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Abstract. An inverse time-dependent source problem for a multi-dimensional fractional

diffusion wave equation is considered. The regularity of the weak solution for the di-

rect problem under strong conditions is studied and the unique solvability of the inverse

problem is proved. The regularised variational problem is solved by the conjugate gradi-

ent method combined with Morozov’s discrepancy principle. Numerical examples show

the stability and efficiency of the method.
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1. Introduction

Fractional diffusion and fractional diffusion-wave equations often occur in biology,

physics, chemistry, biochemistry and so on — cf. Refs. [23, 24, 27, 42, 43]. They are used

in the description of diffusion abnormalities such as sub-diffusion and super-diffusion phe-

nomena [3, 24, 29, 32]. For time-fractional diffusion equations various direct and inverse

problems are considered in [2,7,13,18,19,22,28,30,33,37,38,44]. On the other hand, for

time-fractional diffusion-wave equations, analytic and week solutions are respectively stud-

ied in [1,12] and [28], the unique solvability of semilinear time-fractional wave equations

in [16], and approximation methods in [4,6,7]. Hendy et al. [11] and Pimenov et al. [26]

extended the Crank-Nicolson scheme to non-linearly distributed orders in time fractional

diffusion-wave equation.
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Let Ω ⊂ Rd be a bounded domain with sufficiently smooth boundary ∂Ω. In particular,

we assume that ∂Ω ∈ C2 if d ≤ 3. Moreover, let T > 0 be a fixed final time, Γ (·) the Gamma

function, ∂ α
0+

, α ∈ (1,2) the Caputo fractional left-sided derivative of order α defined by

∂ α0+u(x , t) =
1

Γ (2−α)

∫ t

0

∂ 2u(x ,τ)

∂ τ2

dτ

(t −τ)α−1
, 0< t ≤ T,

and −L a symmetric uniformly elliptic operator,

Lu(x) :=

d
∑

i=1

∂

∂ x i

 

d
∑

j=1

Ai j(x)
∂

∂ x j

u(x)

!

+ c(x)u(x), x ∈ Ω

such that

Ai j(x) = A ji(x) ∈ C∞(Ω), 1≤ i, j ≤ d ,

µ

d
∑

i=1

ξ2
i ≤

d
∑

i, j=1

Ai j(x)ξiξ j , x ∈ Ω, (ξ1, · · · ,ξd) ∈ R
d , for a constant µ > 0,

c(x) ≤ 0, x ∈ Ω, c(x) ∈ C∞(Ω),

and

∂ u

∂ ν
=

d
∑

i, j=1

Ai j(x)
∂ u

∂ x j

νi ,

where ν = (ν1, · · · ,νd) ∈ R
d is the outward normal unit vector to ∂Ω.

We consider the time-fractional diffusion-wave problem

∂ α0+u(x , t)− Lu(x , t) = g(x)h(t), x ∈ Ω, t ∈ (0, T ],

u(x , 0) = a(x), x ∈ Ω,

ut(x , 0) = b(x), x ∈ Ω,

∂ u(x , t)

∂ ν
= 0, x ∈ ∂Ω, t ∈ (0, T ].

(1.1)

If the functions g(x), h(t), a(x) and b(x) are known, the system (1.1) represents a direct

problem. On the other hand, the inverse problem consists in finding the time-dependent

source term h(t) in (1.1) from additional data

u(x , t) = f (x , t), x ∈ Γ0, 0< t ≤ T, (1.2)

where Γ0 is a nonempty subset of the boundary ∂Ω.

The inverse source problem for time-fractional diffusion equation is widely studied.

Thus Zhang et al. [44] found the solution of an inverse space-dependent source prob-

lem from the Cauchy data at x = 0, Sakamoto et al. [28] established a stability esti-

mate for identification of a time-dependent source from the measurements at an interior


