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Abstract. Let f be an H−periodic Hölder continuous function of two real variables.
The error ‖ f −Nn(p; f )‖ is estimated in the uniform norm and in the Hölder norm,
where p=(pk)

∞
k=0 is a nonincreasing sequence of positive numbers and Nn(p; f ) is the

nth Nörlund mean of hexagonal Fourier series of f with respect to p=(pk)
∞
k=0 .
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1 Introduction

In general, approximation problems of functions of several real variables defined on
cubes of the Euclidean space are studied by assuming that the functions are periodic in
each of their variables (see, for example [10, Sections 5.3 and 6.3] and [12, Vol II, Chapter
XVII]). But in the case of non tensor-product domains, for example in hexagonal domains
of R2, another definition of periodicity is needed. For such domains most useful period-
icity is the periodicity defined by lattices. We refer to [5] for general information about
lattices.

In the Euclidean plane R2, besides the standard lattice Z2 and the rectangular domain[
− 1

2 , 1
2

)2
, the simplest lattice is the hexagonal lattice and the simplest spectral set is the

regular hexagon.
The generator matrix and the spectral set of the hexagonal lattice HZ2 are given by

H=

( √
3 0

−1 2

)

and

ΩH =

{
(x1,x2)∈R

2 : −1≤ x2,

√
3

2
x1±

1

2
x2<1

}
.
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It is more convenient to use the homogeneous coordinates (t1,t2,t3) that satisfy t1+t2+
t3=0. If we define

t1 :=− x2

2
+

√
3x1

2
, t2 := x2, t3 :=− x2

2
−
√

3x1

2
, (1.1)

the hexagon ΩH becomes

Ω=
{
(t1,t2,t3)∈R

3 : −1≤ t1,t2,−t3<1, t1+t2+t3=0
}

,

which is the intersection of the plane t1+t2+t3=0 with the cube [−1,1]3 .
We use bold letters t for homogeneous coordinates and we denote by R3

H the plane
t1+t2+t3=0, that is

R
3
H =

{
t=(t1,t2,t3)∈R

3 : t1+t2+t3=0
}

.

Also we use the notation Z3
H for the set of points in R3

H with integer components, that is
Z3

H =Z3∩R3
H.

A function f :R2→C is called H−periodic if

f (x+Hk)= f (x)

for all k∈Z2 and x∈R2. If we define t≡ s (mod3) as

t1−s1≡ t2−s2≡ t3−s3 (mod3)

for t = (t1,t2,t3), s = (s1,s2,s3)∈ R3
H, it follows that the function f is H−periodic if and

only if f (t)= f (t+s) whenever s≡0 (mod3) . It is clear that

∫

Ω
f (t+s)dt=

∫

Ω
f (t)dt,

(
s∈R

3
H

)
,

holds for H−periodic integrable function f (see [11]).
L2(Ω) becomes a Hilbert space with respect to the inner product

〈 f ,g〉H :=
1

|Ω|
∫

Ω
f (t)g(t)dt,

where |Ω| denotes the area of Ω. The functions

φj(t) := e
2πi

3 〈j,t〉,
(
t∈R

3
H

)
,

are H−periodic and by a theorem of B. Fuglede (see [2]) the set

{
φj(t) : j∈Z

3
H

}

becomes an orthonormal basis of L2(Ω) (see also [5]).


