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Abstract. The numerical solution of a parabolic Volterra integro-differential equation
with a memory term on a one-dimensional unbounded spatial domain is considered.
A quasi-wavelet based numerical method is proposed to handle the spatial discretisa-
tion, the Crank-Nicolson scheme is used for the time discretisation, and second-order
quadrature to approximate the integral term. Some numerical examples are presented
to illustrate the efficiency and accuracy of this approach.
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1. Introduction

Integro-differential equations are quite common in science and engineering — e.g. to
describe porous viscoelastic behaviour with known fluctuations, or vibrations and dynamic
populations. Various algorithms have been designed for the numerical solution of Volterra
integro-differential equations — including finite element methods [1,13-16], an orthogo-
nal spline collection method [5] and finite difference methods. In particular, Xu discussed
the numerical solution of a fractional diffusion equation by a finite difference scheme in
time and a Legendre spectral scheme in space [10], Liu considered the numerical soluttion
of the Rayleigh-Stokes problem involving a fractional derivative for a heated generalised
second grade fluid [11], and Tang used the Crank-Nicolson scheme to approximate a par-
tial integro-differential equation with a weakly singular kernel [12].
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In this article, we consider the numerical solution to the the following problem. Find
u(x, t) satisfying the Volterra integro-differential equation

du(x,t)

t
P +J k(x,t —s)u(x,s)ds = Au(x,t)+ f(x,t), x€R, t€[0,T] (1.1)
0

where Au = 9%u/dx?, subject to the initial condition
u(x,0) =uy(x), xe€R, (1.2)

and the boundary condition
u—0 asl|x|— oo, (1.3)

when the function f(x,t) and the kernel function k(x,t) are assumed to be sufficiently
smooth.

When Eq. (1.1) applies on unbounded domains, numerical solutions have been ob-
tained by many authors. One approach is the artificial boundary method to convert un-
bounded domain to bounded domains — e.g. Ma [19] used finite elements in space and the
discontinuous Galerkin time-stepping method in time to solve the reduced problem, and
the artificial boundary method for the numerical solution of parabolic PDEs on unbounded
domains was considered in Refs. [20,21]. An algebraic mapping has also been applied
to the problem (1.1)-(1.3) on bounded domains, associated with the Legendre collocation
method [22]. Here we use the Crank-Nicolson scheme is for the time discretisation, and
the quasi-wavelet based numerical method for the spatial discretisation. The quasi-wavelet
method is an effective way to approach the unbounded domain problem, since it is easy
to implement and its distinctive local property produces accurate results. The localisation
property allows us to analyse the local characteristics of functions involved [23], and the
wavelet can be expressed as a superposition of its orthogonal scaling function. Thus the
quasi-wavelet method is a very powerful tool for solving many kinds of partial integro-
differential equations arising in real problems [17,18,24]. Interested readers may also
refer to Refs. [28,29,35] for more detail on the quasi-wavelet numerical method.

We present the quasi-wavelet theory in Section 2. Subsection 3.1 presents the time
discretisation for (1.1)-(1.3) via the Crank-Nicolson method, and the quasi-wavelet spatial
discretisation and numerical algorithms are discussed in Section 3.2. Some numerical
examples and results are given in Section 4, and concluding remarks in Section 5.

2. Quasi-Wavelet Based Numerical Method

Before giving a brief description of the quasi-wavelet based numerical method, let us
first introduce the concept of singular convolution that often arise in science and engi-
neering [25,26]. A singular convolution is defined in the context of distribution theory
as

o0

F(t)=(T*g)(t)=f T(t—x)g(x)dx, 2.1)

—00



