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Abstract. A fast algorithm with almost optimal memory for the computation of Ca-

puto’s fractional derivative is developed. It is based on a nonuniform splitting of the

time interval [0, tn] and a polynomial approximation of the kernel function (1 − τ)−α.

Both the storage requirements and the computational cost are reduced from O (n) to

(K+1)O (log n) with K being the degree of the approximated polynomial. The algorithm

is applied to linear and nonlinear fractional diffusion equations. Numerical results show

that this scheme and the corresponding direct methods have the same order of conver-

gence but the method proposed performs better in terms of computational time.
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1. Introduction

Fractional differential equations become a popular tool in various applications. They

can properly reflect physical processes in biology, ecology and control systems [11–14,18,

19,28,31–33]. The Riemann–Liouville [3,4] and the Caputo [11,33,37,39,42] fractional

derivatives are commonly used and the latter is better suited to work with fractional par-

tial differential equations (PDEs), since the former is connected with the initial conditions

containing limit values of the fractional derivatives at t = 0, the physical meaning of which

is not quite clear. We consider a fast method for PDEs with the Caputo fractional derivative
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t u(t) =

1

Γ (1−α)

t
∫

0

u′(τ)

(t −τ)α
dτ, 0< α < 1, (1.1)

where Γ is the Gamma function and t ∈ [0, T ] with a finite time T .

A popular approach to discretise the fractional derivative (1.1), called L1 formula

[9, 20, 37], consists in piecewise linear approximation of the integrand u(t) on every cho-

sen subinterval. For 0 < α < 1, this scheme enjoys 2 − α order of convergence. Other

methods, including the Crank-Nicolson-Type discretisation [42] and the matrix transfer

technique [39], with the convergence rate 2−α have been also studied. Moreover, Zeng et

al. [40] constructed a second order unconditionally stable scheme by using fractional linear

multistep methods for the Caputo derivative approximation. Gao and Sun [8] proposed an

L1− 2 formula, based on piecewise quadratic interpolation, and achieved 3− α accuracy

order and Cao et al. [2] improved the convergence order to 3 + α. On the other hand,

Li and Xu [18] considered a numerical scheme with the spectral accuracy order but this

direct method has to keep all the previous solutions and requires O (n) storage capacity

and O (n) flops at the n-th time step. Therefore, for long time large scale simulations of

fractional PDEs, efficient and reliable fast methods are needed. To keep the memory and

reduce the computational cost, several fast methods have been developed. Thus Lubich

and Schädle [22] introduced a fast convolution method, where the kernel function in the

Caputo derivative was represented via the inverse Laplace transform and then calculated

— cf. [21, 34, 41]. The storage requirements and the computational cost of such methods

are O (log n). Ren et al. [33] used the Laplace transform method to change the fractional

differential equation into an approximate local problem, and Li [17] employed the Gauss–

Legendre quadratures to construct a fast algorithm based on the representation

tα−1 =
1

Γ (α)Γ (1−α)

∫ ∞

0

e−ξtξ−αdξ.

In the case T >> 1, Jiang et al. [11] used a combination of the Gauss–Jacobi and Gauss–

Legendre quadratures to improve this method to O (log n) storage requirements and

O (log n) computational cost. The fast scheme turned out to have 2−α convergence rate and

to be unconditionally stable [11]. Further on, to solve fractional diffusion equations Yan et

al. [38] employed an L2− 1σ formula, achieving the second-order accuracy. McLean [26]

approximated fractional kernel by degenerate kernels and Baffet and Hesthaven [1] used

a kernel compression to discretise the corresponding fractional integral operator.

In this paper, we introduce a fast algorithm with almost optimal memory for the Caputo

fractional derivative, which has the same order of convergence as a direct method. At each

time step, the fractional derivative is decomposed into local and history parts. The local

part, represented by an integral over interval [tn−1, tn], is calculated by a direct method.

To evaluate history part, we split the interval [0, tn−1] into nonuniform subintervals. The

corresponding integrals depend on tn, which causes difficulties in fast calculations. To

overcome these difficulties, we approximate the kernel function by a polynomial of K-th

degree. The convolutions of the integral of u′(t) with different polynomial basis functions


