which was verified in dimension n≥ 6 if (M,g) is not conformally
equivalent to the standard sphere. Under this latter assumption, in [39] the same strict
inequality was proved in the complementary cases, i.e., for n=3,4,5 or (M,g) locally con-
formally flat. While the argument in [1] exploited a local geometric expansion involving
the Weyl tensor, the one in [39] relied on the Positive Mass Theorem in general relativity.

We next discuss some higher-order analogue of the above problem. In [2] T.Branson
introduced the following fourth-order operator in dimension n≥5:

Pgu=∆2
gu−divg

(
anRgg+bnRicg

)
du+

n−4
2

Qgu,

where

an =
(n−2)2+4

2(n−1)(n−2)
, bn =−

4
n−2

.

The function

Qg =
1

2(n−1)
∆gRg+

n3−4n2+16n−16
8(n−1)2(n−2)2 R2

g−
2

(n−2)2

∣∣Ricg
∣∣2

is the so-called Q-curvature (see [14, 18, 29] for more general operators and formulas). As
for Lg, the operator Pg is conformally covariant: if g̃= u

4
n−4 g is a conformal metric to g,

then for all φ∈C∞(M) we have

Pg(uφ)=u
n+4
n−4 Pg̃(φ). (1.4)

Moreover one has the following conformal transformation law

Pgu=Qg̃u
n+4
n−4 , g̃=u

4
n−4 g, (1.5)

analogous to (1.1).


